

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0338 of 20 September 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	JORDAHL anchor channel JTA, JZA and JXA
Product family to which the construction product belongs	Anchor channels
Manufacturer	PohlCon GmbH Nobelstraße 51 12057 Berlin DEUTSCHLAND
Manufacturing plant	14959 Trebbin, Industriestr. 5
This European Technical Assessment contains	53 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330008-03-0601-V01, Edition 06/2022
This version replaces	ETA-09/0338 issued on 28 June 2021

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-09/0338 English translation prepared by DIBt

Page 2 of 53 | 20 September 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 53 | 20 September 2022

Specific Part

1 Technical description of the product

The JORDAHL anchor channel JTA, JZA and JXA is system consisting of C-shaped channel profile steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts JORDAHL T-bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1 to C3
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1 to C3
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N^0_{Rk,s,l}$; $s_{l,N}$ see Annex C1 to C3
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C6
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A10 and A11 $M_{Rk,s,flex}$ see Annex C4 and C5
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B5 and B6
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C7 to C9
- Resistance to concrete cone failure	h_{ef} see Annex B3 and B4 $k_{cr,N}$; $k_{ucr,N}$ see Annex C7 to C9
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A10 and A11 c_{min} ; h_{min} see Annex B3 and B4
- Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C7 to C9
 Resistance to blowout failure - bearing area of anchor head 	A_h see Annex A7 and A8

European Technical Assessment

ETA-09/0338

English translation prepared by DIBt

Page 4 of 53 | 20 September 2022

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C16 and C17
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C16 and C17
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V^0_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C11 to C13
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C11 and C13
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C11 and C13
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C11 and C13
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C11 and C13
- Resistance to concrete pry-out failure	k_8 see Annex C14 and C15
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C14 and C15
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C19
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	$\Delta N_{Rk,s,0,n}$ (n = 1 to n = ∞) see Annex C23
 Fatigue limit resistance to steel failure of the whole system (test method B) 	$\Delta N_{Rk,s,0,\infty}$ see Annex C23
 Fatigue resistance to steel failure of the whole system (linearized function, test method C) 	$\Delta N_{Rk,s,lo,n}$; $N_{lok,s,n}$ ($n = 10^4$ to $n = \infty$) see Annex C24
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	$\Delta N_{Rk,c,0,n}$; $\Delta N_{Rk,p,0,n}$ ($n = 1$ to $n = \infty$) see Annex C23
 Fatigue limit resistance to concrete related failure (test method B) 	$\Delta N_{Rk,c,0,\infty}$; $\Delta N_{Rk,p,0,\infty}$ see Annex C23
 Fatigue resistance to concrete related failure (linearized function, test method C) 	$\Delta N_{Rk,c,E,n}$; $\Delta N_{Rk,p,E,n}$ (<i>n</i> = 10 ⁴ to <i>n</i> = ∞) see Annex C25

Page 5 of 53 | 20 September 2022

European Technical Assessment

ETA-09/0338

English translation prepared by DIBt

Essential characteristic	Performance
Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{N0} \; ; \; \delta_{N^{\infty}} \; see \; Annex \; C10 \\ \delta_{V,y,0} \; ; \; \delta_{V,y,\infty} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,\infty} \\ see \; Annex \; C18 \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C20 to C22

3.3 Other essential characteristics

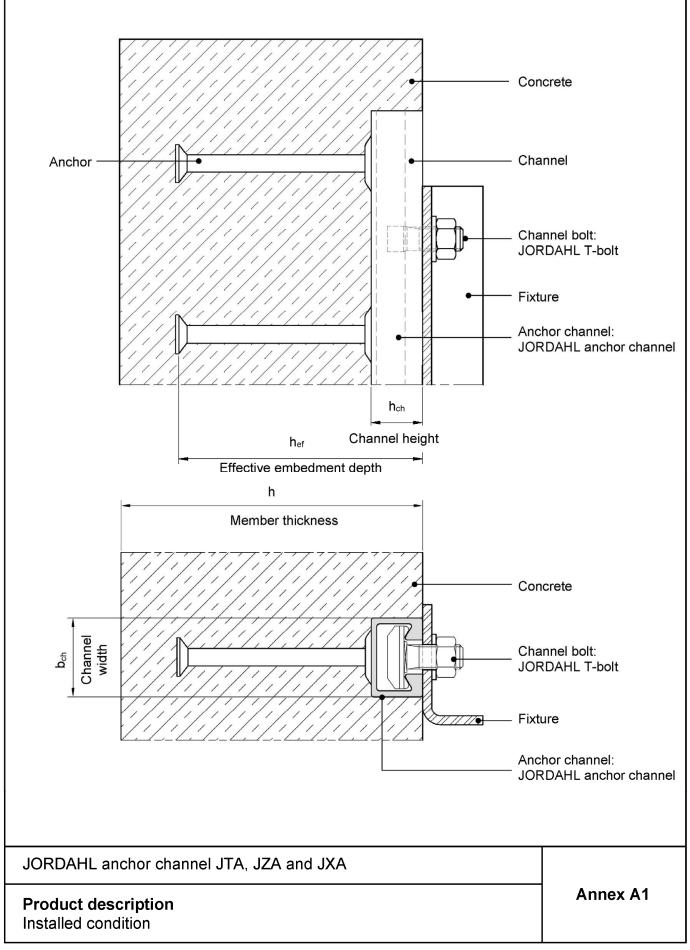
Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601-V01, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

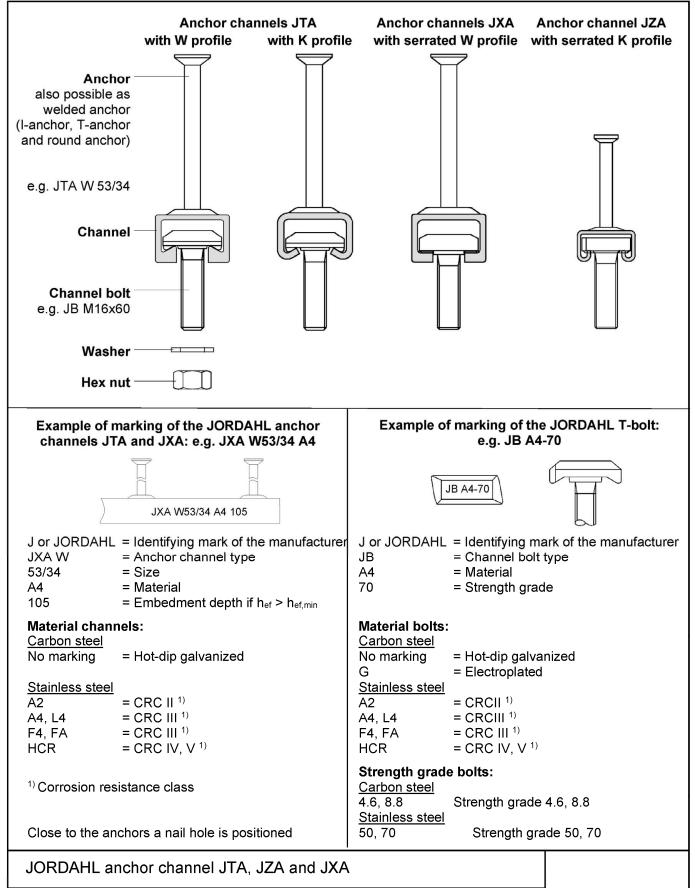
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 September 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller Page 6 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt



Page 7 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

Product description Marking and materials

Page 8 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

		Intend	led use
		1	2
ltem no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity
		Mat	erials
4	Channel avefile	Carbon steel	Carbon steel hot-dip galvanized $\ge 55 \ \mu m^{4)}$
1	Channel profile	hot-dip galvanized \ge 55 μ m ⁴⁾	Stainless steel ⁵⁾ CRC II
2	Anchor	Carbon steel	Carbon steel hot-dip galvanized \ge 55 μ m ⁴⁾
		hot-dip galvanized \ge 55 μ m ⁴⁾	Stainless steel ⁵⁾ CRC II
3	Channel bolt	Carbon steel strength grade 4.6, 8.8 ⁶⁾	Carbon steel strength grade 4.6, 8.8 ⁶⁾ hot-dip galvanized ≥ 50 µm ³⁾
3		electroplated $\ge 5 \mu m^{-2}$	Stainless steel ⁵⁾ CRC II strength grade 50, 70 ⁹⁾
4	Washer	Carbon steel product class A ⁷⁾ hardness class 200 HV ⁷⁾ electroplated ≥ 5 μm ²⁾	Carbon steel hot-dip galvanized ≥ 50 µm ³⁾ Stainless steel ⁵⁾ steel type A2, A3, A4 ⁹⁾
5	Hexagonal nut	Carbon steel strength grade 5, 8 ⁸⁾ electroplated \geq 5 µm ²⁾	Steel type A2, A3, A4 9 Carbon steelstrength grade 5, 8 $^{8)}$ hot-dip galvanized \geq 50 µm $^{3)}$ Stainless steel $^{5)}$ steel type A2, A3, A4 $^{9)}$

¹⁾ Carbon steel only for welded anchors, with sufficient concrete cover according to EN 1992-1-1:2004 + AC:2010

²⁾ Electroplated according to EN ISO 4042:2018

³⁾ Hot-dip galvanized according to EN ISO 10684:2004 + AC:2009

⁴⁾ Hot-dip galvanized on the basis of EN ISO 1461:2009, but coating thickness \geq 55 µm

⁵⁾ Stainless steel anchors only in combination with stainless steel channels, bolts, washers and nuts ⁶⁾ According to EN ISO 898-1:2013

⁷⁾ According to EN ISO 7089:2000 and EN ISO 7093-1:2000, not included in delivery

⁸⁾ According to EN ISO 4032:2012

⁹⁾ According to EN ISO 3506-1:2020

JORDAHL anchor channel JTA, JZA and JXA

Product description Materials and intended use

Page 9 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

			Intended use		
		3	4	5	
ltem no.	Specification	For CRC III according to EN 1993-1-4:2006	Für CRC IV gemäß EN 1993-1-4:2006	Für CRC V gemäß EN 1993-1-4:2006	
			Materials		
1	Channel profile	Stainless steel CRC III	Stainless steel CRC IV	Stainless steel CRC V	
2	Anchor	Stainless steel CRC III	Stainless steel CRC IV	Stainless steel	
		Carbon steel ¹⁾	Carbon steel ¹⁾	- CRC V	
3	Channel bolt	Stainless steel CRC III strength grade 50, 70 ⁹⁾	Stainless steel CRC IV strength grade 50, 70 ⁹⁾	Stainless steel CRC V strength grade 50, 70 ⁹⁾	
4	Washer	Stainless steel CRC III steel type A4 ⁹⁾	Stainless steel CRC IV steel type A5 ⁹⁾	Stainless steel CRC V steel type A8 ⁹⁾	
5	Hexagonal nut	Stainless steel CRC III steel type A4 ⁹⁾ strength grade 70, 80 ⁶⁾	Stainless steel CRC IV steel type A5 ⁹⁾ strength grade 70, 80 ⁶⁾	Stainless steel CRC V steel type A8 ⁹⁾ strength grade 70, 80 ⁶⁾	

¹⁾ Carbon steel only for welded anchors, with sufficient concrete cover according to EN 1992-1-1:2004 + AC:2010

²⁾ Electroplated according to EN ISO 4042:2018

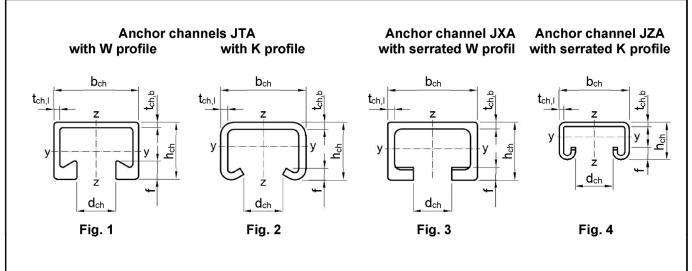
³⁾ Hot-dip galvanized according to EN ISO 10684:2004 + AC:2009

