

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-09/0187 vom 11. Mai 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

BTI Einschlaganker BE

Dübel zur Verwendung im Beton für redundante nicht-tragende Systeme

BTI Befestigungstechnik GmbH & Co. KG Salzstraße 51 74653 Ingelfingen DEUTSCHLAND

BTI Herstellwerk 1

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330747-00-0601, Edition 06/2018

ETA-09/0187 vom 11. Mai 2017

Europäische Technische Bewertung ETA-09/0187

Seite 2 von 15 | 11. Mai 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z38993.22 8.06.01-75/22

Europäische Technische Bewertung ETA-09/0187

Seite 3 von 15 | 11. Mai 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Der BTI Einschlaganker BE ist ein Dübel aus galvanisch verzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Das Anbauteil ist mit einer Befestigungsschraube oder einer Gewindestange zu befestigen.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung		
Brandverhalten	Klasse A1		
Feuerwiderstand	Siehe Anhang C 3		

3.2 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für alle Lastrichtungen und alle Versagensarten für die vereinfachte Bemessung	Siehe Anhang C 1 und C 2
Dauerhaftigkeit	Siehe Anhang B 1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß den Europäischen Bewertungsdokumenten EAD Nr. 330747-00-0601 gilt folgende Rechtsgrundlage: [97/161/EG].

