

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-09/0158 vom 11. Mai 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

BTI Einschlaganker BE

Mechanischer Dübel zur Verwendung im Beton

BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND

BTI Herstellwerk 1

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 05/2021

ETA-09/0158 vom 25. April 2017

Europäische Technische Bewertung ETA-09/0158

Seite 2 von 14 | 11. Mai 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-09/0158

Seite 3 von 14 | 11. Mai 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Der BTI Einschlaganker BE ist ein Dübel aus galvanisch verzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Das Anbauteil ist mit einer Befestigungsschraube oder einer Gewindestange zu befestigen. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Widerstände unter Zugbeanspruchung (statische und quasi-statische Lasten) Methode A	Siehe Anhang B2 und C1
Charakteristische Widerstände unter Querbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang C2
Verschiebungen	Siehe Anhang C3
Charakteristische Widerstände und Verschiebungen für die seismische Leistungskategorie C1 und C2	Keine Leistung bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal Leistung				
Brandverhalten	Klasse A1			
Feuerwiderstand	Keine Leistung bewertet			

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

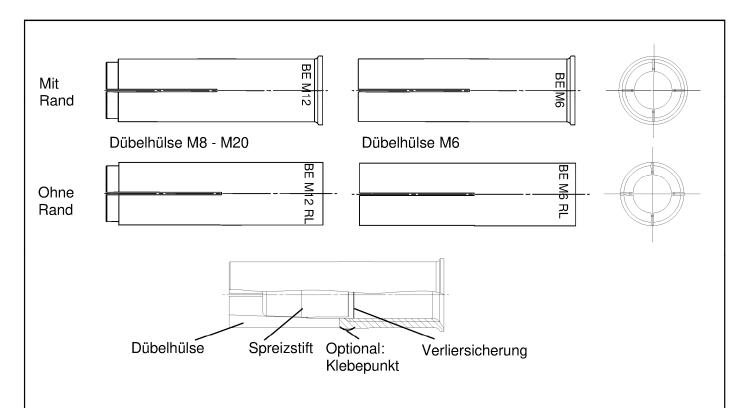
Europäische Technische Bewertung ETA-09/0158

Seite 4 von 14 | 11. Mai 2022

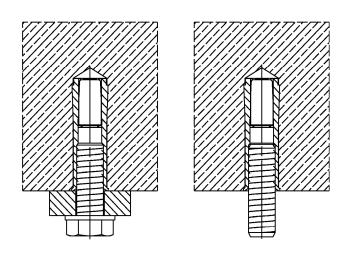
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

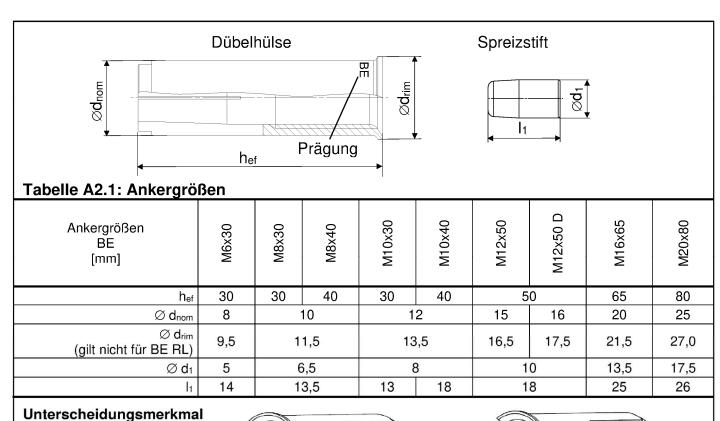
Folgendes System ist anzuwenden: 1

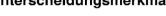

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 11. Mai 2022 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Einbauzustand in Beton

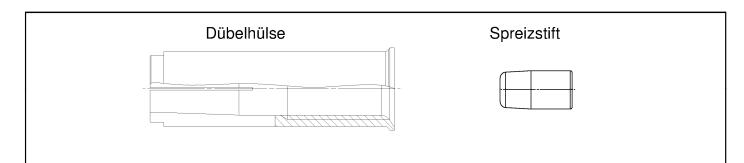


(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Produktbeschreibung Ankertypen Einbauzustand	Anhang A 1

- BE M6x30..
- BE M8x30..
- BE M10x40..
- BE M12x50..
- BE M16x65..
- BE M20x80..