⁴⁾ Hot-dip galvanized on the basis of EN ISO 1461:2009, but coating thickness \geq 55 µm

⁵⁾ Stainless steel anchors only in combination with stainless steel channels, bolts, washers and nuts

⁶⁾ According to EN ISO 898-1:2013

⁷⁾ According to EN ISO 7089:2000 and EN ISO 7093-1:2000, not included in delivery


⁸⁾ According to EN ISO 4032:2012

⁹⁾ According to EN ISO 3506-1:2020

JORDAHL anchor channel JTA, JZA and JXA

Product description Materials and intended use

Table A2: Dimensions of profile – carbon steel

Anaka		Fig	erial			Dimensi	on [mm]			[mm ⁴]
Ancho	or channel	Fig.	Material	b ch	h _{ch}	t ch,b	t _{ch,I}	d _{ch}	f	ly
	W40/22 W40+	1		39,50	23,00	2,60	2,40	18,00	6,00	20.029
	W50/30 W50+	1	-	49,00	30,00	3,20	2,75	22,50	7,85	52.896
	W53/34	1		52,50	33,50	4,10	4,00	22,50	10,50	93.262
	W55/42	1		54,50	42,00	5,00	5,00	26,00	12,90	187.464
	W72/48	1		72,00	48,50	4,50	5,00	33,00	15,50	349.721
JTA	K28/15	2		28,00	15,25	2,25	2,25	12,00	2,25	4.060
	K38/17	2	steel	38,00	17,50	3,00	3,00	18,00	3,00	8.547
	K40/25	2		40,00	25,00	2,75	2,75	18,00	5,60	20.570
	K50/30	2	Carbon	50,00	30,00	3,00	3,00	22,00	7,39	41.827
	K53/34	2		53,50	33,00	4,50	4,50	22,00	7,90	72.079
	K72/48	2		72,00	49,00	6,00	6,00	33,00	9,90	293.579
JZA	K41/22	4	1	41,00	22,50	2,50	2,50	22,0	8,00	15.000
	W29/20	3	1	29,00	20,00	2,50	3,50	14,00	5,00	10.200
	W38/23	3	1	38,00	23,00	3,50	3,00	18,00	5,50	20.953
JXA	W53/34	3	1	52,50	34,00	4,00	4,00	22,50	7,50	92.910
	W64/44	3	1	64,00	44,00	4,50	5,00	26,00	10,00	241.800

JORDAHL anchor channel JTA, JZA and JXA

Product description Types of channels – carbon steel

Page 11 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

			erial			Dimens	ion [mm]			[mm4]
Ancho	chor channel Fig.		Material	b ch	h _{ch}	t ch,b	tch,I	d _{ch}	f	ly
	W40/22 W40+	1		39,50	23,00	2,60	2,40	18,00	6,00	20.029
	W50/30 W50+	1		49,00	30,00	3,20	2,75	22,50	7,85	52.896
	W53/34	1		52,50	33,50	4,10	4,00	22,50	10,50	93.262
	W55/42 ²⁾	1		_	_	_	_	_	_	-
	W72/48	1		72,00	48,50	4,50	5,00	33,00	15,50	349.72
JTA	K28/15	2		28,00	15,25	2,25	2,25	12,00	2,25	4.060
	K38/17	2	s steel	38,00	17,50	3,00	3,00	18,00	3,00	8.547
	K40/25	2	les	39,50	25,00	2,50	2,50	18,00	5,40	19.097
	K50/30	2	Stainless	50,00	30,00	3,00	3,00	22,00	7,39	41.827
	K53/34	2		53,50	33,00	4,50	4,50	22,00	7,90	72.079
	K72/48	2	1	72,00	49,00	6,00	6,00	33,00	9,90	293.57
JZA	K41/22	4	1	41,00	22,50	2,5	2,50	22,00	6,50	15.000
	W29/20 ²⁾	3	1	_	_	_	_	_	_	-
	W38/23	3		38,00	23,00	3,50	3,00	18,00	5,50	20.953
JXA	W53/34	3		52,50	34,00	4,00	4,00	22,50	7,50	92.910
	W64/44 ²⁾	3		_		_	_	_	_	_

Fig. according to Annex A5
 Product not available

JORDAHL anchor channel JTA, JZA and JXA

Product description Types of channels – stainless steel

Page 12 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

			Rou	or					
-	nchor channel JTA:								
ble A4		nd anchor		dn	tn	An	la,min	Mat	erial
ble A4	: Dimensions of rou		-s	d _h [mm]	t _n [mm]	A n [mm ²]	la,min [mm]	Carbon	Stainless
ble A4	: Dimensions of rou	nd anchor	⁻ S da						
ble A4	: Dimensions of rou	nd anchor	rs d a [mm] 7,0	[mm] 12,0	[mm] 2,0	[mm ²] 75	[mm]	Carbon steel	Stainless steel
ble A4	: Dimensions of rou chor channel K28/15	nd anchor	s da [mm]	[mm]	[mm]	[mm ²]	[mm] 31,8	Carbon steel ✓	Stainless steel ✓
ble A4	E Dimensions of rount chor channel K28/15 W40/22, K40/25	nd anchor	rs da [mm] 7,0 8,5	[mm] 12,0 15,0	[mm] 2,0 2,0	[mm ²] 75 120	[mm] 31,8 56,0	Carbon steel ✓	Stainless steel ✓
ble A4	Chor channel K28/15 W40/22, K40/25 W40+	nd anchor	rs d a [mm] 7,0	[mm] 12,0	[mm] 2,0	[mm²] 75	[mm] 31,8 56,0 70,0	Carbon steel ✓ −	Stainless steel ✓ ✓
ble A4	Chor channel K28/15 W40/22, K40/25 W40+ K38/17	nd anchor	rs da [mm] 7,0 8,5	[mm] 12,0 15,0	[mm] 2,0 2,0	[mm ²] 75 120	[mm] 31,8 56,0 70,0 61,5	Carbon steel ✓ ✓ –	Stainless steel ✓ ✓ ✓
ble A4	E: Dimensions of rou chor channel K28/15 W40/22, K40/25 W40+ K38/17 W40/22, K40/25	nd anchor	rs da [mm] 7,0 8,5 9,0	[mm] 12,0 15,0 17,0	[mm] 2,0 2,0 3,0	[mm ²] 75 120 163	[mm] 31,8 56,0 70,0 61,5 57,0	Carbon steel ✓ ✓ – ✓	Stainless steel
ble A4	E: Dimensions of rous chor channel K28/15 W40/22, K40/25 W40+ K38/17 W40/22, K40/25 W50/30, K50/30	nd anchor	d a [mm] 7,0 8,5 9,0 9,0	[mm] 12,0 15,0 17,0 17,5	[mm] 2,0 2,0 3,0 3,0	[mm ²] 75 120 163 176	[mm] 31,8 56,0 70,0 61,5 57,0 67,0	Carbon steel ✓ ✓ ✓ ✓ ✓ ✓	Stainless steel ✓ ✓ ✓ ✓ ✓ ✓

10,8

11,5

15,5

15,5

9,0

9,0

10,0

11,5

R

19,0

23,5

28,0

31,0

17,0

17,0

19,5

23,5

3,0

3,0

3,5

3,5

3,0

3,0

3,0

3,0

191

330

427

566

163

163

220

330

67,0

124,5

136,5

133,5

55,5

61,0

75,0

124,5

1

1

1

1

1

1

1

1

Product description

Types of anchors – round anchors

W50/30, K50/30

W53/34, K53/34

W55/42

W72/48, K72/48

K41/22

W29/20

W38/23

W53/34

JZA

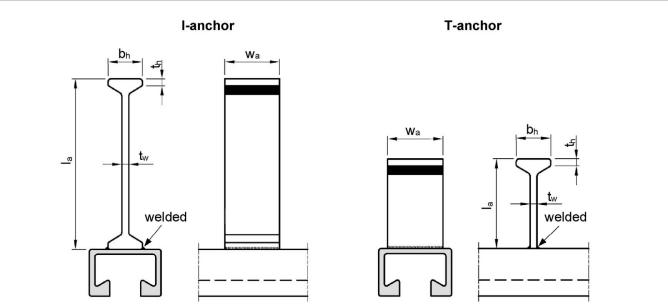
JXA

Annex A7

_

1

-⁄


1

_

1

1

Available configurations (anchor type, orientation of anchor and welding): refer to Annex A9, A10 and A11

An	chor channel	Туре	Wa	b _h	tw	th	Ah	l _{a,min}	Mat	erial
			[mm]	[mm]	[mm]	[mm]	[mm ²]	[mm]	Carbon steel	Stainless steel
	K28/15, K38/17		10				130	62	1	1
	K40/25	160	12	18,0	50	2.2	234	62	1	1
	W40/22		20		5,0	3,3	260	62	1	1
	W40/22	T 60	20				260	38	\	1
	K50/30	169	18				234	69	√	1
	W50/30	109	25	18,0	5,0	3,5	325	69	1	1
	W50/30	T 69	25				325	45	1	1
JTA	W40+		25				275	128	1	-
	W50+	l 128	30				330	128	1	-
	K53/34	1 1 1 2 0	26	17,0	6,0	5,0	286	128	1	_
	W53/34		40				440	128	1	_
	W53/34	T 128	40				440	48	1	_
	W55/42	1110	45				581	140	1	_
	W72/48, K72/48	140	40	20,0	7,1	6,0	516	140	1	_
	W55/42	T 140	45				581	48	1	_
	W38/23	1400	20				220	128	1	_
	W53/34	I 128	40				440	128	1	_
JXA	W38/23	T 400	20	17,0	6,0	5,0	220	36	1	_
	W53/34	T 128	40	1			440	47	1	_
	W64/44	I 140	45	20,0	7,1	5,0	581	140	1	_

JORDAHL anchor channel JTA, JZA and JXA

Product description

Types of anchors – I-anchors and T-anchors

Page 14 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

	_		1	Anchor typ	pe		Char	nel bolt	type
Anchor channel		nchor		l-ancnor	-	I - ancnor	innel bolt	thing bolt	d bolt
		Round anchor	And		Anchor position	Weld seam position	Smooth channel bolt	Double notching bolt	Serrated bolt
	W40/22	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	1	_
	W40+	1	transversal/ longitudinal	transversal/ longitudinal	-	-	1	1	-
	W50/30	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	1	_
	W50+	1	transversal/ longitudinal	transversal/ longitudinal	-	_	1	1	_
	W53/34	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	1	-
	W55/42	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	_	_
JTA	W72/48	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_
	K28/15	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_
	K38/17	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_
	K40/25	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	-	_
	K50/30	1	transversal/ longitudinal	transversal/ longitudinal	_	_	1	-	_
	K53/34	1	transversal/ longitudinal	transversal/ longitudinal	_	_	1	_	_
	K72/48	1	transversal/ longitudinal	transversal/ longitudinal	_	_	1	_	_
JZA	K41/22	1	_	_	_	_	_	_	1
	W29/20	1	-	_	-	_	-	_	1
JXA	W38/23	1	transversal	transversal	transversal	transversal	-	_	1
	W53/34	1	transversal	transversal	transversal	transversal	-	-	1