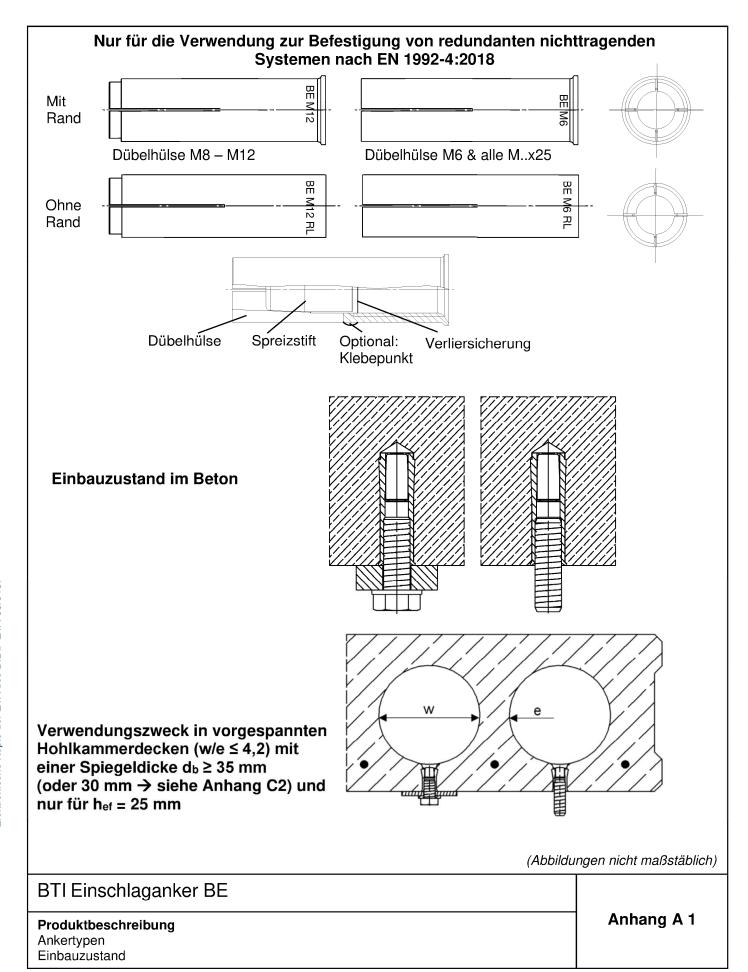
Folgendes System ist anzuwenden: 2+

Z38993.22 8.06.01-75/22

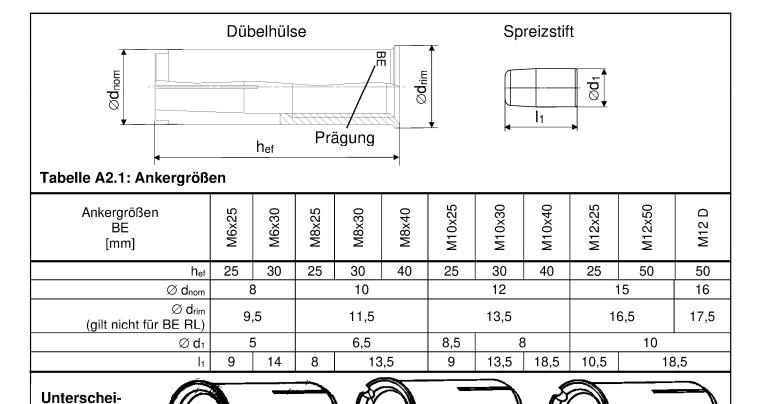
Europäische Technische Bewertung ETA-09/0187

Seite 4 von 15 | 11. Mai 2022

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 11. Mai 2022 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

Z38993.22 8.06.01-75/22

dungsmerkmal

- BE M8x30..
- BE M10x40..
- BE M12x50..

1 Kerbe für:

- BE M6x25..
- BE M8x25..
- BE M10x25..
- BE M12x25..

2 Kerben für:

- BE M8x40..
- BE M10x30..

Tabelle A2.2: Markierung auf Dübel

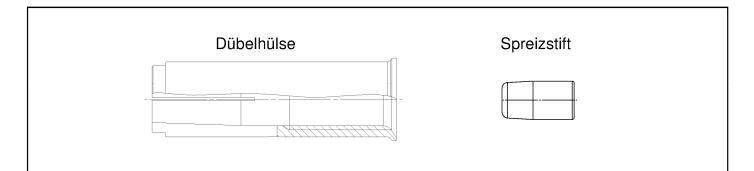
Galvanisch ver	zinkter Stahl (gvz)	nichtroster	nder Stahl (R)
Mit Rand	Ohne Rand	Mit Rand	Ohne Rand
BE M6x25	BE M6x25 RL	BE M6x30 R	BE M6x30 RL R
BE M6x30	BE M6x30 RL	BE M8x30 R	BE M8x30 RL R
BE M8x25	BE M8x25 RL	BE M8x40 R	BE M8x40 RL R
BE M8x30	BE M8x30 RL	BE M10x30 R	BE M10x30 RL R
BE M8x40	BE M8x40 RL	BE M10x40 R	BE M10x40 RL R
BE M10x25	BE M10x25 RL	BE M12x50 R	BE M12x50 RL R
BE M10x30	BE M10x30 RL	BE M12x50 D R	BE M12x50 RL D R
BE M10x40	BE M10x40 RL		
BE M12x25	BE M12x25 RL		
BE M12x50	BE M12x50 RL		
BE M12x50 D	BE M12x50 RL D		

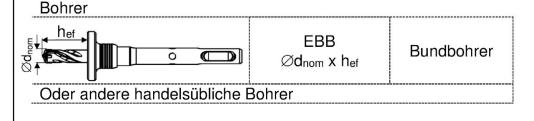
(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE

Produktbeschreibung
Ankertypen

Anhang A 2




Tabelle A3.1: Werkstoffe

	Material					
Bezeichnung	galvanisch verzinkter Stahl (≥ 5 μm)	nichtrostender Stahl (R)				
Dübelhülse	EN 10277:2018 oder EN 10084:2008					
Spreizstift	oder EN 10111:2008 oder EN 10263:2018 oder EN 10087:1999 oder ASTM A29/A29M	EN 10088:2014				
Befestigungsschraube oder Gewindestange	Stahl, Festigkeitsklasse 4.6, 5.6, 5.8 oder 8.8 gemäß EN ISO 898-1:2013	Festigkeitsklasse 50, 70 oder 80 gemäß EN ISO 3506:2020				

BTI Einschlaganker BE	
Produktbeschreibung Werkstoffe	Anhang A 3

Setzwerkzeuge und Bohrer Prägung auf BE Setzwerkzeuge Prägung Beschreibung mit Rand und ohne Rand Manuelles **EHS Plus** Setzgerät mit M..x hef Handschutz **EHS** Manuelles M..x hef Setzgerät Maschinen-**EMS** Keine Markierung setzgerät mit M..x hef SDS Plus

