

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0237 of 26 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Chemofast Injection System VK, VK Nordic for concrete

Bonded fastener for use in concrete

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

CHEMOFAST Anchoring GmbH

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-08/0237 issued on 18 November 2019

European Technical Assessment ETA-08/0237

Page 2 of 31 | 26 October 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z97062.21 8.06.01-168/21

European Technical Assessment ETA-08/0237

Page 3 of 31 | 26 October 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Chemofast Injection system VK, VK Nordic for concrete" is a bonded anchor consisting of a cartridge with injection mortar VK or VK Nordic and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z97062.21 8.06.01-168/21

European Technical Assessment ETA-08/0237

Page 4 of 31 | 26 October 2022

English translation prepared by DIBt

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

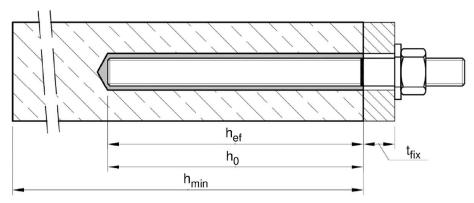
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

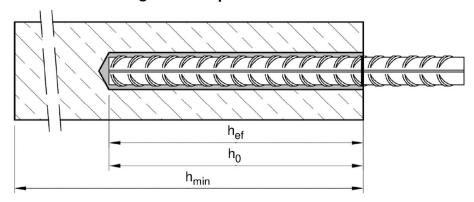
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

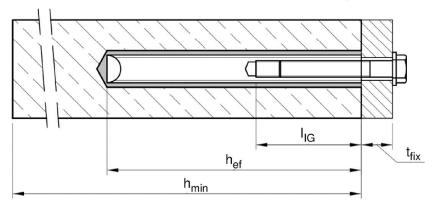
Issued in Berlin on 26 October 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z97062.21 8.06.01-168/21



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture h_0 = nominal drill hole diameter

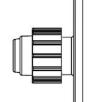
 h_{ef} = effective embedment depth I_{IG} = thread engagement length

 h_{min} = minum thickness of member

Chemofast Injection System VK, VK Nordic for concrete

Product description

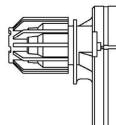
Installed condition


Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

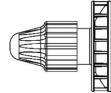

Imprint:

VK or VK Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

VK or VK Nordic

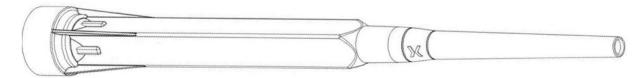
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil tube Cartridge:

165 ml and 300 ml



Imprint:

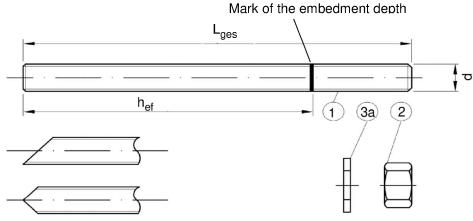

VK or VK Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Static mixer SM-14W

Static mixer PM-19E

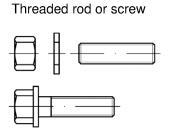
Piston plug VS and mixer extension VL

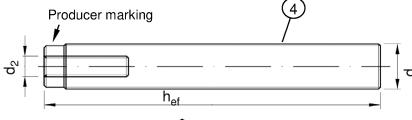

Chemofast Injection System VK, VK Nordic for concrete

Product description

Injection system

Annex A 2


Threaded rod M8 up to M30 with washer and hexagon nut



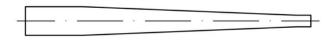
Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Internal threaded rod IG-M6 to IG-M20