- BE M8x40..
- BE M10x30..


Tabelle A2.2: Markierung auf Dübel

galvanisch ver	zinkter Stahl (gvz)	nichtrostender Stahl (R)				
Mit Rand	Ohne Rand	Mit Rand	Ohne Rand			
BE M6x30	BE M6x30 RL	BE M6x30 R	BE M6x30 RL R			
BE M8x30	BE M8x30 RL	BE M8x30 R	BE M8x30 RL R			
BE M8x40	BE M8x40 RL	BE M8x40 R	BE M8x40 RL R			
BE M10x30	BE M10x30 RL	BE M10x30 R	BE M10x30 RL R			
BE M10x40	BE M10x40 RL	BE M10x40 R	BE M10x40 RL R			
BE M12x50	BE M12x50 RL	BE M12x50 R	BE M12x50 RL R			
BE M12x50 D	BE M12x50 RL D	BE M12x50 D R	BE M12x50 RL D R			
BE M16x65	BE M16x65 RL	BE M16x65 R	BE M16x65 RL R			
BE M20x80	BE M20x80 RL	BE M20x80 R	BE M20x80 RL R			

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Produktbeschreibung Ankertypen	Anhang A 2

Tabelle A3.1: Werkstoffe

	Material					
Bezeichnung	galvanisch verzinkter Stahl (≥ 5 μm)	nichtrostender Stahl (R)				
Dübelhülse	EN 10277:2018 oder EN 10084:2008					
Spreizstift	oder EN 10111:2008 oder EN 10263:2018 oder EN 10087:1999 oder ASTM A29/A29M	EN 10088:2014				
Befestigungsschraube oder Gewindestange	Stahl, Festigkeitsklasse 4.6, 5.6, 5.8 oder 8.8 gemäß EN ISO 898-1:2013	Festigkeitsklasse 50, 70 oder 80 gemäß EN ISO 3506:2020				

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE

Produktbeschreibung
Werkstoffe

Anhang A 3

Setzwerkzeuge und Bohrer

Prägung auf BE Setzwerkzeuge Prägung Beschreibung mit Rand und ohne Rand Manuelles **EHS Plus** Setzgerät mit M..x hef Handschutz **EHS** Manuelles M..x hef Setzgerät Maschinen-**EMS** setzgerät mit Keine Markierung M..x hef SDS Plus

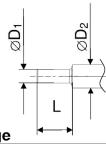


Tabelle A4.1: Entsprechende Bundbohrer und Kennwerte der Setzwerkzeuge

Manuelles Setzgerät	Maschinen-Setzgerät	Bundbohrer	Für Ankergröße	Ø D1	Ø D2	L
Walluelles Setzgerat	waschinen-Setzgerat	Dulidboillei	BE	BE [mm]		[mm]
EHS (Plus) M6x25/30	EMS M6x25/30	EBB 8x30	BE M6x30	4,8	9,0	17,0
EHS (Plus) M8x25/30	EMS M8x25/30	EBB 10x30	BE M8x30	6.4	11.0	18,0
EHS (Plus) M8x40	EMS M8x40	EBB 10x40	BE M8x40	0,4	11,0	28,0
EHS (Plus) M10x25/30	EMS M10x25/30	EBB 12x30	BE M10x30 7,9		13,0	18,0
EHS (Plus) M10x40	EMS M10x40	EBB 12x40	BE M10x40	7,9	13,0	24,0
EHS (Plus) M12x50	EMS M12x50	EBB 15x50	BE M12x50	10.0	16,5	20.0
EHS (Plus) M12x50	EMS M12x50	EBB 16x50	BE M12x50 D	10,2	16,5	30,0
EHS (Plus) M16x65	EMS M16x65	EBB 20x65	BE M16x65	13,5	22	36,0
EHS (Plus) M20x80	EMS M20x80	EBB 25x80	BE M20x80	16,4	27	50,0