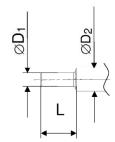


Tabelle A4.1: Entsprechende Bundbohrer und Kennwerte der Setzwerkzeuge

Manuelles Setzgerät	Maschinen-Setzgerät	Bundbohrer	Für Ankergröße BE	Ø D1 [mm]	Ø D2 [mm]	L [mm]
EHS (Plus) M6x25/30	EMS M6x25/30	EBB 8x25 EBB 8x30	BE M6x25 BE M6x30	4,8	9,0	17,0
EHS (Plus) M8x25/30	EMS M8x25/30	EBB 10x25 EBB 10x30	BE M8x25 BE M8x30	6,4	11,0	18,0
EHS (Plus) M8x40	EMS M8x40	EBB 10x40	BE M8x40			28,0
EHS (Plus) M10x25/30	EMS M10x25/30	EBB 12x25 EBB 12x30	BE M10x25 BE M10x30	7,9	13,0	18,0
EHS (Plus) M10x40	EMS M10x40	EBB 12x40	BE M10x40			24,0
EHS (Plus) M12x25	EMS M12x25	EBB 15x25	BE M12x25	10,2	16,5	15,2
EHS (Plus) M12x50	EMS M12x50	EBB 15x50	BE M12x50	10,2	16,5	30,0
EHS (Plus) M12x50	EMS M12x50	EBB 16x50	BE M12x50 D	10,2	10,5	30,0

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Verwendungszweck Setzwerkzeuge und Bohrer	Anhang A 4

Spezifizierung des Verwendungszwecks Übersicht Nutzungs- und Leistungskategorien: BTI Einschlaganker BE (alle Ausführungen) M6 **M8** M10 M12 Hammergebohrt mit Standard-Bohrer Hammergebohrt mit Alle Ausführungen Hohlbohrer und Staubsauger Stahl verzinkt Material Nichtrostender Stahl R Statische und quasi-statische Belastung Gerissener und ungerissener Beton Brandbeanspruchung in Beton C20/25 bis C50/60 Brandbeanspruchung in vorgespannten Hohlkammerdecken Keine Leistung bewertet

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern (gerissen und ungerissen) gemäß EN 206:2013+A1:2016
- Betonfestigkeitsklasse C12/15 bis C50/60 gemäß EN 206:2013+A1:2016
- Vorgefertigte, vorgespannte Hohlkammerdecken mit w/e ≤ 4,2 und Betonfestigkeitsklassen C30/37 bis C50/60: M6x25, M8x25, M10x25 und M12x25

Anwendungsbedingungen (Umweltbedingungen):

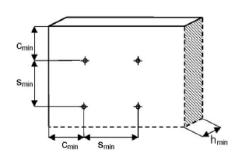
Bauteile unter den Bedingungen trockener Innenräume:
 BE, BE R

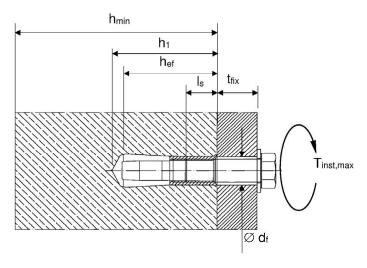
 Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionswiderstandsklasse CRC III

BE R mit h_{ef} ≥ 30 mm

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Nur zur Verwendung zur Mehrfachbefestigung von redundanten nichttragenden Systemen nach EN 1992-4:2018, Abschnitt 7.3. Bemessungsverfahren B nach EN 1992-4:2018
- Verankerungen unter Brandeinwirkung sind gemäß EN 1992-4:2018 Anhang D


Einbau:

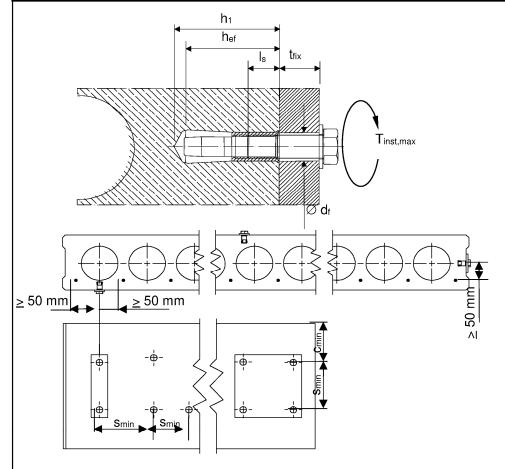

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Bohrloch erstellen mit Hammerbohrer oder Bundbohrer oder mit Hohlbohrer und Staubsauger
- · Der Dübel darf nur einmal verwendet werden
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird (z.B. UVT-TOP Z oder UVT TOP) und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt
- Verspreizung durch Schläge mit den in dem Anhang A 4 dargestellten Setzwerkzeugen. Der Anker ist ordnungsgemäß verspreizt, wenn der Anschlag des Setzwerkzeugs auf der Dübelhülse aufliegt. Das Handsetzwerkzeug mit Setzkontrolle hinterlässt, wie in den Anhängen A 4 und B 4 dargestellt, eine sichtbare Markierung auf der Ankerhülse

BTI Einschlaganker BE	
Verwendungszweck Spezifikationen	Anhang B 1

Tabelle B2.1: Montagekennwerte für Beton C12/15 bis C50/60													
Ankergrößen (alle Ausführun	gen)		IV	М6		M8		M10			M12		M12D
Nomineller Bohrdurchmesser	d₀	[mm]		3		10			12		1	5	16
Effektive Verankerungstiefe	h _{ef}	[mm]	25	30	25	30	40	25	30	40	25	50	50
Maximales Drehmoment	T _{inst,max}	[Nm]	4	4		8			15			35	
Minimale Bohrlochtiefe	h ₁	[mm]	27	32	27	33	43	27	33	43	27	54	54
Minimale Einschraubtiefe	$I_{s,min}$	[mm]	(3		8			10			12	
Maximale Einschraubtiefe	I _{s,max}	[mm]	1	4		14		14	15	17	14		22
Durchmesser Durchgangsloch	Ø d₁≤	[mm]	-	7		9			12		14		
h _{min} = 80 mm													
Minimaler Achsabstand	Smin	[mm]	30	70	70	110	200	80	20	00	100	-	-
Minimaler Randabstand	Cmin	[mm]	60	150	100	15	50	120	15	50	130	-	-
h _{min} = 100 mm													
Minimaler Achsabstand	Smin	[mm]	30	65	50	7	0	60	90	150	100	,	200
Minimaler Randabstand	Cmin	[mm]	60	115	5 100 115		100	160	180	110	'	200	
h _{min} = 120 mm													
Minimaler Achsabstand	Smin	[mm]	30	65	50	7	0	60	85	95	100		145
Minimaler Randabstand	C _{min}	[mm]	60	115	100	11	5	100	140	150	110	2	200

Befestigungsschraube oder Gewindestange:

- Minimale Festigkeitsklasse und Materialien gemäß Tabelle A3.1
- Die Länge der Befestigungssschraube oder der Gewindestange ist in Abhängigkeit der Dicke des Anbauteiles t_{fix}, zulässiger Toleranzen und der maximalen (I_{s,max}) sowie minimalen (I_{s,min}) Einschraubtiefen der Befestigungsschrauben oder Gewindestangen in den Dübel festzulegen.


(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE Verwendungszweck Montagekennwerte Anhang B 2