Marking Internal thread

Mark


M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer VFS

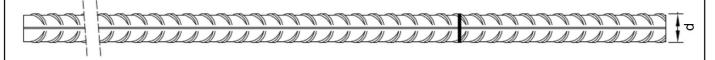
Mixer reduction nozzle MR

Chemofast Injection System VK, VK Nordic for concrete

Product description

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3


Par	Designation	Material				
		acc. to EN ISO 683-4:2	2018	or EN 10263:2001)		
- z	inc plated ≥ 5	5 μm acc. to EN ISO	4042	2:2018 or		
				1:2009 and EN ISO 10684	2004+AC:2009 or	
- S	herardized ≥ 4	45 μm acc. to EN ISO	1766		T	1
		Property class		Characteristic steel	Characteristic steel	Elongation at
	, ,	4.0	ultimate tensile strength	yield strength	fracture	
				$f_{uk} = 400 \text{ N/mm}^2$	f _{yk} = 240 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$
1	Threaded rod	acc. to		f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	
		EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%
				f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
			8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ ≥ 8%
		acc. to	4	for anchor rod class 4.6 o		
2	Hexagon nut	EN ISO 898-2:2012	5	for anchor rod class 5.6 o	r 5.8	
			8	for anchor rod class 8.8		
За	Washer			galvanised or sherardized	7002:2000 or EN ICO	7004-2000\
3b	Filling washer			:N ISO 7089:2000, EN ISC galvanised or sherardized	7 7093.2000 OF EN 150	7094.2000)
30	Tilling washer		t-uip	Characteristic steel	Characteristic steel	Elongation at
	Internal three ded	Property class		ultimate tensile strength	yield strength	fracture
4	Internal threaded anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
	anonor rod	EN ISO 898-1:2013			f _{vk} = 640 N/mm ²	A ₅ > 8%
Stai	⊥ i nless steel Δ2 (Mate			1 / 1.4567 or 1.4541, acc. t	1 1"] 5
				1 / 1.4362 or 1.4578, acc. t		
				1.4565, acc. to EN 10088		
		Property class		Characteristic steel	Characteristic steel	Elongation at
	Property class			ultimate tensile strength	yield strength	fracture
		Troporty oldos				
1	Threaded rod ¹⁾³⁾			f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ ≥ 8%
1	Threaded rod ¹⁾³⁾	acc. to	70	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	$A_5 \ge 8\%$ $A_5 \ge 8\%$
1	Threaded rod ¹⁾³⁾		70	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ ≥ 8%
		acc. to EN ISO 3506-1:2020	70	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	$A_5 \ge 8\%$ $A_5 \ge 8\%$
	Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	acc. to EN ISO 3506-1:2020 acc. to	70 80 50 70	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{split}$	$f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	$A_5 \ge 8\%$ $A_5 \ge 8\%$
1		acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020	70 80 50 70 80	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \end{split}$	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
		acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 /	70 80 50 70 80	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4	$f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 541, acc. to EN 10088-	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2014
2		acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 /	70 80 50 70 80 1.43 1.44	f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088-	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2014
2	Hexagon nut ¹⁾³⁾	acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529	70 80 50 70 80 1.43 1.44 9 or 1	f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 .4565, acc. to EN 10088-1	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088- : 2014	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2014$ $1:2014$
2 3a	Hexagon nut ¹⁾³⁾ Washer	acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	70 80 50 70 80 1.43 1.44 9 or 1	f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 .4565, acc. to EN 10088-1 in ISO 7089:2000, EN ISO	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088- : 2014	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2014$ $1:2014$
2 3a	Hexagon nut ¹⁾³⁾	acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4523 (e.g.: EN ISO 887:20 Stainless steel A4, H	70 80 50 70 80 1.43 1.44 9 or 1	f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 .4565, acc. to EN 10088-1	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088- : 2014	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2014$ $1:2014$ $1:2014$
2 3a	Hexagon nut ¹⁾³⁾ Washer Filling washer	acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	70 80 50 70 80 1.43 1.44 9 or 1 606, E	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 $07 / 1.4311 / 1.4567 \text{ or } 1.4$ $04 / 1.4571 / 1.4362 \text{ or } 1.4$ $.4565, \text{ acc. to EN 10088-1}$ $.N ISO 7089:2000, EN ISC orrosion resistance steel$ Characteristic steel ultimate tensile strength	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088- : 2014 7093:2000 or EN ISO	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2014$ $1:2014$
2 3a	Hexagon nut ¹⁾³⁾ Washer	acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4523 (e.g.: EN ISO 887:20 Stainless steel A4, H	70 80 50 70 80 1.43 1.44 9 or 1 606, E	f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 .4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel Characteristic steel	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088- 2014 7093:2000 or EN ISO	$A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2014 1:2014 7094:2000)