JORDAHL anchor channel JTA, JZA and JXA

Product description Overview – anchor and channel bolt types

Page 15 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

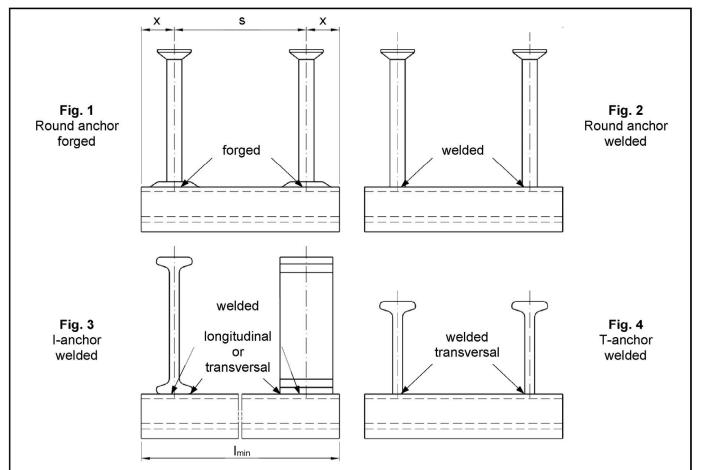


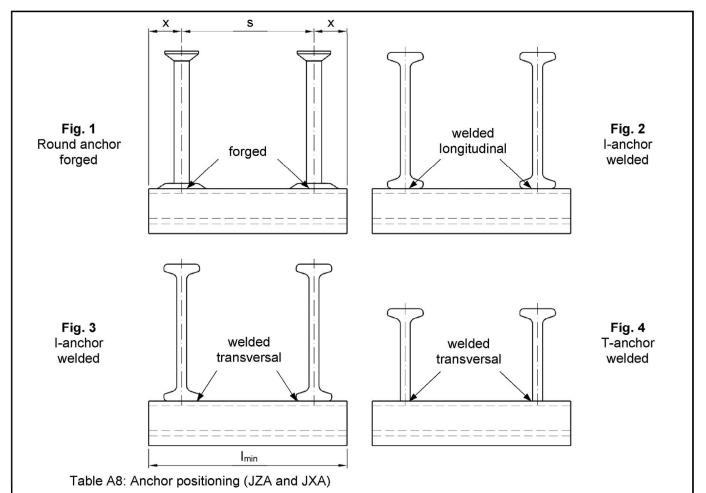
Table A7: Anchor positioning (JTA W and JTA K)

А	nchor	Anchor	spacing	End spacing	Min. channel length	Configuration
channel		Smin Smax		x	I _{min}	according to Fig.
		[m	im]	[mm]	[mm]	1 rig.
	K28/15 K38/17	50	200	25	100	1, 2, 3
	K40/25 K50/30 W40+ W50+	50	250	25 ¹⁾	100	1, 2, 3
JTA	W40/22 W50/30	50	250	25 ¹⁾	100	1, 2, 3, 4
	K53/34	80	250	35	150	1, 2, 3 ²⁾
	W53/34	80	250	35	150	1, 2, 3 ²⁾ , 4 ²⁾
	W55/42	80	300	35	150	1 , 2 , 3 ²⁾ , 4 ²⁾
	K72/48 W72/48	80	400	35	150	1, 2, 3 ²⁾

acing may be increased to 3

²⁾ Only carbon steel anchor available

JORDAHL anchor channel JTA, JZA and JXA


Product description

Anchor positioning and channel length (JTA)

Page 16 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

		Anchor	spacing	End spacing	Min. channel length	Configuration
Anchor channel		Smin Smax		x	I _{min}	according to Fig.
		[m	m]	[mm]	[mm]	
JZA	K41/22	50	250	25	100	1
	W29/22	50	200	25	100	1
	W38/23	50	250	25	100	1, 3 ¹⁾ , 4 ¹⁾
JXA	W53/34	80	250	35	150	1, 3 ¹⁾ , 4 ¹⁾
	W64/44	80	250	35	150	2

¹⁾ Only carbon steel anchor available

JORDAHL anchor channel JTA, JZA and JXA

Product description Anchor positioning and channel length (JZA, JXA)

٨٢	nchor		Channel	C	Dimensi	on [mm]
	annel	Fig.	bolt	b cbo,1	b _{cbo,2}	t cbo	d
						4,5	6
	K00/45			11.0	22.4	4,5	8
	K28/15	1	JD	11,2	22,4	5,0	10
						6,5	12
						6,0	10
	K38/17	1	JH	16,5	30,5	7,0	12
						8,0	16
	K40/25			14,0		8,0	10
	W40/22	2	2 JC 32,0	32,0	8,0	12	
	W40+			17,0		11,0	16
	W40/22	3	JKC	16,8	32,7	8,0	12
1 - 1	W40+	5	JKC	10,0	52,7	8,0	16
JTA	K50/30			17,0		9,0	10
	W50/30 W50+					10,0	12
	K53/34	2	JB	17,5	7,5 41,5	13,0	16
	W53/34 W55/42			20,5		14,5	20
	W50/30			17,0		12,0	16
	W50+ W53/34	3	3 JKB 20,5 41,5	13,5	20		
	W55/42	2	JB	24,5	41,5	18,5	24
	VV33/42			25,0		14,0	20
	K72/48	2	JA	25,0	59.0	20,0	24
	W72/48	2	JA	28,0	58,0	20,0	27
				31,0		20,0	30

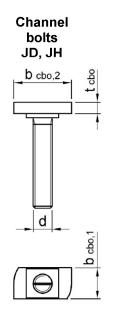
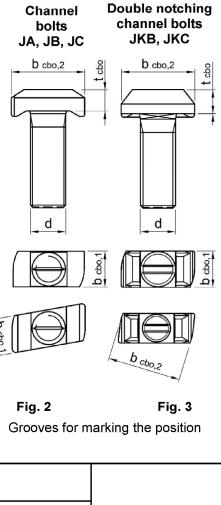



Fig. 1

Annex A12

JORDAHL anchor channel JTA, JZA and JXA

٨٣	Anchor		Channel)imensi	on [mm	<u>1</u>	Serrated	Serrated
channel		Fig.	bolt	b cbo,1	b _{cbo,2}	t _{cbo}	d	channel bolts JXD, JXH, JXB, JXE	channel bolts JZS
17.0	K41/00	2	170	10.5	24 5	9,0	12	b cbo,2	b cbo,2
JZA	K41/22	2	JZS	19,5	34,5	9,0 ¹⁾	16		
	14/20/20	1		12.5	22.0	6,5	10		
	W29/20		JXD	13,5	22,0	6,5	12		
	W38/23	1	JXH	17.0	28,9	8,0	12		
JXA	VV30/23		JVU	17,2	20,9	8,0	16		
JVA	W53/34	1	JXB	21.0	41,6	11,5	16		
	VV55/54		JVP	21,0	41,0	13,0	20	d	_d_
		1		24.7	51.0	14,0	20		
	W64/44		JXE	24,7	51,0	16,0	24		

Fig. 1 Fig. 2

Grooves for marking the position

cbo,

2

Table A11: Strength grades of channel bolts

Chann	el bolt	Carbon	steel 1)	Stainless steel ¹⁾			
Strengt	h grade ²⁾	4.6	8.8	50	70		
f _{uk}	[NI/mama2]	400	800	500	700		
f yk	[N/mm²]		640	210	450		
Surface	9	electro hot-dip ga		-	_		

¹⁾ Materials according to Annex A3 to A4, Table A1

²⁾ Material properties according to EN ISO 898-1:2013

JORDAHL anchor channel JTA, JZA and JXA

Product description Types of channel bolts – geometry and material

hannel		Strengt	h grade ¹⁾	
bolt	4.6	8.8	50	70
JD	1	_ 2)	1	1
JH	1	1	1	_ 2)
JC	1	1	1	1
JKC	_ 2)	1	_ 2)	1
JB	1	1	1	1
JKB	_ 2)	1	_ 2)	1
JA	1	1	1	- ²⁾
JZS	_ 2)	1	1	_ 2)
JXD	_ 2)	1	_ 2)	_ 2)
JXH	_ 2)	1	_ 2)	1
JXB	_ 2)	1	_ 2)	1
JXE	_ 2)	1	_ 2)	_ 2)

¹⁾ Material properties according to EN ISO 898-1:2013 ²⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Product description Types of channel bolts – strength grade

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel.
- Fatigue cyclic tension loading.
- Fire exposure for strength class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Service conditions (environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A3 and A4, Table A1, column 1 – 5).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional or-permanent damp conditions and applications under water) (anchor channels and channel bolts according to Annex A3 and A4, Table A1, column 2 – 5).
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC III (anchor channels and channel bolts according to A4, Table A1, column 3 – 5).
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC IV (anchor channels and channel bolts according to A4, Table A1, column 4 – 5).
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC V (anchor channels and channel bolts according to A4, Table A1, column 5).

Design:

- Anchor channels are designed under the responsibility on an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Cyclic Loading", June 2022.
- The characteristic resistances are calculated with the minimum effective embedment depth.

JORDAHL anchor channel JTA, JZA and JXA

Intended use Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A10, Table A7 and Annex A11, Table A8 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3 and A4, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instructions given in Annexes B8 and B9.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channel.
- Washer may be chosen according to Annex A3 and Annex A4 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex A12 and Annex A13) perpendicular to the channel axis.
- The required installation torques given in Annex B5 and B6 must be applied and must not be exceeded.

Intended use Specifications

Page 22 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

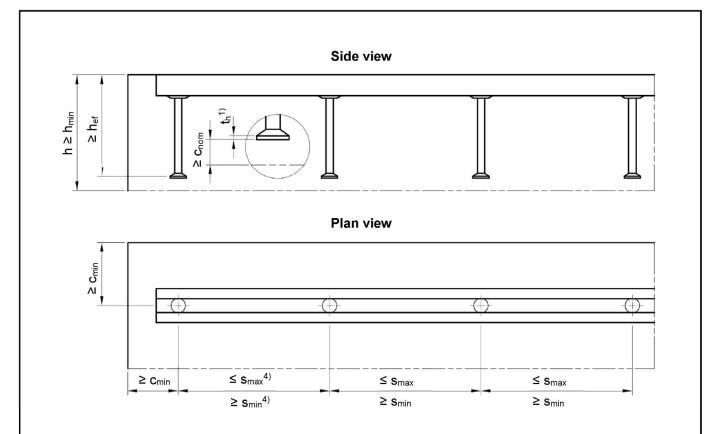


Table B1: Minimum effective embedment depth, edge distance and member thickness (JTA W)

					JTA			
		W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
h ef,min		79	91	94	106	155	175	179
h ef,min		57	_ 3)	71	_ 3)	76	84	_ 3)
C _{min}]_	50	50	75	75	100	100	150
Cmin] [] []	50	_ ³⁾	50	_ ³⁾	75	75	_ ³⁾
\mathbf{h}_{min}		90	102	105	118	170	191	195
\mathbf{h}_{min}		95	_ ³⁾	100	_ ³⁾	110	130	_ ³⁾
Min. member thickness h _{min}				h _{ef} ⊦	+ t _h ¹⁾ + C _r	nom ²⁾		
	h _{ef,min} C _{min} C _{min} h _{min}	h _{ef,min} C _{min} C _{min} M _{min}	hef,min 79 hef,min 57 Cmin 50 Cmin 50 hmin 90 hmin 95	$ \begin{array}{c c} h_{ef,min} \\ h_{ef,min} \\ \hline \\ c_{min} \\ \hline \\ c_{min} \\ \hline \\ h_{min} \\ \hline \\ h_{min} \\ \end{array} \begin{array}{c c} 79 \\ 57 \\ 57 \\ 50 \\ 50 \\ 50 \\ -3 \end{array} \end{array} $	$h_{ef,min}$ 79 91 94 $h_{ef,min}$ 57 $-^{3}$ 71 c_{min} 50 50 75 c_{min} 50 $-^{3}$ 50 h_{min} 90 102 105 h_{min} 95 $-^{3}$ 100	W40/22 W40+ W50/30 W50+ $h_{ef,min}$ 79 91 94 106 $h_{ef,min}$ 57 $-^{3}$ 71 $-^{3}$ c_{min} 50 50 75 75 c_{min} 50 $-^{3}$ 50 $-^{3}$ h_{min} 90 102 105 118 h_{min} 95 $-^{3}$ 100 $-^{3}$	W40/22 W40+ W50/30 W50+ W53/34 $h_{ef,min}$ $\mu_{ef,min}$ $\pi_{ef,min}$ <	w40/22 w40+ w50/30 w50+ w53/34 w55/42 $h_{ef,min}$ $_{A}$ 79 91 94 106 155 175 $h_{ef,min}$ $_{A}$ 57 $-^{3}$ 71 $-^{3}$ 76 84 c_{min} $_{A}$ 50 50 75 100 100 c_{min} $_{A}$ 50 50 75 75 100 100 h_{min} $_{A}$ 90 102 105 118 170 191 h_{min} $_{P}$ $_{A}$ $_{A}$ $_{A}$ $_{A}$ $_{A}$