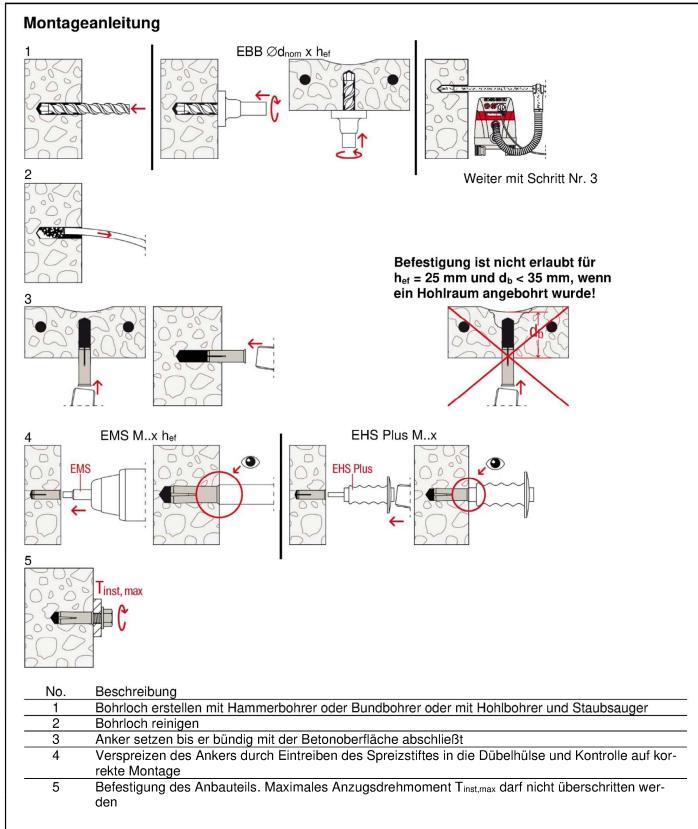
Tabelle B3.1:	: Montagekennwerte füi	r vorgefertigte.	vorgespannte	Hohlkammerdecken
		- 3 3		

Ankergrößen (alle Ausführung	М6	M8	M10	M12			
Nomineller Bohrdurchmesser	d_0	[mm]	8	10	12	15	
Effektive Verankerungstiefe	h _{ef}	[mm]			25		
Maximales Drehmoment	T _{inst,max}	[Nm]	4	8	15	35	
Minimale Bohrlochtiefe	h₁	[mm]			27		
Minimale Einschraubtiefe	$I_{s,min}$	[mm]	6	8	10	12	
Maximale Einschraubtiefe	l _{s,max}	[mm]	14				
Durchmesser Durchgangsloch	Ø d _f	[mm]	7 9 12 14				
Minimaler Achsabstand	Smin = Scr	[mm]	200				
Minimaler Randabstand	Cmin = Ccr	[mm]		1	150		

Befestigungsschraube oder Gewindestange:

- Minimale Festigkeitsklasse und Materialien gemäß Tabelle A3.1
- Die Länge der Befestigungssschraube oder der Gewindestange ist in Abhängigkeit der Dicke des Anbauteiles t_{fix}, zulässiger Toleranzen und der maximalen (I_{s,max}) sowie minimalen (I_{s,min}) Einschraubtiefen der Befestigungsschrauben oder Gewindestangen in den Dübel festzulegen.

(Abbildungen nicht maßstäblich)


BTI Einschlaganker BE

Verwendungszweck

Montagekennwerte

Anhang B 3

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Verwendungszweck Montagekennwerte	Anhang B 4

Tabelle C1.1: Charakteristischer Widerstand für einen Befestigungspunkt¹⁾ für alle Lastrichtungen