²⁾ for IG-M20 only property class 503) Property class 80 only for stainless steel A4 and HCR

Chemofast Injection System VK, VK Nordic for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Reinforcing bar: ø8 up to ø32

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0,05d \leq $h_{rib} \leq$ 0,07d (d: Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A2: Materials Reinforcing bar

Part	Designation	Material
Reba	ar	
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Chemofast Injection System VK, VK Nordic for concrete

Product description
Materials reinforcing bar

Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life	50 years	Working life 100 years			
Base material	uncracked concrete	cracked concrete	Base material	uncracked concrete		
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø IG-M6 to I	32 ,	No performand	e assessed		
Temperature Range	I: - 40°C t II: - 40°C t III: - 40°C t	A 1410 A	No performano	e assessed		

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2
Base material	Cracked and un	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, Ø8 to Ø32	No performance assessed
Temperature Range	I: - 40°C to +40°C ¹⁾ II: - 40°C to +80°C ²⁾ III: - 40°C to +120°C ³⁾	No performance assessed

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

^{3) (}max. long-term temperature +72°C and max. short-term temperature +120°C)

Page 11 of European Technical Assessment ETA-08/0237 of 26 October 2022

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:

VK: -10°C up to +40°C for the standard variation of temperature after installation.
VK Nordic: -20°C up to +10°C for the standard variation of temperature after installation.

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Specifications (Continued)	Annex B 2

8.06.01-168/21

Z98289.22

English translation prepared by DIBt

Table B1: Installation parameters for threaded rod											
Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of element	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	п аерті	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins	stallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through in		[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]	_ ~	h _{ef} + 30 mm ≥ 100 mm		n _{ef} + 2do)			
Minimum spacing		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ince	c _{min}	[mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for reinforcing bar

Reinforcing bar			Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment denth	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2	2d ₀		
Minimum spacing	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Internal diameter of anchor rod	d_2		6	8	10	12	16	20
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	0.	h_{ef} + 30 mm h_{ef} + 2d ₀ ≥ 100 mm		- 2d ₀		
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	c _{min}	[mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Installation parameters	Annex B 3

Table B4	Table B4: Parameter cleaning and installation tools										
				- Daniel Control of the Control of t							
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _t Brush	50	d _{b,min} min. Brush - Ø	Piston plug	Installation directio			
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	→	1	
M8	8		10	RBT10	12	10,5					
M10	8 / 10	IG-M6	12	RBT12	14	12,5		No plug	roquirod		
M12	10 / 12	IG-M8	14	RBT14	16	14,5		No plug	required		
	12		16	RBT16	18	16,5	3				
M16	14	IG-M10	18	RBT18	20	18,5	VS18				
	16		20	RBT20	22	20,5	VS20				
M20		IG-M12	24	RBT24	26	24,5	VS24				
	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} >	all	
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all	
M27	25		32	RBT32	34	32,5	VS32				
M30	28	IG-M20	35	RBT35	37	35,5	VS35				
	32		40	RBT40	41,5	40,5	VS40				

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \ge 10 d_s$, $d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

Brush RBT

Piston Plug VS

Brush extension RBL

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Cleaning and installation tools	Annex B 4

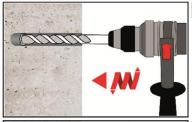
Table B5:	Worki	ng time and o	curing time VK	
Temperat	ture in bas	e material	Maximum working time	Minimum curing time ¹⁾
	° T		t _{gel}	t _{cure}
- 10°C	to	- 6°C	90 min ²⁾	24 h
-5°C to -1°C		- 1 °C	90 min	14 h
0°C	to	+ 4 °C	45 min	7 h
+ 5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+ 19°C	15 min	80 min
+ 20 °C	to	+ 29 °C	6 min	45 min
+ 30 °C	to	+ 34 °C	4 min	25 min
+ 35 °C	to	+ 39 °C	2 min	20 min
	+40°C		1,5 min	15 min
Cartridge temperature			+5°C to	+40°C

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

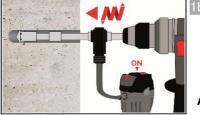
Table B6: Working time and curing time VK Nordic