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Verwendungszweck Setzwerkzeuge und Bohrer	Anhang A 4

Spezifizierung des Verwendungszwecks								
Ubersicht Nutzungs	s- und Leistungskategorien:							
BTI Einschlaganker E	BE (alle Ausführungen)	M6	M8	M10	M12	M16	M20	
Hammergebohrt mit Standard-Bohrer								
Hammergebohrt mit Hohlbohrer und Staubsauger		Alle Ausführungen						
Material	Stahl verzinkt	✓						
Malerial	Nichtrostender Stahl R	R 🗸						
Statische und quasi-s	Statische und quasi-statische Belastung		✓					
Ungerissener Beton					/			

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

· Bauteile unter den Bedingungen trockener Innenräume:

BE, BE R

Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 abhängig von der Korrosionswiderstandsklasse CRC III

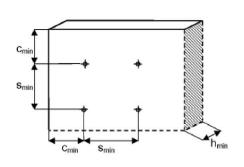
BE R

Dübelausführungen M6x30 R, M8x30 R und M10x30 R nur für trockene Innenräume

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw..)
- Die Bemessung der Verankerung gemäß EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018
- Dübelgrößen M6x30, M8x30 und M10x30 nur für statisch unbestimmt gelagerte Bauteile, wenn die Last auf andere Dübel umgelagert werden kann

Einbau:


- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Bohrloch erstellen mit Hammerbohrer oder Bundbohrer oder mit Hohlbohrer und Staubsauger
- · Der Dübel darf nur einmal verwendet werden
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird (z.B. UVT-TOP Z oder UVT TOP) und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Verspreizung durch Schläge mit den in den Anhängen A 4 dargestellten Setzwerkzeugen. Der Anker ist ordnungsgemäß verspreizt, wenn der Anschlag des Setzwerkzeugs auf der Dübelhülse aufliegt. Das Handsetzwerkzeug mit Setzkontrolle hinterlässt, wie in den Anhängen A 4 und B 3 dargestellt, eine sichtbare Markierung auf der Ankerhülse.

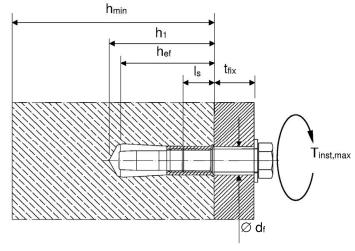
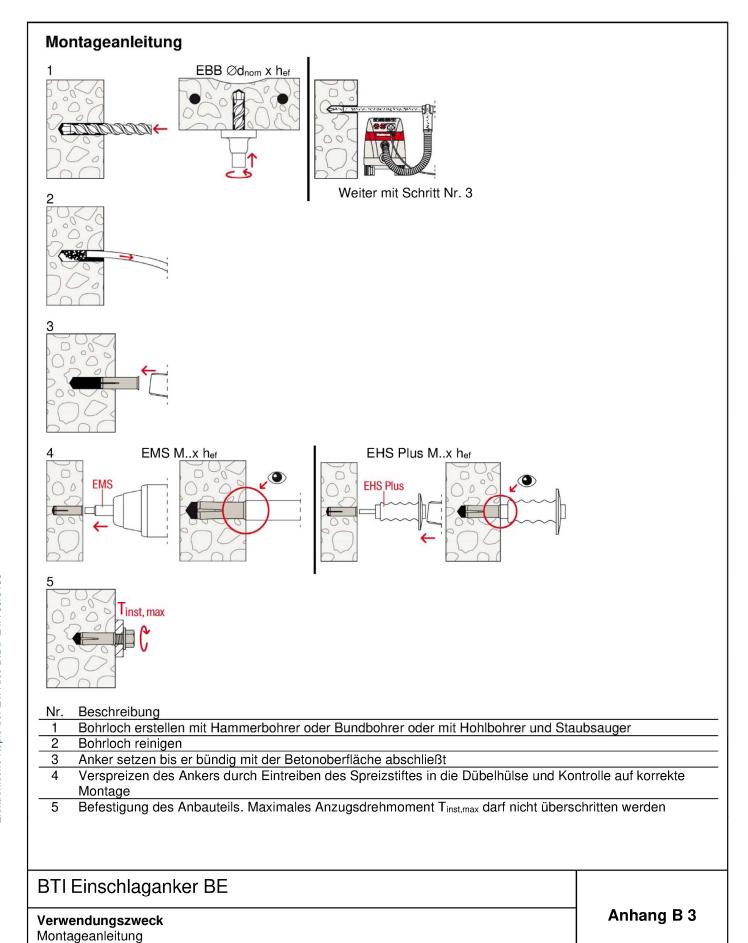

BTI Einschlaganker BE	
Verwendungszweck Bedingungen	Anhang B 1

Tabelle B2.1: Montagekennwer	te für Bet	ton C2	0/25	bis	C50/	60					
Ankergrößen (alle Ausführungen)			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Nomineller Bohrdurchmesser	d o		8	1	0	1	2	15	16	20	25
Schneidendurchmesser des Bohrers	d _{cut}	[mm]	8,45	10	,45	12	,50	15,50	16,50	20,55	25,55
Effektive Verankerungstiefe	h _{ef}]	30	30	40	30	40	5	0	65	80
Maximales Drehmoment	T _{inst,max}	[Nm]	4	•	8	1	5	3		60	120
Minimale Bohrlochtiefe	h₁		32	33	43	33	43	5	4	70	85
Minimale Einschraubtiefe	I _{s,min}	[mm]	6	•	8	10		12		16	20
Maximale Einschraubtiefe	I _{s,max}	[mm]	14	1	4	15 17		22		28	34
Durchmesser Durchgangsloch	Ø d₁≤		7	ŭ,	9 12		14		18	22	
h _{min} = 80 mm											
Minimaler Achsabstand	Smin	[mm]	70	110	200	20	00			1)	
Minimaler Randabstand	Cmin	[mm]	150	1:	50	1:	50		-	. 1)	
h _{min} = 100 mm											
Minimaler Achsabstand	Smin	[mm]	65	7	O,	90	150	20	10	_1)	
Minimaler Randabstand	Cmin	[[[[]	115	1	15	160	180	ے ا	,0	ı	- 7
h _{min} = 120 mm											
Minimaler Achsabstand	Smin	[mm]	65	7	Ŏ,	85	95	14	5	-	1)
Minimaler Randabstand	Cmin	[mm]	115	1	15	140	150	20	00	-	.,
h _{min} = 160 mm											
Minimaler Achsabstand	Smin	[mm]	65		'0	85	95	14	5	180	_1)
Minimaler Randabstand	Cmin	[mm]	115	1	15	140	150	20	00	240	- · /
h _{min} = 200 mm											
Minimaler Achsabstand	Smin	l	65	7	0	85	95	14	.5	180	190
Willimaici / Crisabstaria	-111111	[mm]									

1) Leistung nicht bewertet


Befestigungsschraube oder Gewindestange:

- Minimale Festigkeitsklasse und Materialien gemäß Tabelle A3.1
- Die Länge der Befestigungssschraube oder der Gewindestange ist in Abhängigkeit der Dicke des Anbauteiles t_{fix}, zulässiger Toleranzen und der maximalen (l_{s,max}) sowie minimalen (l_{s,min}) Einschraubtiefen der Befestigungsschrauben oder Gewindestangen in den Dübel festzulegen

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Verwendungszweck Montagekennwerte	Anhang B 2