Lastricitungen													
Ankergröße		Festigkeits-	М6		M8				M10	M12/ M12D			
Effektive Verankerungstiefe	n-immiler		25	30	25	30	40	25	30	40	25	50	
Alle Lastrichtungen				•				•				•	
Charakteristischer	F ⁰ RK [kN]	≥ A4-50	_2)	2	_2)		3		3	5	_2)	6	
Widerstand C12/15		≥ Stahl 4.6	1,5		2			3	}		3		
Charakteristischer Widerstand	F ⁰ RK [kN]	≥ A4-50	_2)	3	_2)	5		_2)	5	7,5	_2)	9	
C20/25 bis C50/60	ı av ligivi	≥ Stahl 4.6	2		3		5			7,5	4] 9	
Montagebeiwert	γinst [-]		1,0	1,2	1,0	1	,2	1,0	1	,2	1,0)	
Achsabstand	s _{cr} [mm]		75	90	75	90	120	75	90	200	75	300	
Randabstand	c _{cr} [mm]		38	45	38	45	60	38	45	100	38	150	
Stahlversagen mit Hebela	ırm												
Charakteristischer Widerstand	${ m M^0_{Rk,s}}$ [Nm]	A4-50	_2)	8	_2)	19		_2)	37		_2)	66	
Teilsicherheitsbeiwert	γмs ³⁾ [-]		2,38										
Charakteristischer Widerstand	M ⁰ Rk,s [Nm]	A4-70	_2)	11	_2)	26 -2)		_2)	52		_2)	92	
Teilsicherheitsbeiwert	γ Ms $^{3)}$ [-]						1	1,56					
Charakteristischer Widerstand	M ⁰ Rk,s [Nm]	A4-80	_2)	12	_2)	30		_2)	60		_2)	105	
Teilsicherheitsbeiwert	γ _{Ms³⁾ [-]}						1	1,33					
Charakteristischer Widerstand	${ m M^0_{Rk,s}}$ [Nm]	Stahl 4.6	6	,1		15			30			52	
Teilsicherheitsbeiwert	$\gamma_{Ms^{3)}}$ [-]						1	,67					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 5.6	7	,6		19			37			66	
Teilsicherheitsbeiwert	γMs ³⁾ [-]						1	,67					
Charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 5.8	7	,6		19		37			66		
Teilsicherheitsbeiwert	γ _{Ms} ³⁾ [-]						1	,25					
Charakteristischer Widerstand	${ m M^0_{Rk,s}}$ [Nm]	Stahl 8.8	1	12 30 60						105			
Teilsicherheitsbeiwert	γмs ³⁾ [-]		1,25										

¹⁾ Details siehe EN 1992-4:2018, Bild 3.4

BTI Einschlaganker BE	
Leistungen Charakteristischer Widerstand für einen Befestigungspunkt für alle Lastrichtungen	Anhang C 1

²⁾ Leistung nicht bewertet

³⁾ Sofern andere nationale Regelungen fehlen

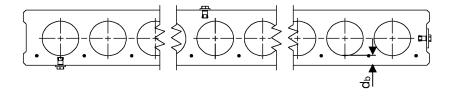


Tabelle C2.1: Charakteristische Werte für h_{ef} = 25 mm in vorgefertigten, vorgespannten Hohlkammerdecken nach Bemessungsverfahren C für C30/37 bis C50/60

Hermiter decident flaging better than 10 fair 1000/07 bio 1000/00									
Ankergröße	Festigkeits- klasse von Be-	М6	M8	M10	M12				
Effektive Verankerungstiefe	h _{ef} [mm]	festigungs- schraube oder Gewinde- stange	25						
Alle Lastrichtungen			galvar	iisch verzinkt	ter Stahl; mi	t Rand			
Spiegeldicke			≥ 35 (oc	der 30 ¹⁾)					
Charakteristischer Widerstand C30/37 bis C50/60	F ⁰ RK [kN]		2	4					
Montagebeiwert		1,0							
Achsabstand		200							
Randabstand		150							
Stahlversagen mit Hebelarm									
Charakteristischer Widerstand	$M^0_{Rk,s}\left[Nm\right]$	Stahl 4.6	6,1	15	30	52			
Teilsicherheitsbeiwert	γ Ms $^{2)}$ [-]	Starii 4.0	1,67						
Charakteristischer Widerstand	${\sf M^0}_{\sf Rk,s}$ [Nm]	Stahl 5.6	7,6	19	37	66			
Teilsicherheitsbeiwert	Starii 5.6	1,67							
Charakteristischer Widerstand	${\sf M^0}_{\sf Rk,s}$ [Nm]	Stahl 5.8	7,6	19	37	66			
Teilsicherheitsbeiwert	γms ²⁾ [-]	Starii 5.0	1,25						
Charakteristischer Widerstand M ⁰ Rk,s [Nm]		Stahl 8.8	12	30	60	105			
Teilsicherheitsbeiwert $\gamma_{Ms}^{2)}$ [-]		Staril 0.0	1,25						

¹⁾ Der Anker darf in einer Spiegeldicke von mindestens 30 mm mit der gleichen charakteristischen Last gesetzt werden, wenn das Bohrloch keinen Hohlraum anschneidet (siehe Anhang B4 Punkt 3).
Die Benutzung des fischer Bundbohrers EBB wird empfohlen