Temperature in base material			Maximum working time	Minimum curing time 1)			
	Т		t _{gel}	t _{cure}			
- 20 °C	to	- 16°C	75 min	24 h			
- 15°C	to	- 11 °C	55 min	16 h			
- 10°C	to	- 6°C	35 min	10 h			
- 5°C	to	- 1 °C	20 min	5 h			
0°C	to	+ 4 °C	10 min	2,5 h			
+ 5 °C	to	+ 9 °C	6 min	80 min			
	+ 10 °C		6 min	60 min			
Cartridge temperature			-20°C to) +10°C			

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Working time and curing time	Annex B 5

²⁾ Cartridge temperature must be at least +15°C


Installation instructions

Drilling of the bore hole

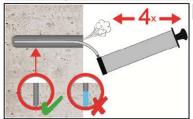
Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.
Drill bit diameter according to Table B1, B2 or B3.
Aborted drill holes shall be filled with mortar.
Proceed with Step 2 (CAC and MAC).

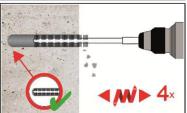
Hollow drill bit system (HDB)

Drill a hole to the required embedment depth.

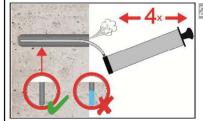
Drill bit diameter according to Table B1, B2 or B3.


Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).


Attention! Standing water in the bore hole must be removed before cleaning

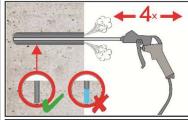
Manual Air Cleaning (MAC)

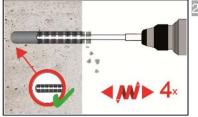

for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm uncracked concrete only) with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

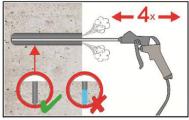
Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

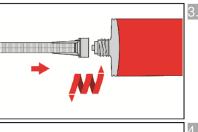

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Installation instructions	Annex B 6


Installation instructions (continuation)

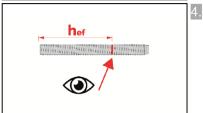
Compressed Air Cleaning (CAC):


All diameter with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

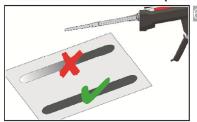
Screw on static-mixing nozzle SM-14W/PM-19E and load the cartridge into an appropriate dispensing tool. With foil tube cartridges cut off the foil tube clip before use.

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

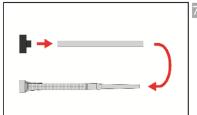
Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

Chemofast Injection System VK, VK Nordic for concrete

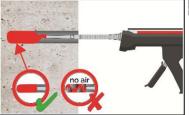

Intended Use

Installation instructions (continuation)

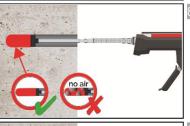

Annex B 7

Z98289.22

Installation instructions (continuation)

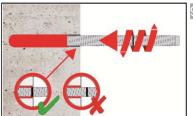


Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes, for foil tube cartridges at least 6 full storkes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø d_0 ≥ 18 mm and embedment depth h_{ef} > 250mm
- Vertical upwards direction: Drill bit-Ø d₀ ≥ 18 mm
 Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Injecting mortar without piston plug VS:


Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets. Observe the temperature related working time t_{work} (Annex B 5).

Injecting mortar with piston plug VS:

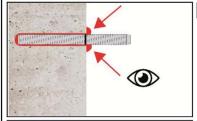
Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time twork (Annex B 5). .

Insert the anchor rod while turning slightly up to the embedment mark.

Chemofast Injection System VK, VK Nordic for concrete

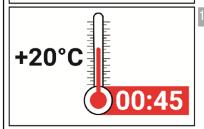
Intended Use


Installation instructions (continuation)

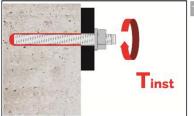
Annex B 8

Z98289.22

Installation instructions (continuation)



Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.


Otherwise, the installation must be repeated starting from step 7 before the maximum working time t_{work} has expired.