•	F = - 11 - 1	ادامادا					_						
BE	Festigkeitsklasse von Befestigungs- schraube oder Gewindestange			M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Stahlversagen													
Montagebeiwert	γ _{inst} [-]			1,0									
Charakteristischer Widerstand	N _{Rk,s} [kN]	N] A4-50		10,1	18,3 29,0				4:	2,1	78,3	122,4	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]							2,86					
Charakteristischer Widerstand	N _{Rk,s} [kN]	,	44-70	14,1	19	,6	24	1,9	45,1	59,0	73,8	117,2	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]			1,87			1,5			1,87	1	,5	
Charakteristischer Widerstand	N _{Rk,s} [kN]	,	44-80	16,1	19	,6	24	1,9	45,1	59,0	73,8	117,2	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]			1,6				1,	5				
Charakteristischer Widerstand	N _{Rk,s} [kN]	Sta	hl 4.6	8,0	14	,6	23	3,2	3	3,7	62,7	97,9	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]							2,0					
Charakteristischer Widerstand	N _{Rk,s} [kN]	Stahl 5.6		10,1	18	,3	29	9,0	4:	2,1	78,3	122,4	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]						2,0		-				
Charakteristischer Widerstand	N _{Rk,s} [kN]	Stahl 5.8		10,1	17,2		21,8		39,6	42,1	64,7	102,8	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]							1,5					
Charakteristischer Widerstand	N _{Rk,s} [kN]	Sta	hl 8.8	13,5	17	,2	21	۱,8	39,6	53,3	64,7	102,8	
Teilsicherheitsbeiwert	γ _{Ms} ⁴⁾ [-]							1,5					
Herausziehen													
Charakteristischer Widerstand C20/25	$N_{Rk,p}$	[k	:N]	8,	1	12,5	8,1	12,5	5	17,4	25,8	35,2	
		C2	5/30					1,12	2				
		C3	0/37					1,22	2				
Erhöhungsfaktor für N _{Rk,p}	216	C3	5/45	1,32									
$N_{Rk,p} = \psi_{c^*} N_{Rk,p} \left(C20/25\right)$	Ψс	C4	0/50	1,41									
		C45/55		1,50									
		C50	0/60	1,58									
Montagebeiwert	γinst	[-]					1,0	1				
Betonbruch und Spaltversagen													
Effektive Verankerungstiefe		h_{ef}	[mm]	30)	40	30	40	5	50	65	80	
Faktor für ungerissenen Beton		$k_{ucr,N}$	[-]					11,0	2)				
Faktor für gerissenen Beton	k _{cr,N} [-]					L	eistun	tung nicht bewertet					
Achsabstand		Scr,N	[mm]	90)	120	90	120	1	50	195	240	
Randabstand		Ccr,N	[mm]	45		60	45	60		75	97	120	
Achsabstand (Spaltversagen)		Scr,sp	[mm]	21		280	210	320		50	455	560	
<u></u>											-	280	
Randabstand (Spaltversagen)		C _{cr,sp}	[mm]	10	יט ו	140	105	160	1	75	227	ZXU	

 $^{^{1)}}$ Nur zur Verankerung statisch unbestimmt gelagerter Bauteile $^{2)}$ Basierend auf der Betonfestigkeit als Zylinderfestigkeit $^{3)}$ N 0 Rk,c gemäß EN 1992-4:2018

⁴⁾ Sofern andere nationale Regelungen fehlen

BTI Einschlaganker BE	
Leistungen Charakteristische Zugtragfähigkeit unter statischer und quasi-statischer Belastung	Anhang C 1

BE	Festigkeitsklasse von Befestigungs- schraube oder Ge- windestange		M6x30 ¹⁾	M8x30 ¹⁾	M8x40	M10x30 ¹⁾	M10x40	M12x50	M12x50 D	M16x65	M20x80	
Faktor für Duktilität	k ₇ [-]					1,0)					
Montagebeiwert	γ _{inst} [-]						1,0)				
Stahlversagen ohne Hebelarm	-											
Charakteristischer Widerstand	$V^0_{Rk,s}$ [kN]	A4-50	5,0	ξ	9,2	14	,5	21	۱,1	39,2	61,2	
Teilsicherheitsbeiwert	γмs ²⁾ [-]						2,38					
Charakteristischer Widerstand	V ⁰ Rk,s [kN]	A4-70	7,0	9	9,8	12	:,4	22,6	29,5	37	59	
Teilsicherheitsbeiwert	γмs ²⁾ [-]		1,56			1,25			1,56	1,	25	
Charakteristischer Widerstand	$V^0_{Rk,s}$ [kN]	A4-80	8,0	Ç	9,8	12	:,4	22,6	30,4	36,9	58,6	
Teilsicherheitsbeiwert	γмs ²⁾ [-]		1,33				1,	25				
Charakteristischer Widerstand	$V^0_{Rk,s}$ [kN]	Stahl 4.6	4,0	7	7,3	11	,6	16	5,9	31	49	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]						1,67					
Charakteristischer Widerstand	V ⁰ _{Rk,s} [kN]	Stahl 5.6	5,0	ξ	9,2	14	·,5	21	l,1	39	61	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]						1,67	•				
Charakteristischer Widerstand	V ⁰ _{Rk,s} [kN]	Stahl 5.8	5,0	8	3,6	10	,9	19,8	21,1	32	51	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]						1,25					
Charakteristischer Widerstand	V ⁰ _{Rk,s} [kN]	Stahl 8.8	6,8	8	3,6	10	,9	19,8	27	32	51	
Teilsicherheitsbeiwert	γмs ²⁾ [-]		-				1,25					
Stahlversagen mit Hebelarm	, , ,											
Charakteristischer Widerstand	M ⁰ Rk,s [Nm]	A4-50	8		19	3	7	6	6	166	324	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]		<u> </u>		2,38							
Charakteristischer Widerstand	M ⁰ Rk,s [Nm]	A4-70	11	2	26	5	2	9)2	232	454	
Teilsicherheitsbeiwert	γ _{Ms²⁾ [-]}						1,56					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	A4-80	12	(30	6		10)5	266	519	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]						1,33			l		
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 4.6	6,1		15	3		5	52	133	259	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]		,				1,67			<u> </u>		
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 5.6	7,6		19	37		66		166	324	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]		.,-			1,67						
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 5.8	7,6		19					166	324	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]		.,-				1,25					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 8.8	12	:	30	6		10	D5	266	517	
Teilsicherheitsbeiwert	γ _{Ms} ²⁾ [-]	Otal III Olo	·-				1,25				<u> </u>	
Pryoutversagen	Inis []						.,_0					
Faktor für Pryoutversagen	k ₈ [-]		1	74	1,9	1,74	1,9		2	2,0		
Betonkantenbruch	1.0 []		٠,		1,0	1,,,,	1,0			.,0		
Effektive Verankerungslänge	l _f [mm]		3	0	40	30	40	5	i0	65	80	
Dübeldurchmesser	d _{nom} [mm]		8		10	1		15	16	20	25	
Nur zur Verankerung statisch un Sofern andere nationale Regelu	bestimmt gelag	erter Baute				·						
BTI Einschlaganker BE Leistungen								Anhang C 2				

Tabelle C3.1: Verschiebungen unter Zuglast und Querlast für BE aus galvanisch verzinktem Stahl

BE			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20×80	
Zuglast in C20/25 bis C50/60	N	[kN]	4,0 6,1			4,0	6,1	8,5		12,6	17,2	
Verschiebung	δΝο	[mm]	0,1									
Verschiebung	$\delta_{\text{N}\infty}$	[mm]	0,2									
Querlast in C20/25 bis C50/60	٧	[kN]	3,9	4,9	6,2		11,3	15,2	18,5	29,4		
Verschiebung	δνο	[mm]	0,95 1,00		00	1,05		1,10		1,40	1,80	
	δν∞	[mm]	1,40	1,	50	1,6	60	1,3	70	2,10	2,70	

Tabelle C3.2: Verschiebungen unter Zuglast und Querlast für BE aus nichtrostendem Stahl

BE R			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M12x50 D	M16x65	M20x80
Zuglast in C20/25 bis C50/60	N	[kN]	4,0		6,1	4,0 6,1		8,5		12,6	17,2
Mara alai alauna	δΝο	[mm]	0,1								
Verschiebung	$\delta_{\text{N}\infty}$	[mm]		0,2							
Querlast in C20/25 to C50/60	V	[kN]	3,2	5,6		7,1		12,9	13,5	21,1	33,5
Verschiebung	δ_{Vo}	[mm]	0,95	1,00		1,05		1,10		1,40	1,80
	δν∞	[mm]	1,40	1,	50	1,	60	1,	70	2,10	2,70

BTI Einschlaganker BE

Leistungen Verschiebungen Anhang C 3