 $^{2)}$ C_{nom} according to EN 1992-1-1:2004 + AC:2010

³⁾ Product not available

⁴⁾ s_{min}, s_{max} according to Annex A10, Table A7 and Annex A11, Table A8

JORDAHL anchor channel JTA, JZA and JXA

Intended use

Installation parameters for anchor channels (JTA W)

Electronic copy of the ETA by DIBt: ETA-09/0338

Table B2: Minimum effective embedment depth, edge distance and member thickness (JTA K)

					J٦	ГА		
Anchor channel	Anchor channel					K50/30	K53/34	K72/48
Min. effective embedment depth round anchors and l-anchors	h _{ef,min}		45	76	79	94	155	179
Min. edge distance round anchors and l-anchors	Cmin	[mm]	40	50	50	75	100	150
Min. member thickness round anchors and I-anchors	\mathbf{h}_{min}]_	55	87	90	105	170	195
Min. member thickness in general	\mathbf{h}_{min}]			h ef + t h ¹⁾	+ C _{nom} ²⁾		

¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

Table B3: Minimum effective embedment depth, edge distance and member thickness (JZA and JXA)

			JZA		J	KA	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Min. effective embedment depth round anchors and l-anchors	h _{ef,min}		75	78	95	155	179
Min. effective embedment depth T-anchors	h _{ef,min}		_ 3)	_ 3)	54	76	_ 3)
Min. edge distance round anchors and l-anchors	Cmin	 []	50	50	75	100	100
Min. edge distance T-anchors	Cmin	[mm]	_ ³⁾	_ ³⁾	50	100	_ ³⁾
Min. member thickness round anchors and l-anchors	\mathbf{h}_{min}		120	120	120	190	210
Min. member thickness T-anchors	\mathbf{h}_{min}		_ 3)	_ ³⁾	100	110	_ ³⁾
Min. member thickness in general	h _{min}			h _{ef} ·	+ t _h ¹⁾ + c _r	10m ²⁾	

¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

³⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Intended use

Installation parameters for anchor channels (JTA K, JZA and JXA)

		Cha	nnel		Insta	allation torque 1	inst ⁴⁾
			olt	Min. spacing of the channel	General ²⁾ T _{inst,g}		steel ³⁾ Ist,s
Ancho	r channel	Туре	d	bolt S _{min,cbo}	Steel 4.6; 8.8 ¹⁾	Steel 4.6 ¹⁾	Steel 8.8 ¹⁾
			[mm]	[mm]		[Nm]	
			6	30	3	3	8
	K28/15	JD	8	40	8	8	20
			10	50	13	15	40
			12	60	15	25	70
			10	50	15	15	40
	K38/17	JH	12	60	25	25	70
			16	80	40	65	180
	K40/25		10	50	15	15	40
	W40/22	JC	12	60	25	25	70
	W40+		16	80	45	65	180
	W40/22	јкс	12	-	-	-	70
	W40+	JNC	16	-	-	Isess steel (0; 70 ¹) Stainless steel 50 ¹) Image: Steel 50 ¹) Image: Steel 50 ¹) 3 3 3 3 8 8 13 15 15 25 15 15 25 25 40 65 15 15 25 25 40 65 15 15 25 25 45 65 - -	180
JTA	1/ 50/00		10	50	15	15	40
	K50/30 W50/30	JB	12	60	25	25	70
	W50/50		16	80	60	65	180
JTA			20	100	75	130	360
			10	50	15	15	40
	K53/34	JB	12	60	25	25	70
	W53/34		16	80	60	65	180
			20	100	120	130	360
	W50/30		16	-	-	-	180
	W50+ W53/34	JKB	20	_	-	-	360
			10	50	15	15	40
			12	60			70
	W55/42	JB	16	80			180
			20	100	120	130	360
			24	120			620
			20	100	120	130	360
	K72/48		24	120			620
	W72/48	JA	27	135	300		900
			30	150	380	460	1200

²⁾ According to Annex B7, Fig. 1

³⁾ According to Annex B7, Fig. 2

⁴⁾ T_{inst} must not be exceeded

JORDAHL anchor channel JTA, JZA and JXA

Intended use

Installation parameters of channel bolts (JTA)

		Cha	nnel		Inst	allation torque T	inst ⁴⁾
			olt	Min. spacing of the channel	General ²⁾ T _{inst,g}		steel ³⁾ st,s
Anchoi	r channel	Туре	d	bolt Smin,cbo	Steel 4.6; 8.8 ¹⁾ Stainless steel 50; 70 ¹⁾	Steel 4.6 ¹⁾	Steel 8.8 ¹⁾
			[mm]	[mm]		[Nm]	
JZA	K41/22	JZS	12	60	70	70	70
JZA	N41/22	JZ3	16	80	130	130	130
	W29/20	JXD	10	50	30	_ ⁵⁾	40
	VVZ9/20	JVD	12	60	70	_ ⁵⁾	70
	11/20/22	IVU	12	60	70	_ ⁵⁾	70
	W38/23	JXH	16	80	120	_ ⁵⁾	180
JXA	ME2/24		16	80	180	_ 5)	180
	W53/34	JXB	20	100	300	_ 5)	360
	W64/44	IVE	20	100	300	_ 5)	360
	vvo4/44	JXE	24	120	350	_ 5)	450

¹⁾ Materials according to Annex A13 and A14

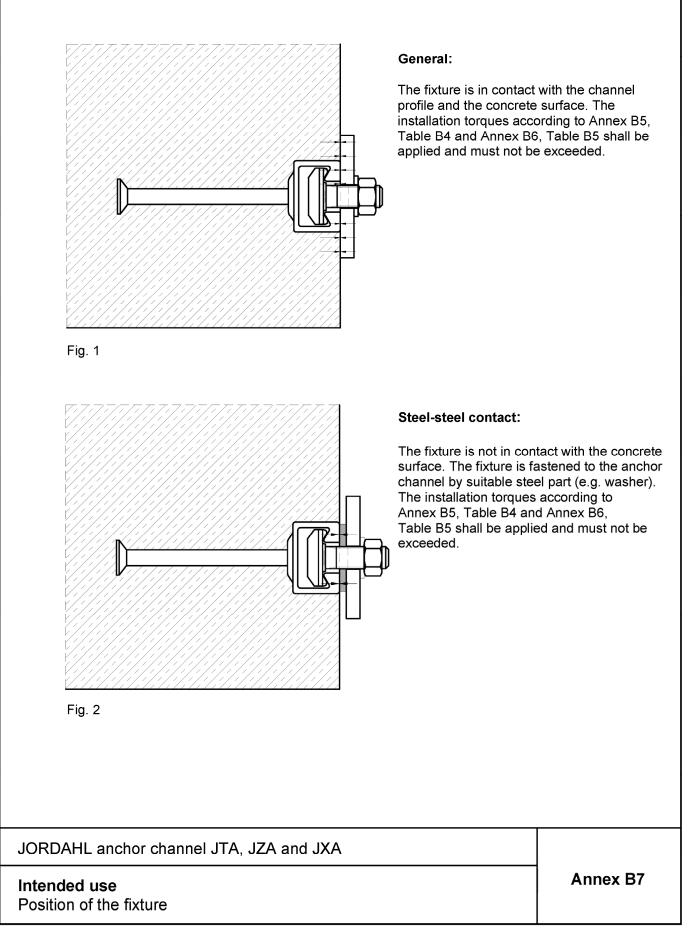
²⁾ According to Annex B7, Fig. 1

³⁾ According to Annex B7, Fig. 2

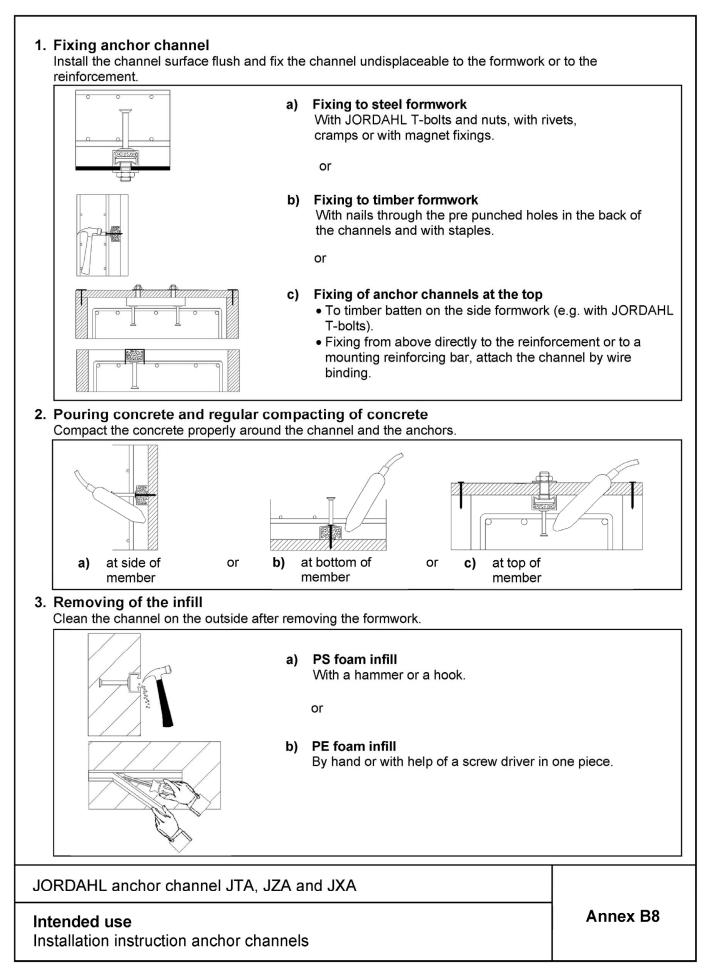
⁴⁾ T_{inst} must not be exceeded

⁵⁾ Product not available

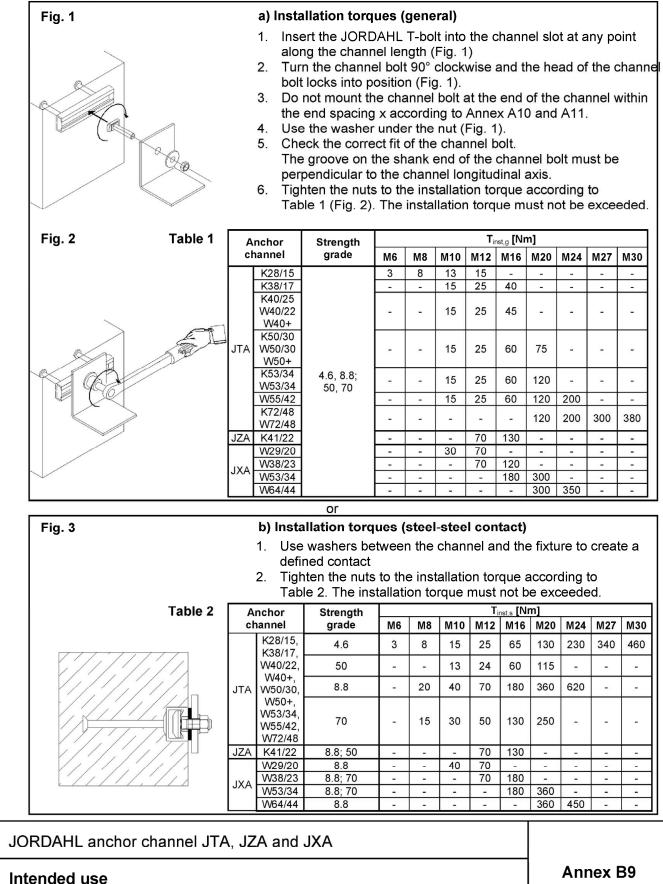
Intended use Installation parameters of channel bolts (JZA and JXA)