For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed. Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

Chemofast Injection System VK, VK Nordic for concrete

Intended Use

Installation instructions (continuation)

Annex B 9

Z98289.22

1	able C1:	Characteristic value resistance of thread			ension	resist	ance	and s	teel s	hear			
Th	readed rod				M8	M10	M12	M16	M20	M24	M27	M30	
Cr	oss section area	a	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561	
Cł	naracteristic tei	nsion resistance, Steel failu	ire 1)		'								
	eel, Property cla		N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
St	eel, Property cla	iss 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
St	eel, Property cla	ıss 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
St	ainless steel A2	, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
St	ainless steel A2	, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)	
St	ainless steel A4	and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)	
CI	naracteristic tei	nsion resistance, Partial fac	ctor ²⁾										
St	eel, Property cla	ss 4.6 and 5.6	γ _{Ms,N}	[-]				2,	0				
St	eel, Property cla	ss 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5				
St	ainless steel A2	, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	36				
St	ainless steel A2	, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87								
		and HCR, class 80	γMs,N	[-]	1,6								
CI	naracteristic sh	ear resistance, Steel failure	¹⁾										
_	Steel, Property	class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
arm	Steel, Property	class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168	
ever	Steel, Property	class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Ħ	Stainless steel	A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140	
Without lever	Stainless steel	A2, A4 and HCR, class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)	
3		A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)	
	Steel, Property	class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
E		class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
era	Steel, Property		M ⁰ Rk,s	[Nm]	30 (26)		105	266	519	896	1333	1797	
ith lever arm	Stainless steel	A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125	
Wit	Stainless steel	A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)	
	Stainless steel	A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)	
CI	naracteristic sh	ear resistance, Partial facto											
St	eel, Property cla	ss 4.6 and 5.6	γ _{Ms,V}	[-]	1,67								
St	eel, Property cla	ss 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]	1,25								
St	ainless steel A2	, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	38				
St	ainless steel A2	, A4 and HCR, class 70	γ _{Ms,V}	[-]	1,56								
St	ainless steel A4	and HCR, class 80	γ _{Ms,V}	[-]				1,3	33				
4	\ \ / -	0.17	A \/-I		and the same of the same							21	

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic v	alues of te	nsion load	ls under static and quasi-static action
Fastener				All Anchor types and sizes
Concrete cone fa	ailure			
Uncracked concre	ete	k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	·	s _{cr,sp}	[mm]	2 c _{cr,sp}

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Z98289.22

	ded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel f		No.	I				• •		- .	. 04)				
Characteristic tension resistance			N _{Rk,s}	[kN]	A _s • f _{uk} (or see Table C1)									
Partial	factor ined pull-out and o	anarata failura	γ _{Ms,N}	[-]				see Ta	ble C1					
	cteristic bond resist		d concrete C	220/25										
	I: 40°C/24°C	Dry, wet			10	12	12	12	12	12 11 10 9				
ınge	II: 80°C/50°C				7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5		
ē S	III: 120°C/72°C	300101010			5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0		
Temperature range	I: 40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5		· ·				
Гетр	II: 80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	N	lo Perfo Asse		e		
	III: 120°C/72°C	noie			4,0	5,0	5,0	5,0		7330	336U			
Charac	cteristic bond resist	ance in cracked c	oncrete C20)/25										
	I: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5		
ange	II: 80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5		
Temperature range	III: 120°C/72°C		^{− τ} Rk,cr	FN 1/ 21	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5		
oeratı	I: 40°C/24°C	flooded bore hole		[N/mm²]	4,0	4,0	5,5	5,5	No Performance Assessed					
Гетр	II: 80°C/50°C				2,5	3,0	4,0	4,0						
	III: 120°C/72°C				2,0	2,5	3,0	3,0						
Reduk	tion factor ψ ⁰ sus in	cracked and und	racked cond	rete C20/25										
ure	I: 40°C/24°C	Dry, wet	Ψ ⁰ sus		0,73									
Temperature range	II: 80°C/50°C	concrete and flooded bore hole		[-]	0,65									
Tem	III: 120°C/72°C				0,57									
Increas	sing factors for con-	rete	Ψ _c	[-]	(f _{ck} / 20) ^{0,11}									
	cteristic bond resist		1.0	τ _{Rk,ucr} =	(000/05)									
	concrete strength			τ _{Rk,cr} =	Ψ _c • τ _{Rk,cr} (C20/25)									
	ete cone failure													
Releva Splittii	ant parameter							see Ta	ble C2					
	ant parameter					see Table C2								
	ation factor				81 8	1								
for dry and wet concrete					1,0				1,2					
for flooded bore hole		γinst	[-]	1,4 No Performanc Assessed					e					
Chen	mofast Injection	System VK, VK	Nordic fo	r concrete						Anne				