²⁾ Sofern andere nationale Regelungen fehlen

(Abbildungen nicht maßstäblich)

BTI Einschlaganker BE	
Leistungen Charakteristische Werte in vorgefertigten, vorgespannten Hohlkammerdecken nach Bemessungsverfahren C für C30/37 bis C50/60	Anhang C 2

Tabelle C3.1: Charakteristischer Widerstand unter Brandbeanspruchung³⁾ in Beton C20/25 bis C50/60

Feuerwiderstands- klasse	BE	Festigkeits- klasse von Befestigungs- schraube oder Gewinde- stange		M6x25	M6x30	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50/ M12x50D
Alle Lastrichtungen													
R 30			Stahl	0,5	0,6		0,9	1,3	0,6	0,9	1,8 1,5	0,6	2,3
R 60	Charakteristischer Widerstand C20/25	$F^0_{Rk,fi^1)}$		0,5 0		0,6	0	,0,	0,0				۷,٥
R 90	bis C50/60	[kN]	oder	0,4		0,6				0,9			2,0
R 120	10.0		≥ A4-50 ²⁾	0	,3		0	,5		0	,6	0,5	1,3
D 00 D 100	Charakteristischer Achsabstand	s _{cr,fi} [mm]		100	120	100	120	160	100	120	160	100	000
R 30 – R 120	Charakteristischer Randabstand	c _{cr,fi} [mm]		50	115	50	140	140	50	140	160	50	200

¹⁾ Sofern andere nationale Regelungen fehlen, wird ein Teilsicherheitsbeiwert unter Brandeinwirkung von $\gamma_{m,fi} = 1,0$ empfohlen

Tabelle C3.2: Charakteristischer Widerstand unter Brandbeanspruchung ³⁾ für Querlast mit Hebelarm in Beton C20/25 bis C50/60

Feuerwider- stands- klasse	BE	klasse fest schra	tigkeits- e von Be- igungs- ube oder idestange	M6x25	0Ex9W	M8x25	M8x30	M8x40	M10x25	M10x30	M10x40	M12x25	M12x50/ M12x50D														
R 30			Stahl	0,65	0,5	1,30	1,7	1,7	2,4	4,4	4,4	7,1	9,5														
R 60	Charakteri- stischer Wi-	M ⁰ RK,s,fi ¹⁾ [Nm]			[Nm]	M^0 _{RK,s,fi} 1)	M^0 RK,s,fi ¹⁾	M^0 RK,s,fi ¹⁾	$M^0_{RK,s,fi}$ 1)	M^0 RK,s,fi ¹	$M^0_{RK,s,fi}$ 1)	M^0 _{RK,s,fi} 1)	M^0 RK,s,fi ¹⁾	$M^0_{RK,s,fi}$ 1)	M^0 _{RK,s,fi} 1)	$M^0_{RK,s,fi}$ 1)		0,50	0,4	0,95	1,3	1,3	1,7	3,2	3,2	5,0	6,7
R 90	derstand						0,35	0,3	0,60	0,8	0,8	1,0	1,9	1,9	2,9	3,9											
R 120	33.3.3.10		≥ A4-50 ²⁾	0,30	0,2	0,45	0,6	0,6	0,7	1,3	1,3	1,8	2,4														

 $^{^{1)}}$ Sofern andere nationale Regelungen fehlen, wird ein Teilsicherheitsbeiwert unter Brandeinwirkung von $\gamma_{m,fi} = 1,0$ empfohlen

Im Falle einer mehrseitigen Brandbeanspruchung muss der minimale Randabstand c_{fi,min} ≥ 300 mm sein

BTI Einschlaganker BE	
Leistungen Charakteristischer Widerstand unter Brandbeanspruchung	Anhang C 3

²⁾ Nicht für M..x25

³⁾ Die Werte gelten nicht für vorgespannte Hohlkammerdecken

²⁾ Nicht für M..x25

³⁾ Die Werte gelten nicht für vorgespannte Hohlkammerdecken