Annex B6

Electronic copy of the ETA by DIBt: ETA-09/0338


Page 26 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt



4. Fastening the JORDAHL T-bolt to the JORDAHL anchor channel

Installation instruction channel bolts

Anchenchennel						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Steel failure: Anchor	r						1		
Characteristic resistance	N _{Rk,s,a}	[kN]	20,0	30,0	32,0	39,0	56,0	103,0	102,0
Partial factor	γMs	1)				1,8			
Steel failure: Connec	ction betw	veen an	chor and	channel					
Characteristic resistance	N _{Rk,s,c}	[kN]	20,0	29,0	31,0	39,0	55,0	103,0	100,0
Partial factor	γMs,o	a ¹⁾			·	1,8			
Steel failure: Local f	lexure of	channe	l lips						
Spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	79	79	98	98	105	109	144
Characteristic resistance	N ⁰ Rk,s,I	[kN]	38,0	38,0	38,0	38,0	72,0	119,0	120,0
Partial factor	γMs	, <mark>1</mark>)				1,8			

¹⁾ In absence of other national regulations

Performance Characteristic resistances under tension load – steel failure anchor channels (JTA W)

Ancherchennel					J	ГА		
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Steel failure: Anchor	r							
Characteristic resistance	N _{Rk,s,a}	[kN]	13,0	18,0	20,0	32,0	56,0	102,0
Partial factor	γMs	,1)			1	,8		
Steel failure: Connec	ction betw	veen an	chor and	channel				
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0	100,0
Partial factor	γMs,c	ca ¹⁾			1	,8		
Steel failure: Local f	lexure of	channe	l lips					
Spacing of channel bolts for N _{Rk,s,I}	SI,N	[mm]	56	76	80	100	107	144
Characteristic resistance	N ⁰ Rk,s,I	[kN]	9,0	18,0	20,0	31,0	55,0	100,0
Partial factor	γMs,	1)		-	1	,8		

¹⁾ In absence of other national regulations

Performance Characteristic resistances under tension load – steel failure anchor channels (JTA K)

			JZA		J	ХА				
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44			
Steel failure: Anchor			I							
Characteristic	N	FL-N 13	25,4 ²⁾	25,4 ²⁾	31,4 ²⁾	57,1 ²⁾	115,0 ²⁾			
resistance	N _{Rk,s,a}	[kN]	25,4 ³⁾	- ⁴⁾	31,4 ³⁾	57,1 ³⁾	_ ⁴⁾			
Partial factor	γm	,1)			1,8					
Steel failure: Connec	tion betw	veen ar	hchor and	channel						
Characteristic	N	FL-N11	14,5 ²⁾	19,3 ²⁾	35,3 ²⁾	72,6 ²⁾	106,3 ²⁾			
resistance	NRk,s,c	[kN]	18,0 ³⁾	- ⁴⁾	39,0 ³⁾	49,0 ³⁾	- ⁴⁾			
Partial factor	γMs,	ca ¹⁾	1,8							
Steel failure: Local fl	exure of	channe	el lips							
Spacing of channel bolts for N _{Rk,s,l}	SI,N	[mm]	82	58	76	105	128			
Characteristic	N10	FI N 13	14,5 ²⁾	19,3 ²⁾	35,3 ²⁾	72,6 ²⁾	106,3 ²⁾			
resistance	N ⁰ Rk,s,I	[kN]	18,0 ³⁾	_ ⁴⁾	42,8 ³⁾	64,6 ³⁾	_4)			
Partial factor	γMs	, _I 1)			1,8					

¹⁾ In absence of other national regulations

²⁾ Carbon steel

³⁾ Stainless steel

⁴⁾ Product not available

JORDAHL anchor	channel JTA,	, JZA and JXA
----------------	--------------	---------------

Performance

Characteristic resistances under tension load – steel failure anchor channels (JZA and JXA)

Anchor channe							JTA			
Anchor channe	•			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Steel failure: Fl	exure of cha	nnel								
Characteristic flexural	Round anchor, I-anchor	MRk,s,flex	[Nm]	1406	1406	2830	2830	3373	6447	8593
resistance of channel	T-anchor			703	_ 2)	1416	_ 2)	2297	4454	_ 2)
Characteristic flexural resistance of	Round anchor, I-anchor	M _{Rk,s,flex}	[Nm]	1138	1138	1756	1756	3373	_ 2)	_2)
channel, notching bolt	T-anchor			703	_ 2)	1416	_ 2)	2297	_ 2)	_2)
Partial factor		γMs,fl	ex ¹⁾				1,15			

¹⁾ In absence of other national regulations

²⁾ Product not available

Table C5: Characteristic flexural resistance of anchor channel (JTA K)

Anchor channel						J	ТА		
Anchor channe				K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Steel failure: Fle	exure of cha	nnel							
Characteristic flexural resistance of channel	Round anchor, I-anchor	M _{Rk,s,flex}	[Nm]	317	580	1071	1673	2984	8617
Partial factor		γMs,fl	ex ¹⁾			1	,15		

¹⁾ In absence of other national regulations

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JTA)

Annex C4

Electronic copy of the ETA by DIBt: ETA-09/0338

Ancherchenne				JZA	AXL					
Anchor channe	1			K41/22	W29/20	W38/23	W53/34	W64/44		
Steel failure: Fl	exure of cha	annel								
Characteristic	Round anchor			629 ²⁾	608	1052 ³⁾	3247 ⁴⁾	_ 5)		
flexural resistance of	I-anchor	M _{Rk,s,flex}	[Nm]	_ 5)	_ ⁵⁾	1581	4147	7078		
channel	T-anchor			_ 5)	_ 5)	832	2476	_ 5)		
Partial factor		γMs,fl	ex ¹⁾		l	1,15	ľ			

¹⁾ In absence of other national regulations

²⁾ Value for carbon steel; stainless steel – 765 Nm

³⁾ Value for stainless steel; carbon steel –1581 Nm

⁴⁾ Value for stainless steel; carbon steel –4147 Nm

⁵⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JZA and JXA)

Channel bolt						JD,	JH, JC,	, JKC, J	B, JKB	, JA		
Thread diamete	er			М6	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure: C	nannel	bolt										
			4 .6 ¹⁾	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
Characteristic		TLAU1	8.8 ¹⁾	16,1	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,8
resistance 2)	N _{Rk,s}	[kN]	50 ¹⁾	10,1	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,
			70 ¹⁾	14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392, ⁻
			4.6 ¹⁾					2,00				
Partial factor		. 3)	8.8 ¹⁾					1,50				
	γ ν	γMs ³⁾ -						2,86				
								1,87				

¹⁾ Materials according to Annex A2 to A4

²⁾ In conformity to EN ISO 898-1:2013

³⁾ In absence of other national regulations

Table C8: Characteristic resistances under tension load – Steel failure of channel bolts (JZA and JXA)

Channel bolt				JZ	zs		JXD, .	JXH, JXE	B, JXE	
Thread diamete	r			M12	M16	M10	M12	M16	M20	M24
Steel failure: Ch	annel	bolt					•			
			8.8 ¹⁾	48,9	98,9	46,4	67,4	125,6	196,0	282,4
Characteristic resistance ²⁾	N _{Rk,s}	[kN]	50 ¹⁾	42,2	78,5	_ 5)	_ 5)	_ 5)	_ 5)	_ 5)
			70 ¹⁾	_ 5)	_ 5)	_ 5)	59,0 ⁴⁾	109,9 ⁴⁾	171,5 ⁴⁾	_ 5)
			8.8 ¹⁾				1,50			
Partial factor	γм	s ³⁾	50 ¹⁾				2,86			
			70 ¹⁾				1,87			

¹⁾ Materials according to Annex A2 to A4

²⁾ In conformity to EN ISO 898-1:2013

³⁾ In absence of other national regulations

⁴⁾ Available only as JXH and JXB

⁵⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under tension load – steel failure channel bolts

		acteristic res						JTA			
Anchor c	hanne) 			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Concrete	failur	e: Pullout			1110/22		1100,00			1100/12	
Character	istic	Round anchor			10,8	17,3 (10,8) ¹⁾	15,9	19,8	29,7	38,4	50,9
cracked concrete C12/15		I-anchor T-anchor	N _{Rk,p}	[kN]	23,4	24,8 - ³⁾	- 29,2	29,7 - ³⁾	39,6	52,2	46,4 - ³⁾
Character resistance	in	Round anchor			15,1	24,2 (15,1) ¹⁾	22,3	27,7	41,6	53,8	71,3
uncrackeo concrete C12/15		I-anchor T-anchor	N _{Rk,p}	[kN]	32,8	34,7 _ ³⁾	40,9	41,6 _ ³⁾	55,4	73,1	65,0 _ ³⁾
012/10		C20/25						1,67			
		C25/30 C30/37	-					2,08 2,50			
Factor of		C35/45	-					2,92			
$N_{Rk,p} = N_R$		C40/50	ψο	[-]							
(C12/15) ·	ψc	C45/55	-					3,75			
		C50/60	-								
		C55/67	-								
Partial fac	tor	≥C60/75	γ _{Mp} ²	 :)							
		e: Concrete	•					1,5			
Concrete			cone		7.0	0	01	0.0	07	0	00
Product	T-an	nd, I-anchor chor	k cr,N	[-]	7,9 7,5	8,0 _ ³⁾	8,1 7,7	8,2 _ ³⁾	8,7	8,9 7,9	8,9 _ ³⁾
factor k ₁		nd, I-anchor	k ucr,N	[-]	11,2 10,7	11,5 - ³⁾	11,5 11,0	11,7 - ³⁾	12,4 11,2	12,6 11,3	12,7 - ³⁾
Partial fac	tor		γм	2)				1,5	ł		•
Concrete	failur	e: Splitting									
Charact. edge dist.	Rour T-an	nd, l-anchor chor	C cr,sp	[mm]	237 171	273 _ ³⁾	282 213	318 _ ³⁾	465 228	525 252	537 - ³⁾
Charact. spacing	Rour T-an	nd, l-anchor chor	Scr,sp	[mm]	474 342	546 - ³⁾	564 426	636 - ³⁾	930 456	1050 504	1074 - ³⁾
Partial fac			γMs					1,5			
	nce o	ckets for stai f other nation vailable									
JORDA Perform					ZA and J					Annex	C7

							J.	ТА				
Anchor cha	annei				K28/15	K38/17	K40/25	K50/30	K53/34	K72/48		
Concrete fa	ailure:	Pullout				I			1			
Characteris resistance i		Round anchor		[LN]	6,7	14,7	10,8	15,9	29,7	50,9		
cracked concrete C1	2/15	l-anchor	- N _{Rk,p}	[kN]	11,7	11,7	14,0	21,1	25,7	46,4		
Characteris resistance i		Round anchor		FI-NIT	9,4	20,6	15,1	22,3	41,6	71,3		
uncracked concrete C1	2/15	l-anchor	- N _{Rk,p}	[kN]	16,4	16,4	19,7	29,5	36,0	65,0		
		C20/25					1,	67				
		C25/30					2,	08				
		C30/37]				2,	50				
Factor of		C35/45	1				2,	92				
$N_{Rk,p} = N_{Rk,p}$	_{Rk,p} = N _{Rk,p} C12/15) · ψ₀	C40/50	ψο	[-]			3,	33				
(C12/15) · ψ		C45/55	_				3,	75				
		C50/60			4,17							
		C55/67					4,	58				
		≥C60/75]				5,	00				
Partial facto	or		γм	p ¹⁾	1,5							
Concrete fa	ailure:	Concrete	cone									
Product	Rour anch		k cr,N	[-]	7,2	7,8	7,9	8,1	8,7	8,9		
factor k₁	Rour anch		k _{ucr,N}	[-]	10,3	11,2	11,2	11,5	12,4	12,7		
Partial facto	or		γ.	//c ¹⁾			1	,5				
Concrete fa	ailure:	Splitting										
Charact. edge dist.	,		C _{cr,sp}	[mm]	135	228	237	282	465	537		
Charact. spacing	,		Scr,sp	[mm]	270	456	474	564	930	1074		
Partial facto		er national i		sp ¹⁾			1	,5				

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under tension load – concrete failure anchor channels (JTA K)

A					JZA		J	(A				
Anchor ch	annei				K41/22	W29/20	W38/23	W53/34	W64/44			
Concrete f	ailure: Pu	ullout										
Characteris		Round anchor			14,7	14,7	19,8	29,7	_ ²⁾			
cracked co		I-anchor	N _{Rk,p}	[kN]	0)	0			52,2			
C12/15		T-anchor			_ 2)	<u> </u>	19,8	39,6	_ 2)			
Characteris resistance		Round anchor			20,5	20,5	27,7	41,6	_2)			
uncracked		I-anchor	N _{Rk,p}	[kN]	2)	2)			73,1			
C12/15		T-anchor			_ 2)	2)	27,7	55,4	_ ²⁾			
		C20/25				1	1,67	1	L			
		C25/30	-				2,08					
		C30/37	1				2,50					
		C35/45					2,92					
Factor of $N_{Rk,p} = N_{Rk,p}$ (C12/15) · ψ_c	C40/50	ψο	[-]			3,33						
	C45/55	40		3,75								
		C50/60			4,17							
		C55/67	-				4,58					
		≥C60/75	-				5,00					
Partial facto	or	2000/73	γм	1)			1,5					
		oncrete cor	-	þ í			1,5					
Concreter	1				7 0	7.0	8,1	8,7	8,9			
Product	T-anchc	I-anchor	k cr,N	[-]	7,8 _ ²⁾	7,9	0,1 7,4	7,8	0,9			
factor k1		/ I-anchor			11,1	11,2	11,5	12,4	12,7			
	T-anchc		k ucr,N	[-]	_2)	_2)	10,6	11,2	2)			
Partial facto			γn	/1c ¹⁾			1,5					
Concrete f	ailure: Sp	olitting										
Charact.	Round,	I-anchor		F 1	225	234	285	465	537			
edge dist.	T-ancho		C _{cr,sp}	[mm]	_ 2)	_2)	162	228	_ ²⁾			
Charact.	Round,	I-anchor		[mm]	450	468	570	930	1074			
spacing	T-anchc	or	Scr,sp	[mm]	_ 2)	_2)	324	456	_ 2)			
Partial factor			γM	sp ¹⁾			1,5					

¹⁾ In absence of other national regulations

²⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under tension load – concrete failure anchor channels (JZA and JXA)

Annex C9

8.06.01-757/20

Table C12: Displacements under tension load (JTA W)

Anchor channel						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Tension load	N	[kN]	15,1	15,1	14,9	14,9	28,6	47,2	39,7
Short-term displacement	δΝΟ	[mm]	1,9	1,9	1,7	1,7	1,6	2,4	0,5
Long-term displacement	δ _{N∞}	[mm]	3,8	3,8	3,4	3,4	3,1	4,8	1,0

Table C13: Displacements under tension load (JTA K)

Anchor channel					J	ГА		
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8	39,7
Short-term displacement	δ _{N0}	[mm]	0,3	0,3	0,4	0,4	0,5	0,5
Long-term displacement	δ _{N∞}	[mm]	0,6	0,6	0,8	0,8	1,0	1,0

Table C14: Displacements under tension load (JZA and JXA)

Ancherchennel			JZA		J	(A	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Tension load	Ν	[kN]	7,4	8,0	14,8	27.4	42,9
Short-term displacement	δνο	[mm]	0,6	0,4	1,3	1,4	1,5
Long-term displacement	δ _{N∞}	[mm]	1,2	0,8	2,6	2,8	3,0

Performance Displacements under tension load

						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Steel failure: Ancho	r		1	I			1		
Characteristic resistance	V _{Rk,s,a,y}	[kN]	35,0	35,0	52,0	59,0	78,0	110,0	146,0
Characteristic resistance ⁵⁾	V _{Rk,s,a,x}	[kN]	12,2	18,0	19,0	23,5	34,2	_ 4)	_ ⁴⁾
Partial factor	γмs	1)				1,5			
Steel failure: Conne	ction betw	een an	chor and o	channel					
Characteristic resistance	V _{Rk,s,c,y}	[kN]	35,0	35,0	52,0	59,0	78,0	110,0	146,0
Characteristic resistance ⁵⁾	V _{Rk,s,c,x}	[kN]	10,0	14,5	15,5	19,5	27,5	_ 4)	_ 4)
Partial factor	γMs,c	:a ¹⁾				1,8			
Steel failure: Local	flexure of o	hanne	lips						
Spacing of channel bolts for $V_{Rk,s,l}$	SI,V	[mm]	79	79	98	98	105	109	144
Characteristic resistance	V ⁰ _{Rk,s,l,y}	[kN]	35,0	35,0	52,0	59,0	78,0	110,0	146,0
Partial factor	γMs	1)				1,8			
Characteristic resistance ⁵⁾	V _{Rk,s,l,x}	[kN]	6,1 2,9			13,2 ²⁾ 4,7 ³⁾		_ 4)	_ 4)
Installation factor	γin	st	1,4			1,2 ²⁾ 1,4 ³⁾			_
Partial factor	۲Ms,I	,x ¹⁾		·		1,8			
In absence of other r Carbon steel Stainless steel No performance ass If notching channel b	essed		5						

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under shear load – steel failure anchor channels (JTA W)

Annex C11

Electronic copy of the ETA by DIBt: ETA-09/0338

A					J٦	ГА		
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Steel failure: Anchor								
Characteristic resistance	V _{Rk,s,a,y}	[kN]	13,0	18,0	20,0	32,0	56,0	102,0
Partial factor	γMs	1)			1.	,5		
Steel failure: Connec	tion betw	een and	chor and	channel				
Characteristic resistance	V _{Rk,s,c,y}	[kN]	9,0	18,0	20,0	31,0	55,0	100,0
Partial factor	γMs,c	a ¹⁾			1.	,8		
Steel failure: Local fl	exure of c	hannel	lips					
Spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	56	76	80	100	107	144
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0	100,0
Partial factor	γMs,	1)		1	,8			

¹⁾ In absence of other national regulations

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under shear load – steel failure anchor channels (JTA K)

A			JZA		٦	(A	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Steel failure: Anchor	ſ		1	I	1	I	1
Characteristic			24,2 ²⁾	18,0 ²⁾	48,3 ²⁾	101,1 ²⁾	121,0 ²⁾
resistance	V _{Rk,s,a,y}	[kN]	28,0 ³⁾	_	42,6 ³⁾	91,7 ³⁾	_
Characteristic		FL-NIT	15,3 ²⁾	15,3 ²⁾	18,8 ²⁾	34,3 ²⁾	69,0 ²⁾
resistance	V _{Rk,s,a,x}	[kN]	15,3 ³⁾	_	18,8 ³⁾	34,3 ³⁾	_
Partial factor	γMs	1)			1,5		
Steel failure: Connec	ction betw	veen an	chor and o	channel			
Characteristic			24,2 ²⁾	18,0 ²⁾	48,3 ²⁾	101,1 ²⁾	121,0 ²⁾
resistance	V _{Rk,s,c,y}	[kN]	28,0 ³⁾	_	42,6 ³⁾	91,7 ³⁾	_
Characteristic			8,7 ²⁾	11,6 ²⁾	21,2 ²⁾	43,6 ²⁾	63,8 ²⁾
resistance	V _{Rk,s,c,x}	[kN]	10,8 ³⁾	_	23,5 ³⁾	29,4 ³⁾	_
Partial factor	γMs,c	a ¹⁾			1,8		
Steel failure: Local f	lexure of d	channel	lips				
Spacing of channel							
bolts for $V_{Rk,s,l}$	SI,V	[mm]	82	58	76	105	128
Characteristic			24,2 ²⁾	18,0 ²⁾	48,3 ²⁾	101,1 ²⁾	121,0 ²⁾
resistance	V ⁰ Rk,s,l,y	[kN]	28,0 ³⁾	_	42,6 ³⁾	91,7 ³⁾	_
Partial factor	γMs	1)		1	1,8	I	
Characteristic	<u> </u> ,,		10,0 ²⁾	12,0 ²⁾	19,4 ²⁾	33,8 ²⁾	64,5 ²⁾
resistance	VRk,s,l,x	[kN]	10,7 ³⁾	_	11,9 ³⁾	22,8 ³⁾	_
Installation factor	γin	, st		1	1,0	1	
	γ _{inst} 1,0						

1,8

¹⁾ In absence of other national regulations

²⁾ Carbon steel

Partial factor

³⁾ Stainless steel

⁴⁾ No performance assessed

JORDAHL anchor channel JTA, JZA and JXA

 $\gamma_{Ms,I,x}^{1)}$

Performance Characteristic resistances under shear load – steel failure anchor channels (JZA and JXA)

Concrete failure: Pry-outProduct factork2,0Product factor2,02,02,02,02,02,02,0Product factor7,5 <th colsp<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>JTA</th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>JTA</th> <th></th> <th></th> <th></th>							JTA			
Product ractor Ks $(1,0)^{2/3}$ 2,0 1,0 1,0,5 1,0,5 1,0,5 1,0,5 1,0,5 1,0,5 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Anchor channe	əl		W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48	
Product factor Ks $(1,0)^{21}$ 2,0 1,0 1,0,5 1,0,5 1,0,5 1,0,5 1,0,5 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 <t< th=""><th>Concrete failu</th><th>e: Pry-out</th><th></th><th></th><th>I</th><th></th><th>I</th><th></th><th>1</th><th></th></t<>	Concrete failu	e: Pry-out			I		I		1		
Partial factor γ_{Mc}^{11} 1,5 Concrete failure: Concrete edge cracked concrete $k_{cr,V}$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $7,5$ $(6,9)^{21}$ $10,5$ 1	Product factor		k ₈		2,0	2,0	2,0	2,0	2,0	2,0	
$ \begin{array}{ c c c c c } \hline Product factor \\ k_{12} & \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Partial factor		γ _{Mc} ¹⁾		I		1,5		1	1	
Product factor concrete k _{cr} ,v (7,0) ²) 7,5 7	Concrete failu	e: Concrete ec	dge								
concrete Kuer,V (9,8) ²) 10,5 10,5 10,5 10,5 10,5 (9,7) ²) 1 Partial factor γ_{Mc}^{11} 1,5 1,5 <td>Product factor</td> <td></td> <td>kcr,V</td> <td></td> <td>7,5</td> <td>7,5</td> <td>7,5</td> <td>7,5</td> <td></td> <td>7,5</td>	Product factor		k cr,V		7,5	7,5	7,5	7,5		7,5	
$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	k ₁₂		k _{ucr,∨}								
2) Values in brackets for T-anchors Table C19: Characteristic resistances under shear load – Concrete failure of anchor channel (JTA K) Anchor channel Anchor channel Values in brackets for T-anchors Anchor channel JTA K28/15 K38/17 K40/25 K50/30 K53/34 K72/48 Concrete failure: Pry-out Product factor k8 1,0 2,0 V V Partial factor $\gamma_{Mc}^{(1)}$ 1,5 V V V Product factor concrete edge V 4,5 7,5 V V Product factor concrete k _{ucr,V} 6,3 10,5 V V Partial factor $\gamma_{Mc}^{(1)}$ 1,5 V </td <td>Partial factor</td> <td></td> <td>$\gamma_{\rm Mc}{}^{1)}$</td> <td></td> <td></td> <td></td> <td>1,5</td> <td></td> <td></td> <td></td>	Partial factor		$\gamma_{\rm Mc}{}^{1)}$				1,5				
Concrete failure: Pry-outProduct factork81,02,0Partial factor $\gamma_{Mc}^{1)}$ 1,5Concrete failure: Concrete edgeProduct factor k_{12} $cracked concrete dk_{cr,V}$ 4,57,5Partial factork_{cr,V}4,57,5Partial factor $\chi_{ucr,V}$ 6,310,5Partial factor $\gamma_{Mc}^{1)}$ 1,5	Anchor channe	el									
Product factork81,02,0Partial factor $\gamma_{Mc}^{1)}$ 1,5Concrete failure: Concrete edgeProduct factorcracked concrete4,5Nucracked concretekucr,v6,3Partial factor $\gamma_{Mc}^{1)}$ 1,5		51		K28/15	K38/17	K40/25	K50/30	K53/34	K72/48		
Partial factor $\gamma_{Mc}^{(1)}$ 1,5Concrete failure: Concrete edgeProduct factor k_{12} cracked concrete $k_{cr,V}$ 4,57,5Uncracked concrete $k_{ucr,V}$ 6,310,5Partial factor $\gamma_{Mc}^{(1)}$ 1,5	Concrete failu	e: Pry-out				1					
Concrete edgeProduct factor k_{12} cracked concrete $k_{cr,V}$ 4,57,5uncracked concrete $k_{ucr,V}$ 6,310,5Partial factor $\gamma_{Mc}^{1)}$ 1,5	Product factor		k ₈	1,0			2,0				
Product factor k_{12} cracked concrete $k_{cr,V}$ 4,57,5uncracked concrete $k_{ucr,V}$ 6,310,5Partial factor $\gamma_{Mc}^{1)}$ 1,5	Partial factor		γ _{Mc} 1)			1,	,5				
Product factor k_{12} concrete $k_{cr,V}$ 4,57,5uncracked concrete $k_{ucr,V}$ 6,310,5Partial factor $\gamma_{Mc}^{1)}$ 1,5	Concrete failu	e: Concrete ec	dge								
concrete $k_{ucr,V}$ 6,310,5Partial factor $\gamma_{Mc}^{1)}$ 1,5	Product factor	concrete	k cr,∨	4,5			7,5				
	K 12		k _{ucr,∨}	6,3			10,5				
¹⁾ In absence of other national regulations			•			1	,5				
	In absence of	other national	regulatio	ns							
JORDAHL anchor channel JTA, JZA and JXA											