Table C4: Characteristic	values	of sh	ear lo	ads ui	nder s	tatic a	nd qu	asi-st	atic acti	on
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	11									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} • f _{uk}	(or see	Table C	:1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

English translation prepared by DIBt

Table C5: Characte	eristic valu	es of t	ension	loads ı	under st	tatic and	l quasi-	static ad	ction		
Internal threaded anchor rods	s			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel failure ¹⁾		T			T						
Characteristic tension resistance	e, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength class 5.8	3 and 8.8	γ _{Ms,N}	[-]			1	,5				
Characteristic tension resistand Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor		γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out and concr	ete cone failu										
Characteristic bond resistance	in uncracked c	oncrete	C20/25								
I: 40°C/24°C	Dry, wet			12	12	12	12	11	9,0		
3 II. 60 C/30 C	concrete		[N/mm²]-	9,0	9,0	9,0	9,0	8,5	6,5		
iii: 120°C/72°C	CONCICIO	751		6,5	6,5	6,5	6,5	6,5	5,0		
은 현 I: 40°C/24°C	flooded bore	^τ Rk,ucr	[[14/111111-]	8,5	8,5	8,5					
្ត៊ែ Ⅱ: 80°C/50°C			[6,5	6,5	6,5	No Performance Assesse				
III: 120°C/72°C	hole			5,0	5,0	5,0					
Characteristic bond resistance	in cracked con	crete C2	20/25								
l: 40°C/24°C	Dry wot			5,0	5,5	5,5	5,5	5,5	6,5		
II: 80°C/50°C	Dry, wet concrete			3,5	4,0	4,0	4,0	4,0	4,5		
B III: 80°C/50°C III: 80°C/24°C III: 80°C/50°C	Concrete	τ _{Rk,cr}	[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5		
ည္ ၽြ	flandad bass		[14/11111-]	4,0	5,5	5,5					
Б II: 80°С/50°С	flooded bore			3,0	4,0	4,0	No Perfe	ormance A	ssessed		
III: 120°C/72°C	hole			2,5	3,0	3,0					
Reduktion factor ψ^0_{SUS} in crack	ked and uncra	cked cor	crete C2	0/25							
e I: 40°C/24°C	Dry, wet			0,73							
II: 40°C/24°C III: 40°C/72°C III: 120°C/72°C	concrete and flooded bore	Ψ ⁰ sus	[-]								
<u>Þ</u> III: 120°C/72°C	hole						57				
Increasing factors for concrete		Ψς	[-]				20) ^{0,11}				
Characteristic bond resistance	depending on	τ	Rk,ucr =				_{cr} (C20/25)	Ç.			
the concrete strength class			τ _{Rk,cr} =			ψ _c • τ _{Rk,c}	cr(C20/25)				
Concrete cone failure											
Relevant parameter						see Ta	able C2				
Splitting failure											
Relevant parameter						see Ta	able C2				
Installation factor											
for dry and wet concrete		ν:	[-]			1	,2				
for flooded bore hole		γinst	[-]		1,4		No Perf	ormance A	ssessed		
1) Factonings (incl. nut and was	har) must comp	dy with th	a annron	riata mata	rial and pro	norty clace	of the into	rnal throad	od rod		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 5

²⁾ For IG-M20 strength class 50 is valid

Table C6: Character	istic va	alues of	shea	r loads	under s	tatic an	d quasi	-static	action
Internal threaded anchor rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹)								
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm1)									
Characteristic bending moment, Steel, strength class	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]		5.	1,56		7.	2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		I _f	[mm]		min	(h _{ef} ; 12 • d	I _{nom})		min (h _{ef} ; 300mm)
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]			3.	1,0	0	
M 600 0 00 00 00 00 00 00 00		-	-						

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 6
Characteristic values of shear loads under static and quasi-static action	
(Internal threaded anchor rod)	

²⁾ For IG-M20 strength class 50 is valid

Tabl	e C7: Char	acteristic	values of	f tensio	n Ioa	ds un	der s	tatic	and q	uasi-	static	actio	on
	rcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel fa	ailure												***
Charac	teristic tension resi	stance	N _{Rk,s}	[kN]				/	Գ _s ∙ f _{uk} ¹)			
Cross s	section area		A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial	factor		γ _{Ms,N}	[-]					1,42)				
	ned pull-out and o												
Charac	teristic bond resista	ance in uncra	cked concre	te C20/25									
go	I: 40°C/24°C	Dry, wet			10	12	12	12	12	12	11	10	8,5
j j	II: 80°C/50°C	concrete			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0
Temperature range	III: 120°C/72°C	CONTORCE	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
קר זמ מי	I: 40°C/24°C	flooded	- HK,UCI	[14/11111]	7,5	8,5	8,5	8,5	8,5	No Performance			6
l e	II: 80°C/50°C	bore hole			5,5	6,5	6,5	6,5	6,5		Asse		O
	III: 120°C/72°C				4,0	5,0	5,0	5,0	5,0				
Charac	teristic bond resista	ance in crack	ed concrete	C20/25									
Θ	I: 40°C/24°C	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
attu e	II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
nperati range	III: 120°C/72°C		τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range	I: 40°C/24°C	flooded	rik,ci		4,0	4,0	5,5	5,5	5,5	No Performance			
Te	II: 80°C/50°C	bore hole			2,5	3,0	4,0	4,0	4,0		Asse		
	III: 120°C/72°C			100 CO - CO	2,0	2,5	3,0	3,0	3,0				
Redukt	tion factor ψ ⁰ sus in	cracked and	uncracked o	concrete C	20/25								
ture	I: 40°C/24°C	Dry, wet concrete			0,73								
Temperature range	II: 80°C/50°C	and	Ψ ⁰ sus	[-]	0,65								
Tem	III: 120°C/72°C	flooded bore hole							0,57				
Increas	sing factors for cond	rete	Ψς	[-]				(f _C	k / 20) (0,11			
	teristic bond resista			τ _{Rk,ucr} =					Rk,ucr(C	The second second second			
depend	ding on the concrete	e strength		τ _{Rk,cr} =				350 0	Rk.cr(C	st 0 000 G			
	ete cone failure			rik,ci				10	rik,ci v	,			
-	nt parameter							see	Table	C2			
Splittir								2010 2010					
	nt parameter							see	Table	C2			
Installa	ation factor												
for dry	and wet concrete				1,0				1				
for floo	ded bore hole		γinst	[-]			1,4			N	lo Perfo Asse		е
1) 4	ala all la a dallaca fua aa d				1								

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Reinforcing bar)	Annex C 7

²⁾ in absence of national regulation

Deutsches
Institut
für
Bautechnik

Table C8: Characteristic	values o	of shea	r load	ds un	der st	tatic a	and q	uasi-	static	actio	า
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•		,		•			
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	fuk ¹⁾			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,52)				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure			•								
Effective length of fastener	I _f	[mm]		mi	n(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28 32						32		
Installation factor	γ _{inst}	[-]					1,0				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 8

²⁾ in absence of national regulation

Table C9:	Table C9: Displacements under tension load ¹⁾											
Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete	e C20/25 und	er static and quasi-sta	atic action	on								
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Cracked concrete C	20/25 under	static and quasi-station	c action									
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70				
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05			0,1	05				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	19			0,1	70				
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	19	0,170							
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete C20/25 under static and quasi-static action											
All temperature ranges	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C	20/25 under	static and quasi-station	action								
All temperature ranges	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
	δ _{v∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

(threaded rods)

Chemofast Injection System VK, VK Nordic for concrete	
Performances Displacements under static and quasi-static action	Annex C 9