Table C20: Characteristic resistances under shear load – Concrete failure of anchor channel (JZA and JXA)

Ancherchenne			JZA		٦	(A		
Anchor channe	1		K41/22	W29/20	W38/23	W53/34	W64/44	
Concrete failur	e: Pry-out							
Product factor		k ₈	2,0	2,0	2,0 (1,0) ²⁾	2,0	2,0	
Partial factor		γмс ²⁾			1,5			
Concrete failur	e: Concrete edg	je						
Product factor	cracked concrete	k _{cr,∨}	7,5	6,1	7,5 (5,6) ²⁾	7,5 (6,4) ²⁾	7,5	
k ₁₂	k ₁₂ uncracked concrete			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
Partial factor	Partial factor γ_{Mc}^{1}				1,5			

¹⁾ In absence of other national regulations

²⁾ Values in brackets for T-anchors

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under shear load – concrete failure anchor channels (JZA and JXA)

Channel bolt						JD	, JH, JC	, JKC, JI	B, JKB,	JA			
Thread diamete	er			M6	M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure: C	hannel	bolt											
			4 .6 ¹⁾	4,8	8,8	13,9	20,2	37,7	58,8	84,7	110,2	134,6	
Characteristic		FLAN 1	8.8 ¹⁾	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4	
resistance ²⁾	V _{Rk,s}	[kN]	50 ¹⁾	6,0	11,0	17,4	25,3	47,1	73,5	105,9	137,7	168,3	
			70 ¹⁾	8,4	15,4	24,4	35,4	65,9	102,9	148,3	192,8	235,6	
		s [Nm]	4.6 ¹⁾	6,3	15,0	29,9	52,4	133,2	259,6	449,0	665,8	889,6	
Characteristic	N 40		[Nime]	8.8 ¹⁾	12,2	30,0	59,8	104,8 ³⁾	266,4 ⁴⁾	519,3	898,0	1331,5	1799,
flexural resistance	W I [°] Rk,s		50 ¹⁾	7,6	18,7	37,4	65,5	166,5	324,5	561,3	832,2	1124,	
			70 ¹⁾	10,7	26,2	52,3	91,7 ³⁾	233,1	454,4	785,8	1165,1	1574,	
			4 .6 ¹⁾					1,67			1		
Deutiel feete		5)	8.8 ¹⁾					1,25					
Partial factor	γM	ls ⁵⁾	50 ¹⁾					2,38					
			70 ¹⁾					1,56					

¹⁾ Materials according to Annex A2 bis A4 ²⁾ In conformity to EN ISO 898-1:2013

³⁾ In combination with anchor channel JTA K 28/15 limited to 85,5 Nm

⁴⁾ In combination with anchor channel JTA K 38/17 limited to 234,0 Nm

⁵⁾ In absence of other national regulations

Performance

Characteristic resistances under shear load - steel failure channel bolts

Channel bolt				JZ	zs		JXD, .	JXH, JXI	B, JXE	
Thread diamet	er			M12	M16	M10	M12	M16	M20	M24
Steel failure: C	hannel	bolt								
			8.8 ¹⁾	33,7	62,8	23,2	33,7	62,8	98.0	141,2
Characteristic resistance ²⁾	V _{Rk,s}	[kN]	50 ¹⁾	25,3	47,1	_ 5)	_ 5)	_ 5)	_ 5)	_ 5)
			70 ¹⁾	_ ⁵⁾	_ 5)	_ 5)	35,4 ⁴⁾	65,9 ⁴⁾	102,9 ⁴⁾	_ 5)
			8.8 ¹⁾	104,8	266,4	59,8	104,8	266,4	519,3	898,0
Characteristic flexural	M ⁰ Rk,s	[Nm]	50 ¹⁾	65,5	166,5	_ 5)	_ 5)	_ 5)	_ 5)	_ 5)
resistance			70 ¹⁾	_ 5)	_ 5)	_ 5)	91,7 ⁴⁾	233,1 4)	454,4 ⁴⁾	_ 5)
							1,25			
Partial factor	γ∾	ls ³⁾	50 ¹⁾				2,38			
			70 ¹⁾				1,56) _ 5)

¹⁾ Materials according to Annex A2 bis A4

²⁾ In conformity to EN ISO 898-1:2013

³⁾ In absence of other national regulations

⁴⁾ Available only as JXH and JXB

⁵⁾ Product not available

Performance

Characteristic resistances under shear load – steel failure channel bolts

Anchonchemal						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Shear load	Vy	[kN]	13,9	13,9	20,6	23,4	31,0	43,7	57,9
Short-term displacement	δ _{V,y,0}	[mm]	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long-term displacement	δv,y,∞	[mm]	0,9	0,9	0,9	0,9	1,8	1,8	1,8
Shear load	Vx	[kN]	2,4	2,4	5,2	5,2	5,2	_ 1)	_ 1)
Short-term displacement	δ _{V,x,0}	[mm]	0,4	0,4	0,8	0,8	0,8	_ 1)	_ 1)
Long-term displacement	δ _{V,x,∞}	[mm]	0,5	0,5	1,2	1,2	1,2	_ 1)	_ 1)

¹⁾ No performance assessed

Table C24: Displacements under shear load (JTA K)

Anchor channel			JTA								
			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48			
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8	39,7			
Short-term displacement	δ _{V,y,0}	[mm]	0,6	0,6	0,6	0,6	1,2	1,2			
Long-term displacement	δ _{V,y,∞}	[mm]	0,9	0,9	0,9	0,9	1,8	1,8			

Table C25: Displacements under shear load (JZA and JXA)

Anchor channel			JZA		٦	(A	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Shear load	Vy	[kN]	10,4	7,7	18,1	38,3	48,3
Short-term displacement	δ _{V,y,0}	[mm]	1,4	0,8	1,9	1,5	3,1
Long-term displacement	δv,y,∞	[mm]	2,1	1,1	2,9	2,3	4,7
Shear load	Vx	[kN]	4,1	4,8	6,2	11,2	25,6
Short-term displacement	δ _{V,x,0}	[mm]	0,7	1,3	0,6	1,0	2,0
Long-term displacement	δv,x,∞	[mm]	1,0	1,9	0,9	1,5	3,0

JORDAHL anchor channel JTA, JZA and JXA

Performance Displacements under shear load

Page 47 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

					JTA							
Anchor channel		W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48				
Steel failure		1	I	1	1	1	1	1				
Product factors	k 13, k 14		Values are taken from EN 1992-4:2018									
able C27: Character	istic resistanc	es under c	combined t		d shear loa TA	ad (JTA K)]				
Anchor channel		K28/15	K38/17	K40/25	K50/30	K53/34	K72/48	-				
Steel failure						I	I	-				
Product factors	k 13, k 14		Values a	re taken fro	om EN 199	92-4:2018						
Table C28: Character	istic resistanc	es under o	combined t		d shear loa	ad (JZA an	d JXA)	-				
Anchor channel		K41/22	W29/20	W38/23	W53/34	W64/44						
Steel failure		1	1	1	1	1						
Product factors	k 13, k 14	Valu	ies are tak	en from F	N 1992-4.	2018	1					

JORDAHL anchor char	inel JTA, JZA and J	KΑ
---------------------	---------------------	----

k13, **k**14

Performance

Characteristic resistances under combined tension and shear load

Page 48 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

									JTA																	
cho	r chan	nel			K28/15	K38/17	K40/25 W40/22	W40+	K50/30 W50/30	W50+	K53/34 W53/34	W55/42	K72/4 W72/4													
el fa t	ailure:	Anch	or, coni	nectio	on betwo	een anc	hor and	channe	l, local f	lexure d	of channe		nannel													
		M8			1,0	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)													
		M10			1,0	1,7	1,9	1,9	1,9	1,9	1,9	_ 1)	_ 1)													
		M12			1,9	1,7	1,9 3.0	3,0	2,5	2,5	2,5	_ 1)	_ 1)													
	R30	M16			_ 1)	3,2	3,6 7,8	7,8	4,0 6,0	6,0	6,0	6,3	_ 1)													
		M20			_ 1)	_ 1)	7,0	_ 1)	4,0	9,5	8,9	10,3	10,3													
		M24			_ 1)	_ 1)	_ 1)	_ 1)	9,5 - ¹⁾	_ 1)	10,1 _ ¹⁾	14,8	14,8													
		M8			0,8	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)													
tance		M10			0,8	1,5	1,5	1,5	1,5	1,5	1,5	_ 1)	_ 1)													
resis		M12	NRk,s,fi = VRk,s,y,fi		1,3	1,5	1,5	2,6	2,5	2,5	2,5	_ 1)	_ 1)													
eristic	R60	M16		[kN]	_ 1)	2,4	2,6 3,6	5,3	3,5	4,5	4,5	4,8	_ 1)													
Unaracteristic resistance		M20			_ 1)	_ 1)	5,3 _ ¹⁾	1)	4,5 3,5	7,1	6,5	7,6	7,6													
Č Č		M24			_ 1)	_ 1)	_ 1)	_ 1)	7,1 - ¹⁾	1)	7,5 - ¹⁾	11,1	11,1													
		M8					0,6	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	1)											
		M10			0,6	1,0	1,1	1,1	1,1	1,1	1,1	_ 1)	_ 1)													
		M12					0,7	1,0	1,1	1,6	1,6	1,6	1,6	_ 1)	_ 1)											
	R90	M16																_ 1)	1,4	1,6 2,0	2,9	2,5	3,0	3,0	3,3	_ 1)
		M20																		_ 1)	_ 1)	2,9 _ ¹⁾	1)	3,0 2,5	4,8	4,2
		M24			_ 1)	_ 1)	_ 1)	_ 1)	4,8	1)	4 ,8 – ¹⁾	7,3	7,3													

¹⁾ No performance assessed ²⁾ In absence of other national regulations

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under fire exposure

shani ure:	nel							JTA										
ure:				K28/15	K38/17	K40/25 W40/22	W40+	K50/30 W50/30	W50+	K53/34 W53/34	W55/42	K72/48 W72/48						
	Anch	or, coni	nectio	on betwo	een anc	hor and	channe	l, local f	lexure c	of chann	el lip, cł	nannel						
	M8			0,5	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)						
	M10			0,5	0,8	0,8	0,8	0,8	0,8	0,8	_ 1)	_ 1)						
	M12	N Rk,s,fi		0,5	0,8	0,8 1,1	1,1	1,2	1,2	1,2	_ 1)	_ 1)						
120	M16			_ 1)	10	1,2	16	2,1	2,2	2,2	26	_ 1)						
		• IXK,S,Y,II			1,0	1,6	1,0	2,3	2,3	2,3	2,0							
	M20			_ 1)	_ ¹⁾	_ 1)	_ ¹⁾	2,1	3,6	3,0	3,6	3,6						
ļ								3,6	1-	3,5	7 -	,-						
	M24			_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	5,4	5,4						
	120-	M10 M12 M12 M16 M20 M24	120 M10 M12 M12 N _{Rk,s,fi} = V _{Rk,s,y,fi} M20 M24	$120 \frac{M10}{M10} \\ M12 \\ M12 \\ M16 \\ V_{Rk,s,y,fi} \\ M20 \\ M24 \\ M24$	$120 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$120 \frac{M10}{M10} = [KN] = [KN] \frac{0,5}{0,5} = 0,8 = 0,5 = 0,5 = 0,$	$120 \frac{M10}{M12} = [KN] = [KN] \frac{0,5}{0,5} \frac{0,8}{0,5} \frac{0,8}{1,1} = \frac{0,5}{1,6} \frac{0,5}{0,8} \frac{0,8}{1,1} = \frac{0,5}{1,6} \frac{0,5}$	$120 \frac{M10}{M10} = [KN] = [KN] \frac{0,0}{0,5} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{1,1} \frac{1,1}{1,1} \frac{1,1}{1,1} \frac{-1}{1,0} \frac{1,2}{1,6} \frac{1,6}{1,6} \frac{-1}{1,0} -1$	$120 \frac{M10}{M12} = M16 \frac{M10}{M12} = [KN] = [KN] \frac{0,5}{0,8} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{1,1} \frac{1,1}{1,1} \frac{1,2}{1,2} \frac{-1}{1,0} \frac{1,2}{1,6} \frac{1,6}{2,3} \frac{2,1}{2,3} \frac{-1}{1,0} \frac{-1}{-1} \frac{-1}{-1} \frac{-1}{3,6} \frac{2,1}{3,6} \frac{-1}{3,6} \frac{-1}{3$	$120 \frac{M10}{M12} = M16 \frac{M10}{M12} = [KN] \frac{0,5}{0,5} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{0,8} \frac{0,8}{1,1} \frac{1,1}{1,2} \frac{1,2}{1,2} \frac{1,2}{1,1} \frac{1,1}{1,1} \frac{1,2}{1,2} \frac{1,2}{1,2} \frac{1,1}{1,1} \frac{1,1}{1,2} \frac{1,2}{1,2} \frac{1,1}{1,1} \frac{1,1}{1,2} \frac{1,2}{1,2} \frac{1,2}{1,1} \frac{1,1}{1,1} \frac{1,2}{1,2} \frac{1,2}{1,2} \frac{1,2}{1,1} \frac{1,1}{1,1} \frac{1,2}{1,2} \frac{1,2}{1,2} \frac{1,2}{1,1} \frac{1,1}{1,1} \frac{1,2}{1,2} \frac{1,2}{1,2} \frac{1,2}{1,1} \frac{1,1}{1,1} \frac{1,2}{1,2} \frac{1,2}{1,2}$	$120 \frac{M10}{M12} = M16 \frac{M10}{M12} = [KN] = [KN] \frac{0,5}{0,8} \frac{0,8}{0,8} 0,$	$120 \frac{M10}{M12} = M10 MRk,s,fi = M10 MRk,s,fi = M10 M10 M12 MRk,s,fi = M16 M10 M12 M16 M16 VRk,s,y,fi = [KN] M16 M20 M16 M16 $						

¹⁾ No performance assessed
 ²⁾ In absence of other national regulations

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under fire exposure

Page 50 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

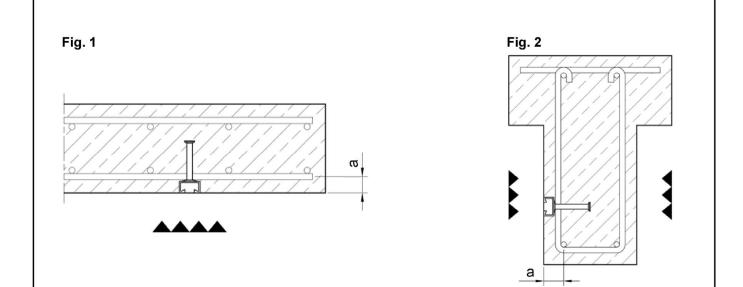


Table C30: Minimum axis distance under fire exposure

					JTA									
Anc	Anchor channel					K40/25 W40/22 W40+	K50/30 W50/30 W50+	K53/34 W53/34	W55/42	K72/48 W72/48				
	R30		[mm]	35	35	35	35	50	50	50				
Minimum axis	R60			35	35	35	35	50	50	50				
distance	R90	а		45	45	45	45	50	50	50				
	R120			60	60	60	60	65	70	70				

JORDAHL anchor channel JTA, JZA and JXA

Performance

Minimum axis distance under fire exposure

For Design method I or II for test method A1 and A2 according to EOTA TR050, June 2022

Table C31: Combinations of anchor channels JTA and channel bolts for fatigue tension loading

		Aı	nchor		C	hannel bolt	
Anchor	Anchor channel		da [mm]	Туре	Thread diameter	Strength grade	Surface
	W40/22		9,0	JC	M12	8.8	
	VV40/22		9,0	30	M16	4.6, 8.8	
	VV40+		10,8	JC	M12	8.8	electroplated,
JTA		R	10,8	50	M16	4.6, 8.8	hot-dip
517	W50/30		9,0	JB	M16, M20	4.6, 8.8	galvanized
	W50+		10,0	JB	M16, M20	4.6, 8.8	
	W53/34		11,5	JB	M16, M20	8.8	

Table C32: Characteristic resistances of anchor channels JTA and channel bolts under fatigue tension load with n load cycles without static preload ($N_{Ed} = 0 \text{ kN}$) – steel failure

Anchor chan	nol			JTA		
				W50/30	W50+	W53/34
	Load cycles n			∆N _{Rk,s,0,n} [kN]		
	≤ 10 ⁴	11,7	12,8	16,5	16,5	22,2
Characteristic	≤ 10 ⁵	6,7	7,7	9,8	9,8	13,2
resistances under fatigue	≤ 10 ⁶	3,8	4,7	5,8	5,8	7,9
load in tension without static preload	≤ 2 · 10 ⁶	3,2	4,0	4,9	4,9	6,7
	≤ 5 · 10 ⁶	2,6				
	≤ 10 ⁸	1,2	3,3	4,0	4,0	5,5
	≥ 10 ⁸	_ ¹⁾				

¹⁾ No performance assessed

Table C33: Characteristic resistances of anchor channels JTA under fatigue tension load with n load cycles without static preload ($N_{Ed} = 0 \text{ kN}$) – concrete cone and pullout failure

Anchor chan	nel	JTA
	Load cycles	$\eta_{k,c,fat} = \eta_{k,p,fat}$
	n	[-]
Reduction factor for	≤ 10 ⁴	0,736
	≤ 10 ⁵	0,665
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c}$ $\Delta N_{Rk,p,0,n} = \eta_{p,fat} \cdot N_{Rk,p}$	≤ 10 ⁶	0,600
	≤ 2 · 10 ⁶	0,582
Static resistances N _{Rk,c}	≤ 5 · 10 ⁶	0,559
and N _{Rk,p} according to Annex C7	≤ 6 · 10 ⁷	0,500
	≤ 10 ⁸	0,500
	≥ 10 ⁸	0,500

Performance

Characteristic resistances under fatigue tension load according test method A1 and A2 (JTA W)

For Design method I or II for test method C according to EOTA TR050, June 2022

Table C34: Combinations of anchor channels JXA and channel bolts for fatigue tension loading

			nchor	Channel bolt					
Anchor	Anchor channel		da; t _w [mm]	Type Thread diameter		Strength grade	Surface		
	W38/23	R	10,0	JXH	M16	8.8	Electroplated,		
JXA	W53/34	R, I	11,5; 6,0	JXB	M20	8.8	hot-dip		
	W64/44		7,1	JXE	M24	8.8	galvanized		

Table C35: Characteristic resistances ($\Delta N_{Rk,s,lo,n}$) of anchor channels JXA and channel bolts under fatigue tension load with n load cycles with characteristic lower load ($N_{lok,s,n}$) – steel failure

Anchor channel		JXA							
		W38	3/23	W53	8/34	W64/44			
Characteristic resistances under fatigue tension load with static preload	Load cycles	$\Delta N_{Rk,s,lo,n}$	$N_{lok,s,n}$	$\Delta N_{Rk,s,lo,n}$	$N_{lok,s,n}$	$\Delta N_{Rk,s,lo,n}$	$N_{lok,s,n}$		
	n	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]		
	≤ 10 ⁴	16,0	0,0	30,0	0,0	55,0	0,0		
	2 · 10 ⁴	16,0	0,0	29,0	0,0	45,2	0,0		
	5 · 10 ⁴	13,3	2,5	22,5	3,0	34,6	9,4		
	1 · 10 ⁵	10,9	4,9	18,5	6,7	28,3	16,9		
	2 · 10 ⁵	8,9	6,9	15,2	9,7	23,1	23,0		
	5 · 10⁵	6,9	9,0	11,8	12,9	17,7	29,4		
	1 · 10 ⁶	5,6	10,2	9,7	14,9	14,5	33,2		
	2 · 10 ⁶	4,6	11,2	8,0	16,5	11,8	36,4		
	5 · 10 ⁶	3,5	12,3	6,2	18,1	9,1	39,6		
	1 · 10 ⁷	3,5	12,3	6,2	18,1	7,4	41,6		
	5 · 10 ⁷	3,5	12,3	6,2	18,1	4,6	44,9		
	≥ 10 ⁸	3,5	12,3	6,2	18,1	3,8	45,9		

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under fatigue tension load according test method C (JXA)

Annex C24

Electronic copy of the ETA by DIBt: ETA-09/0338

For Design method II for test method C according to EOTA TR050, June 2022

Table C36: Characteristic resistances of anchor channels JXA under fatigue tension load with n load cycles with lower load share ($S_{lok} = 2,25N_{Elok}/N_{Rk,c(p)} \le 0,8$) – concrete cone and pullout failure¹)

Anchor channel		JXA								
	Load	I I_I								
	cycles n	S _{lok} = 0,0	S _{lok} = 0,1	S _{lok} = 0,2	S _{lok} = 0,3	S _{lok} = 0,4	S _{lok} = 0,5	S _{lok} = 0,6	S _{lok} = 0,7	S _{lok} = 0,8
	≤ 10 ⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120
Reduction factor for $\Delta N_{Rk,c,E,n} = \eta_{c,fat} \cdot N_{Rk,c}$ $\Delta N_{Rk,p,E,n} = \eta_{p,fat} \cdot N_{Rk,p}$ Static resistances N _{Rk,c} and N _{Rk,p} according to Annex C9	2 · 104	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114
	5 · 104	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106
	1 · 10 ⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100
	2 · 10⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094
	5 · 10⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087
	1 · 10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081
	2 · 10 ⁶	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075
	5 · 10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067
	1 · 10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061
	2 · 10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055
	5 · 10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047
	≥ 10 ⁸	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041

¹⁾ N_{Elok} is the characteristic lower cyclic load on the anchor

In absence of other national regulations the following partial factors are recommended for design method I and II for all failure modes:

 $\gamma_{Ms,fat} = 1,35$ (steel) $\gamma_{Mc,fat} = \gamma_{Mp,fat} = 1,50$ (concrete)

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under fatigue tension load according test method C (JXA)