Table C11: D	isplaceme	nts under tens	sion load	[1)						
Internal threaded a	nchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Uncracked concrete C20/25 under static and quasi-static action										
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,033	0,037	0,045	0,052	0,060	0,071		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Cracked concrete C	20/25 under s	tatic and quasi-st	atic action					7.		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,090			0,070				
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,105			0,105				
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170				
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245				
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170				
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \tau;$

Table C12: Displacements under shear load¹

Internal threade	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20					
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0 \text{-factor } \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 10
Displacements under static and quasi-static action	
(Internal threaded anchor rod)	

Table C13: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinf	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concre	Uncracked concrete C20/25 under static and quasi-static action											
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1							
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90	0,070							
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05				0,105				
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245				
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170				
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,2	255				0,245				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \ \tau;$

τ: action bond stress for tension

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor }\cdot\tau;$

Table C14: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	ler static and qu	asi-stati	ic action	1						
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances Displacements under static and quasi-static action (Reinforcing bar)	Annex C 11

Electronic copy of the ETA by DIBt: ETA-08/0237

Table C15:	Characteristic values of tension loads under seismic action
	(performance category C1)

	20 0												
Thread	ded r	od				M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure	9											
Charac	terist	tic tension resi	stance	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}							
Partial	facto	or	γ _{Ms,N}	[-]	see Table C1								
Combi	ined	pull-out and o	concrete failure										
Charac	cteris	tic bond resista	ance in uncracked	d and cracked of	concrete C2	20/25							
	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
ange	II:	80°C/50°C	Dry, wet concrete		[N/mm2]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
Temperature range	III:	120°C/72°C		7		1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
oerat	l:	40°C/24°C		^τ Rk,eq,C1	[N/mm²]	2,5	2,5	3,7	3,7				
Tem	II:	80°C/50°C	flooded bore hole			1,6	1,9	2,7	2,7	No Performance Assessed			e
	111:	120°C/72°C				1,3	1,6	2,0	2,0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Increas	sing f	factors for cond	crete	Ψc	[-]				1	,0			
		tic bond resista crete strength c	ance depending class	τ	Rk,eq,C1 =	Ψ _C • τ _{Rk,eq,C1} (C20/25)							
Install	ation	n factor											
for dry	and	wet concrete				1,0				1,2			
for floo	ded	bore hole		γinst	[-]	1,4 No Performance Assessed						e	

Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Threaded rod		М8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm							,			
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]		0,70 • V ⁰ _{Rk,s}						
Partial factor	γ _{Ms,V}	[-]		see Table C1						
Factor for annular gap	0,5 (1,0) ¹⁾									

¹⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Threaded rod)	Annex C 12

Assessed

Table C17: Characteristic values of tension loads under seismic action (performance category C1)											
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure											
Characteristic tension resistance	[kN]				1,0	• A _s • 1	f _{uk} 1)				
Cross section area	N _{Rk,s,eq,C1}	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,N}	[-]					1,42)				
Combined pull-out and concrete fails	Combined pull-out and concrete failure										
Characteristic bond resistance in uncra	cked and cra	acked con	crete C	20/25							
B I: 40°C/24°C Dry, wet concrete		[N/mm²]	2,5 1,6	3,1 2,2	3,7 2,7	3,7 2,7	3,7 2,7	3,7 2,7	3,8 2,8	4,5 3,1	4,5 3,1
## 65 III: 120°C/72°C concrete 120°C/24°C	751		1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
1: 40°C/50°C Dry, wet concrete	^τ Rk, eq,C1		2,5 1,6 1,3	2,5 1,9 1,6	3,7 2,7 2,0	3,7 2,7 2,0	3,7 2,7 2,0	No Performance Assessed			е
Increasing factors for concrete	Ψc	[-]					1,0				
Characteristic bond resistance depending on the concrete strength class	τ _{Rk}	_{k,eq,C1} =	(000/05)				5)				
Installation factor	,										
for dry and wet concrete			1,2				1	,2			
for flooded bore hole	γinst	[-]			1,4			١	lo Perfo	ormanc	е

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Characteristic values of shear loads under seismic action Table C18: (performance category C1)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]	0,35 • A _s • f _{uk} ²⁾								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾								
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾								

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 13
Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Reinforcing bar)	

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended