



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

ETA-10/0168 of 11 May 2022

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Upat Drop-in Anchor USA

Fasteners for use in concrete for redundant non-structural systems

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

15 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601, Edition 06/2018

ETA-10/0168 issued on 11 May 2017



# European Technical Assessment ETA-10/0168

Page 2 of 15 | 11 May 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z38996.22 8.06.01-77/22



## **European Technical Assessment ETA-10/0168**

Page 3 of 15 | 11 May 2022

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The Upat drop-in anchor USA is an anchor made of galvanised or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex B 5. The product description is given in Annex A.

### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Safety in case of fire (BWR 2)

| Essential characteristic | Performance   |
|--------------------------|---------------|
| Reaction to fire         | Class A1      |
| Resistance to fire       | See Annex C 3 |

#### 3.2 Safety and accessibility in use (BWR 4)

| Essential characteristic                                                                     | Performance              |
|----------------------------------------------------------------------------------------------|--------------------------|
| Characteristic resistance for all load directions and modes of failure for simplified design | See Annex<br>C 1 and C 2 |
| Durability                                                                                   | See Annex B 1            |

### 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

Z38996.22 8.06.01-77/22



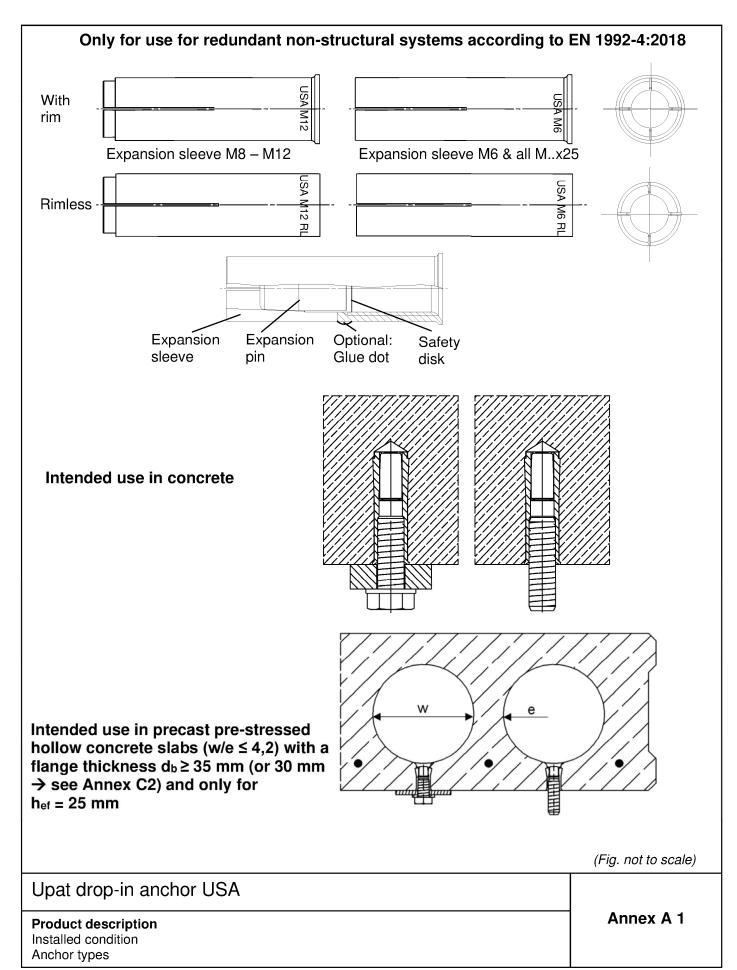


### European Technical Assessment ETA-10/0168

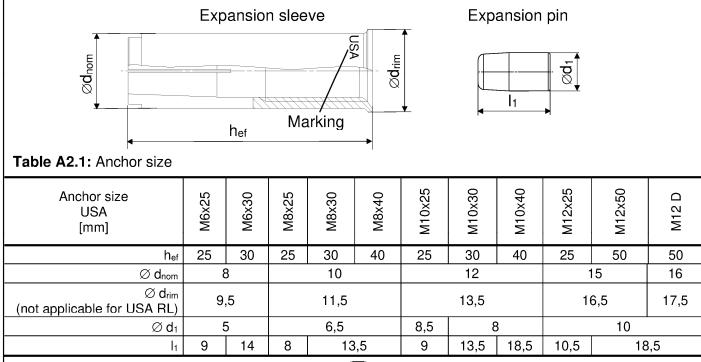
Page 4 of 15 | 11 May 2022

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 11 May 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider

Z38996.22 8.06.01-77/22









Distinctive feature







No groove for:

- USA M6x30...
- USA M8x30..
- USA M10x40..
- USA M12x50..

1 groove for:

- USA M6x25..
- USA M8x25..
- USA M10x25..
- USA M12x25..

2 grooves for:

- USA M8x40..
- USA M10x30...

Table A2.2: Marking on anchor body

| galvanised steel (gvz) |                 | stainles       | ss steel (R)      |
|------------------------|-----------------|----------------|-------------------|
| with rim               | rimless         | with rim       | rimless           |
| USA M6x25              | USA M6x25 RL    | USA M6x30 R    | USA M6x30 RL R    |
| USA M6x30              | USA M6x30 RL    | USA M8x30 R    | USA M8x30 RL R    |
| USA M8x25              | USA M8x25 RL    | USA M8x40 R    | USA M8x40 RL R    |
| USA M8x30              | USA M8x30 RL    | USA M10x30 R   | USA M10x30 RL R   |
| USA M8x40              | USA M8x40 RL    | USA M10x40 R   | USA M10x40 RL R   |
| USA M10x25             | USA M10x25 RL   | USA M12x50 R   | USA M12x50 RL R   |
| USA M10x30             | USA M10x30 RL   | USA M12x50 D R | USA M12x50 RL D R |
| USA M10x40             | USA M10x40 RL   |                |                   |
| USA M12x25             | USA M12x25 RL   |                |                   |
| USA M12x50             | USA M12x50 RL   |                |                   |
| USA M12x50 D           | USA M12x50 RL D |                |                   |

(Fig. not to scale)

Upat drop-in anchor USA

Product description
Anchor types

Annex A 2



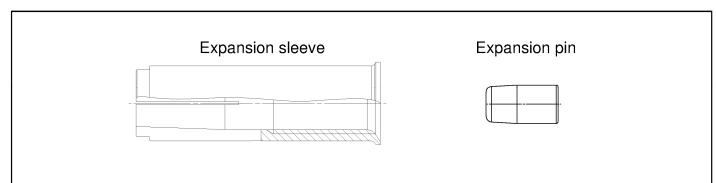
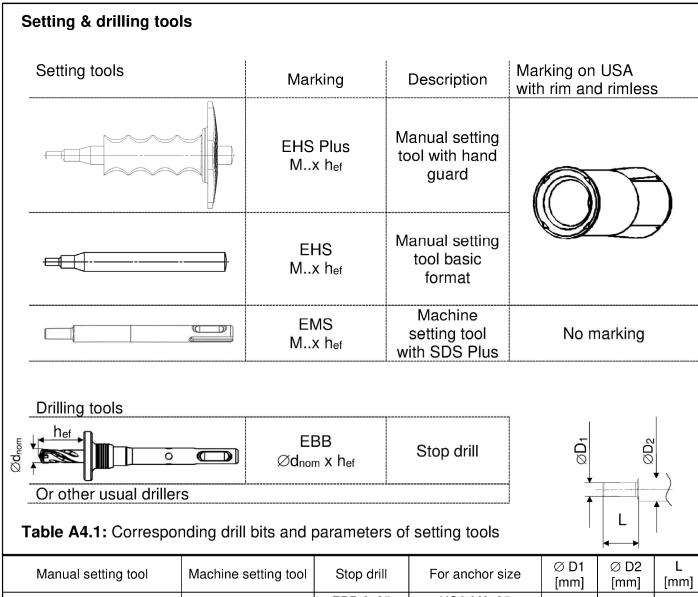




Table A3.1: Materials

|                                 | Material                                                                  |                                                           |  |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Designation                     | galvanised steel (≥ 5 μm)                                                 | stainless steel (R)                                       |  |  |  |  |  |
| Expansion sleeve                | EN 10277:2018 or EN 10084:2008 or                                         |                                                           |  |  |  |  |  |
| Expansion pin                   | EN 10111:2008 or EN 10263:2018 or<br>EN 10087:1999 or ASTM A29/A29M       | EN 10088:2014                                             |  |  |  |  |  |
| Fastening screw or threaded rod | steel, property class 4.6, 5.6, 5.8 or 8.8 according to EN ISO 898-1:2013 | property class 50, 70 or 80<br>according EN ISO 3506:2020 |  |  |  |  |  |

| Upat drop-in anchor USA       |           |
|-------------------------------|-----------|
| Product description Materials | Annex A 3 |





| Manual setting tool  | Machine setting tool | Stop drill             | For anchor size          | Ø D1<br>[mm] | Ø D2<br>[mm] | L<br>[mm] |
|----------------------|----------------------|------------------------|--------------------------|--------------|--------------|-----------|
| EHS (Plus) M6x25/30  | EMS M6x25/30         | EBB 8x25<br>EBB 8x30   | USA M6x25<br>USA M6x30   | 4,8          | 9,0          | 17,0      |
| EHS (Plus) M8x25/30  | EMS M8x25/30         | EBB 10x25<br>EBB 10x30 | USA M8x25<br>USA M8x30   | 6,4          | 11,0         | 18,0      |
| EHS (Plus) M8x40     | EMS M8x40            | EBB 10x40              | USA M8x40                |              |              | 28,0      |
| EHS (Plus) M10x25/30 | EMS M10x25/30        | EBB 12x25<br>EBB 12x30 | USA M10x25<br>USA M10x30 | 7,9          | 13,0         | 18,0      |
| EHS (Plus) M10x40    | EMS M10x40           | EBB 12x40              | USA M10x40               |              |              | 24,0      |
| EHS (Plus) M12x25    | EMS M12x25           | EBB 15x25              | USA M12x25               | 10,2         | 16,5         | 15,2      |
| EHS (Plus) M12x50    | EMS M12x50           | EBB 15x50              | USA M12x50               | 10,2         | 16,5         | 30,0      |
| EHS (Plus) M12x50    | EMS M12x50           | EBB 16x50              | USA M12x50 D             | 10,2         | 16,5         | 30,0      |

(Fig. not to scale)

| Upat drop-in anchor USA               |           |
|---------------------------------------|-----------|
| Intended Use Setting & Drilling tools | Annex A 4 |



| Specifications of intended use                                |                          |                  |    |             |               |     |  |
|---------------------------------------------------------------|--------------------------|------------------|----|-------------|---------------|-----|--|
| Anchorages subjec                                             | t to:                    |                  |    |             |               |     |  |
| Upat drop-in anchor l                                         | JSA (all versions)       |                  | M6 | M8          | M10           | M12 |  |
| Hammer drilling with standard drill bit                       |                          |                  |    |             |               |     |  |
| Hammer drilling with hollow drill bit with automatic cleaning |                          |                  |    | All         | types         |     |  |
| Material                                                      | Steel<br>Stainless steel | Zinc plated<br>R |    |             |               |     |  |
| Static and quasi-station                                      |                          | <b></b>          |    |             |               |     |  |
| Cracked and uncrack                                           | ed concrete              |                  |    |             |               |     |  |
| Fire exposure in cond                                         | crete C12/15 to C50      | 0/60             |    |             |               |     |  |
| Fire exposure in pres                                         | tressed hollow con       | crete slabs      |    | No performa | ınce assessed |     |  |

#### **Base materials:**

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A1:2016
- Strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Precast prestressed hollow concrete slabs with w/e ≤ 4,2 and strength classes C30/37 to C50/60: M6x25, M8x25, M10x25 and M12x25

#### Use conditions (Environmental conditions):

· Structures subject to dry internal conditions:

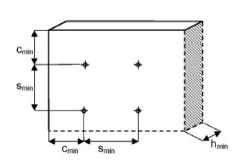
USA, USA R

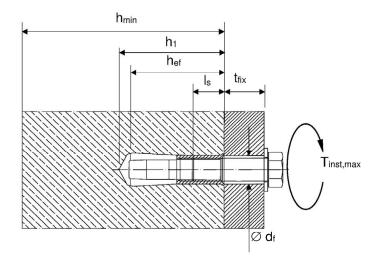
 For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III

USA R with h<sub>ef</sub> ≥ 30 mm

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
  reinforcement or to supports, etc.)
- Only for use for redundant non-structural system according to EN 1992-4:2018, Chapter 7.3. Design Method B according to EN 1992-4:2018.
- · Anchorages under fire exposure are designed according to EN 1992-4:2018 Annex D


#### Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Create drill hole with hammer drill or with hollow drill and vacuum cleaner
- · The anchor may only be used once
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar (e.g. UPM 66, UPM 55 or UPM 44) and only if the hole is not in the direction of the oblique tensile or shear load
- Anchor expansion by impact using the setting tools given in Annex A 4. The anchor is properly set, if the stop of the setting tool reaches the expansion sleeve. The manual setting tool with installation control leaves a visible mark on the sleeve, as illustrated in Annex A 4 and B 4

| Upat drop-in anchor USA        |           |
|--------------------------------|-----------|
| Intended Use<br>Specifications | Annex B 1 |



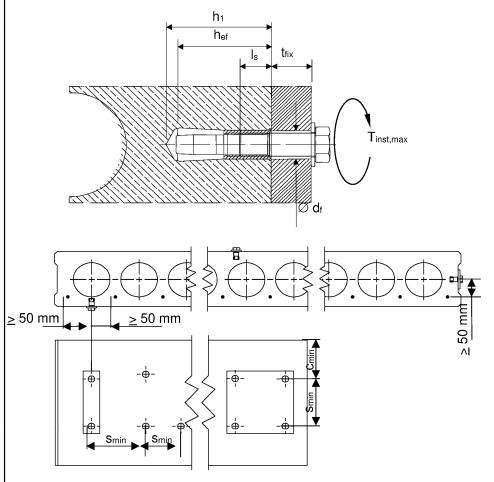
| Anchor size (all versions)  |                       |      | M6 M8 |     | M10 |     |     | M12      |     | M12D |             |    |     |
|-----------------------------|-----------------------|------|-------|-----|-----|-----|-----|----------|-----|------|-------------|----|-----|
| Nominal drill hole diameter | d <sub>0</sub>        | [mm] | 8     |     | 10  |     | 12  |          |     | 15   |             | 16 |     |
| Effective anchorage depth   | h <sub>ef</sub>       | [mm] | 25    | 30  | 25  | 30  | 40  | 25       | 30  | 40   | 25          | 50 | 50  |
| Maximum installation torque | T <sub>inst,max</sub> | [Nm] | 4     | 4   |     | 8   |     | 15       |     |      |             | 35 | •   |
| Minimum drill hole depth    | h₁                    | [mm] | 27    | 32  | 27  | 33  | 43  | 27       | 33  | 43   | 27          | 54 | 54  |
| Minimum screw-in depth      | I <sub>s,min</sub>    | [mm] | (     | 3   |     | 8   |     | 10       |     |      |             | 12 |     |
| Maximum screw-in depth      | I <sub>s,max</sub>    | [mm] | 1     | 4   |     | 14  |     | 14 15 17 |     | 17   | 14          |    | 22  |
| Clearance hole diameter     | Ø d₁≤                 | [mm] |       | 7   |     | 9   |     | 12       |     |      | 14          |    |     |
| h <sub>min</sub> = 80 mm    |                       |      |       |     |     |     |     |          |     |      |             |    |     |
| Minimum spacing             | Smin                  | [mm] | 30    | 70  | 70  | 110 | 200 | 80       | 20  | 00   | 100         | -  | -   |
| Minimum edge distance       | Cmin                  | [mm] | 60    | 150 | 100 | 15  | 50  | 120      | 15  | 50   | 130         | -  | -   |
| h <sub>min</sub> = 100 mm   |                       |      |       |     |     |     |     |          |     |      |             |    |     |
| Minimum spacing             | Smin                  | [mm] | 30    | 65  | 50  | 7   | 0   | 60       | 90  | 150  | 100         |    | 200 |
| Minimum edge distance       | Cmin                  | [mm] | 60    | 115 | 100 | 11  | 5   | 100      | 160 | 180  | 180 110 200 |    | 200 |
| h <sub>min</sub> = 120 mm   |                       |      |       |     |     |     |     |          |     |      |             |    |     |
| Minimum spacing             | Smin                  | [mm] | 30    | 65  | 50  | 7   | 0   | 60       | 85  | 95   | 100         |    | 145 |
| Minimum edge distance       |                       | [mm] | 60    | 115 | 100 | 11  |     | 100      | 140 | 150  | 110         |    | 200 |





Fastening screw or threaded rod:

- Minimum property class and materials according to table A3.1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t<sub>fix</sub>, admissible tolerances and maximum screw-in depth l<sub>s,max</sub> as well as minimum screw-in depth l<sub>s,min</sub>.


(Fig. not to scale)

| Upat drop-in anchor USA              |           |
|--------------------------------------|-----------|
| Intended Use Installation parameters | Annex B 2 |



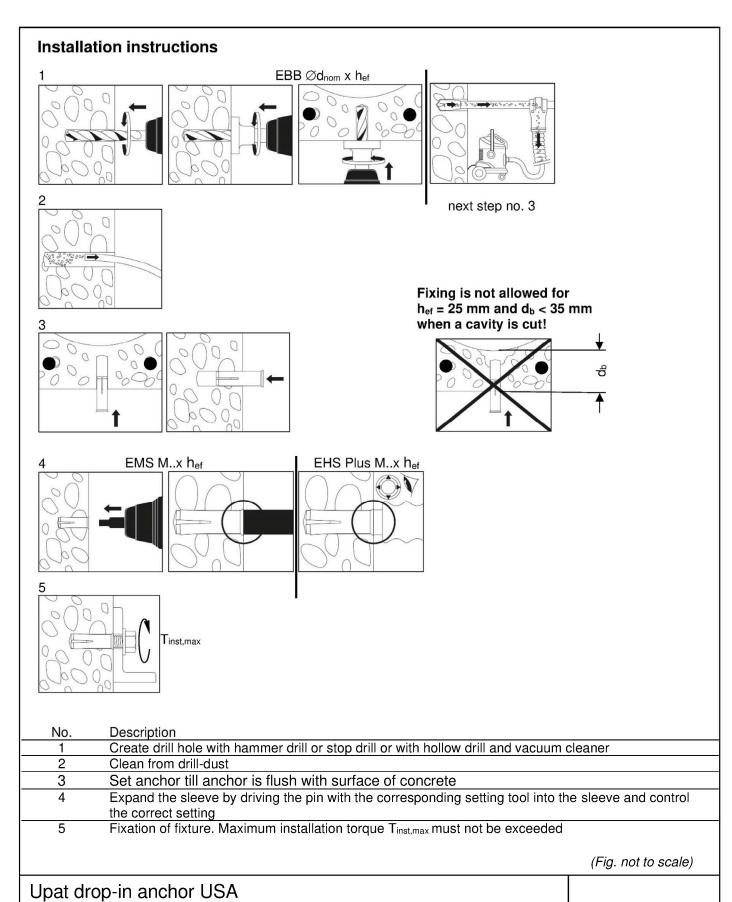
Table B3.1: Installation parameters for precast pre-stressed hollow concrete slabs

| Anchor size (all versions)  |                       |      | M6 M8 M10 |    |    |    |  |
|-----------------------------|-----------------------|------|-----------|----|----|----|--|
| Nominal drill hole diameter | d <sub>0</sub>        | [mm] | 8         | 10 | 12 | 15 |  |
| Effective anchorage depth   | h <sub>ef</sub>       | [mm] | 25        |    |    |    |  |
| Maximum installation torque | T <sub>inst,max</sub> | [Nm] | 4         | 8  | 15 | 35 |  |
| Minimum drill hole depth    | h <sub>1</sub>        | [mm] | 27        |    |    |    |  |
| Minimum screw-in depth      | I <sub>s,min</sub>    | [mm] | 6         | 8  | 10 | 12 |  |
| Maximum screw-in depth      | I <sub>s,max</sub>    | [mm] | 14        |    |    |    |  |
| Clearance hole diameter     | Ø d <sub>f</sub>      | [mm] | 7         | 9  | 12 | 14 |  |
| Minimum spacing             | Smin = Scr            | [mm] | 200       |    |    |    |  |
| Minimum edge distance       | Cmin = Ccr            | [mm] | 150       |    |    |    |  |



### Fastening screw or threaded rod:

- Minimum property class and materials according to table A3.1
- The length of the fastening screw or threaded rod shall be determined depending on thickness of fixture t<sub>fix</sub>, admissible tolerances and maximum screw-in depth I<sub>s,max</sub> as well as minimum screw-in depth I<sub>s,min</sub>.


(Fig. not to scale)

| Upat drop-in anchor USA              |           |
|--------------------------------------|-----------|
| Intended Use Installation parameters | Annex B 3 |

Electronic copy of the ETA by DIBt: ETA-10/0168

**Intended Use** 

Installation instructions



Z39010.22 8.06.01-77/22

Annex B 4

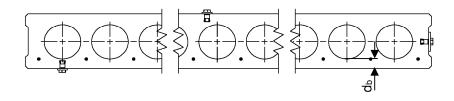
English translation prepared by DIBt



| Table C1.1: Characte                     | ristic resistar                                                           | nce of a fixi                                            | ng po | oint <sup>1)</sup> f | or all   | load | direc | tions              |           |     |              |     |
|------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|-------|----------------------|----------|------|-------|--------------------|-----------|-----|--------------|-----|
| Anchor size                              |                                                                           | property                                                 | М6    |                      | M8       |      |       | M10                |           |     | M12/<br>M12D |     |
| Effective anchorage depth                | h <sub>ef</sub> [mm]                                                      | class of the<br>fastening<br>screw or<br>threaded<br>rod | 25    | 30                   | 25       | 30   | 40    | 25                 | 30        | 40  | 25           | 50  |
| All load directions                      |                                                                           |                                                          |       |                      |          | •    | •     |                    |           |     |              |     |
| Characteristic resistance                | F <sup>0</sup> RK [kN]                                                    | ≥ A4-50                                                  | _2)   | 2                    | _2)      |      | 3     | _2)                | 3         | 5   | _2)          | 6   |
| C12/15                                   | I AK [KIN]                                                                | ≥ steel 4.6                                              | 1,5   |                      | 2        | '    |       | 3                  | 3         |     | 3            | 0   |
| Characteristic resistance                | F <sup>0</sup> RK [kN]                                                    | ≥ A4-50                                                  | _2)   | 3                    | _2)      |      | 5     |                    | 5         | 7,5 | _2)          | 9   |
| C20/25 to C50/60                         | I AK [KIV]                                                                | ≥ steel 4.6                                              |       |                      | 3        |      |       | 4                  | 1 3   7,5 |     | 4            | ,   |
| Installation factor                      | γinst [-]                                                                 |                                                          | 1,0   | 1,0 1,2 1,0          |          | 1,2  |       | 1,0                | 1         | ,2  | 1,0          |     |
| Characteristic spacing                   | s <sub>cr</sub> [mm]                                                      |                                                          | 75    | 90                   | 75       | 90   | 120   | 75                 | 90        | 200 | 75           | 300 |
| Characteristic edge distance             | c <sub>cr</sub> [mm]                                                      |                                                          | 38    | 45                   | 38       | 45   | 60    | 38                 | 45        | 100 | 38           | 150 |
| Steel failure with lever ar              | m                                                                         |                                                          |       |                      |          |      |       |                    |           |     |              |     |
| Characteristic resistance                | M <sup>0</sup> <sub>Rk,s</sub> [Nm]                                       | A4-50                                                    | _2)   | 8                    | _2)      | 1    | 9     | _2)                | (         | 37  | _2)          | 66  |
| Partial factor                           | γмs <sup>3)</sup> [-]                                                     | A4-50                                                    |       |                      |          |      | 2,    | 38                 |           |     |              |     |
| Characteristic resistance                | $M^0_{Rk,s}\left[Nm\right]$                                               | A4-70                                                    | _2)   | 11                   | _2)      | 2    | 26    | - <sup>2)</sup> 52 |           |     | _2)          | 92  |
| Partial factor                           | γмs <sup>3)</sup> [-]                                                     | A4-70                                                    |       |                      |          |      |       | 56                 |           |     |              |     |
| Characteristic resistance                | M <sup>0</sup> <sub>Rk,s</sub> [Nm]                                       | A4-80                                                    | _2)   | 12                   | _2)      | 3    | 30    | _2)                | (         | 30  | _2)          | 105 |
| Partial factor                           | γмs <sup>3)</sup> [-]                                                     | 71100                                                    |       |                      |          |      | 1,    | 33                 |           |     |              | _   |
| Characteristic resistance                | M <sup>0</sup> <sub>Rk,s</sub> [Nm]                                       | steel 4.6                                                | 6     | ,1                   |          | 15   |       | 30                 |           |     | 5            | 52  |
| Partial factor                           | γ <sub>Ms<sup>3)</sup> [-]</sub>                                          | 0.00. 1.0                                                | _     |                      |          |      | 1,    | 67                 |           |     |              |     |
| Characteristic resistance                | M <sup>0</sup> <sub>Rk,s</sub> [Nm]                                       | steel 5.6                                                | 7     | ,6                   | 19 37    |      |       |                    |           |     | 6            | 6   |
| Partial factor                           | γ <sub>Ms</sub> <sup>3)</sup> [-]                                         |                                                          | _     |                      |          | 40   | 1,    |                    |           |     |              |     |
| Characteristic resistance                | M <sup>0</sup> Rk,s [Nm]                                                  | steel 5.8                                                | /     | ,6                   | 19 37    |      |       |                    |           |     | 6            | 6   |
| Partial factor                           | γ <sub>Ms</sub> <sup>3)</sup> [-]                                         |                                                          | 4     | 0                    | <u> </u> | 30   | 1,    | 25                 |           |     | 4.0          | 25  |
| Characteristic resistance Partial factor | M <sup>0</sup> <sub>Rk,s</sub> [Nm]_<br>γ <sub>Ms</sub> <sup>3)</sup> [-] | steel 8.8                                                | 1     | 12 3                 |          |      | 1     | <br>25             | 60        |     | 1 10         | 05  |
|                                          | Livio []                                                                  |                                                          |       |                      |          |      | ٠,    |                    |           |     |              |     |

For definition see EN 1992-4:2018, Picture 3.4
 No performance assessed
 In absence of other national regulations

| Upat drop-in anchor USA                                                                       |           |
|-----------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for tension loads in concrete according to design method B | Annex C 1 |




**Table C2.1:** Characteristic values for h<sub>ef</sub> = 25 mm in precast pre-stressed hollow concrete slabs according to design method C with C30/37 to C50/60

| Anchor size                                   | property class of the                    | М6                                       | M8    | M10           | M12                  |     |  |  |  |  |
|-----------------------------------------------|------------------------------------------|------------------------------------------|-------|---------------|----------------------|-----|--|--|--|--|
| Effective anchorage depth                     | h <sub>ef</sub> [mm]                     | fastening<br>screw or<br>threaded<br>rod | 25    |               |                      |     |  |  |  |  |
| All Load directions                           |                                          |                                          | 9     | alvanised ste | el; with rim         |     |  |  |  |  |
| Flange thickness                              | d₀ [mm]                                  |                                          |       | ≥ 35 (oı      | r 30 <sup>1)</sup> ) |     |  |  |  |  |
| Characteristic resistance<br>C30/37 to C50/60 | F <sup>0</sup> RK [kN]                   |                                          | 2 3 4 |               |                      |     |  |  |  |  |
| Installation factor                           | $\gamma$ inst $[	extcolor{-}]$           |                                          | 1,0   |               |                      |     |  |  |  |  |
| Characteristic spacing                        | $s_{cr} = s_{min} [mm]$                  |                                          | 200   |               |                      |     |  |  |  |  |
| Characteristic edge distance                  | $c_{\text{cr}} = c_{\text{min}} \; [mm]$ |                                          |       | 150           | 0                    |     |  |  |  |  |
| Steel failure with lever arm                  |                                          |                                          |       |               |                      |     |  |  |  |  |
| Characteristic resistance                     | $M^0_{Rk,s}[Nm]$                         | steel 4.6                                | 6,1   | 15            | 30                   | 52  |  |  |  |  |
| Partial factor                                | γ <sub>Ms</sub> <sup>2)</sup> [-]        | Steel 4.6                                |       | 1,6           | 7                    |     |  |  |  |  |
| Characteristic resistance                     | $M^0_{Rk,s}\left[Nm\right]$              | steel 5.6                                | 7,6   | 19            | 37                   | 66  |  |  |  |  |
| Partial factor                                | γ <sub>Ms</sub> <sup>2)</sup> [-]        | Sieer 5.6                                | 1,67  |               |                      |     |  |  |  |  |
| Characteristic resistance                     | ${\sf M^0}_{\sf Rk,s}$ [Nm]              | steel 5.8                                | 7,6   | 19            | 37                   | 66  |  |  |  |  |
| Partial factor                                | $\gamma$ Ms <sup>2)</sup> [-]            | 1,25                                     |       |               |                      |     |  |  |  |  |
| Characteristic resistance                     | $M^0_{Rk,s}\left[Nm\right]$              | steel 8.8                                | 12    | 30            | 60                   | 105 |  |  |  |  |
| Partial factor                                | $\gamma_{Ms^{2)}}[	extsf{-}]$            | 31661 0.0                                | 1,25  |               |                      |     |  |  |  |  |

<sup>1)</sup> The anchor may be used in a flange thickness d₀ of minimum 30 mm with the same characteristic resistance, but the drill hole is not allowed to cut a cavity (see Annex B 4 Point 3). The use of the fischer stop drill EBB is recommended

2) In absence of other national regulations



(Fig. not to scale)

|                                                                           | <u> </u>  |
|---------------------------------------------------------------------------|-----------|
| Upat drop-in anchor USA                                                   |           |
| Performances Characteristic values for tension loads in hollow core slabs | Annex C 2 |
| according to design method C with C30/37 to C50/60                        |           |



|                       |                              |                                                                      | •                     |      |         |       |         |       |        |        |        |        |                    |  |   |    |  |   |    |  |     |
|-----------------------|------------------------------|----------------------------------------------------------------------|-----------------------|------|---------|-------|---------|-------|--------|--------|--------|--------|--------------------|--|---|----|--|---|----|--|-----|
| fire resistance class | USA                          | property<br>class of the<br>fastening<br>screw or<br>threaded<br>rod |                       |      | M6x30   | M8x25 | M8x30   | M8x40 | M10x25 | M10x30 | M10x40 | M12x25 | M12x50/<br>M12x50D |  |   |    |  |   |    |  |     |
| All load directions   |                              |                                                                      |                       |      |         |       |         |       |        |        |        |        |                    |  |   |    |  |   |    |  |     |
| R 30                  |                              |                                                                      | steel<br>≥ 4.6        | 0,5  | 0,5 0,6 |       | 0,9 1,3 |       | 0,6    | 0,9    | 1,8    |        | 2,3                |  |   |    |  |   |    |  |     |
| R 60                  | Characteristic resistance    | F <sup>0</sup> Rk,fi <sup>1)</sup>                                   |                       | 0    | ,5      | 0,6   | 0       | ,9    | 0,0    | 0,9    | 1,5    | 0,6    | ۷,٥                |  |   |    |  |   |    |  |     |
| R 90                  | C20/25 to C50/60             | [kN]                                                                 | [kN]                  | [kN] | [kN]    | [kN]  | [kN]    | [kN]  | [kN]   | [kN]   | or     | 0      | ,4                 |  | 0 | ,6 |  | 0 | ,9 |  | 2,0 |
| R 120                 | 223/23 10 000/00             |                                                                      | ≥ A4-50 <sup>2)</sup> | 0    | ,3      |       | 0       | ,5    |        | 0      | ,6     | 0,5    | 1,3                |  |   |    |  |   |    |  |     |
| D 20 D 120            | Characteristic spacing       |                                                                      |                       | 100  | 120     | 100   | 120     | 160   | 100    | 120    | 160    | 100    | 200                |  |   |    |  |   |    |  |     |
| R 30 – R 120          | Characteristic edge distance | c <sub>cr,fi</sub> [mm]                                              |                       | 50   | 115     | 50    | 140     | 140   | 50     | 140    | 160    | 50     | 200                |  |   |    |  |   |    |  |     |

<sup>&</sup>lt;sup>1)</sup> In absence of other national regulations, a partial factor for the resistance of  $\gamma_{m,fi} = 1,0$  under fire impact is recommended.

**Table C3.2:** Characteristic resistance under fire exposure<sup>3)</sup> for shear load with level arm in concrete C20/25 to C50/60

| fire<br>resistance<br>class | USA            | fa:<br>sc          | erty class<br>of the<br>stening<br>crew or<br>aded rod | M6x25 | M6x30 | M8x25 | M8x30 | M8x40 | M10x25 | M10x30 | M10x40 | M12x25 | M12x50/<br>M12x50D |     |     |     |
|-----------------------------|----------------|--------------------|--------------------------------------------------------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------------------|-----|-----|-----|
| R 30                        |                |                    | steel                                                  | 0,65  | 0,5   | 1,30  | 1,7   | 1,7   | 2,4    | 4,4    | 4,4    | 7,1    | 9,5                |     |     |     |
| R 60                        | Characteristic | $M^0_{RK,s,fi}$ 1) | ≥ 4.6                                                  | 0,50  | 0,4   | 0,95  | 1,3   | 1,3   | 1,7    | 3,2    | 3,2    | 5,0    | 6,7                |     |     |     |
| R 90                        | resistance     | [Nm]               | [Nm]                                                   | [Nm]  | [Nm]  | or    | 0,35  | 0,3   | 0,60   | 0,8    | 0,8    | 1,0    | 1,9                | 1,9 | 2,9 | 3,9 |
| R 120                       |                |                    | ≥ A4-5 <sup>2)</sup>                                   | 0,30  | 0,2   | 0,45  | 0,6   | 0,6   | 0,7    | 1,3    | 1,3    | 1,8    | 2,4                |     |     |     |

<sup>&</sup>lt;sup>1)</sup> In absence of other national regulations, a partial factor for the resistance of  $\gamma_{m,fi} = 1,0$  under fire impact is recommended.

In case of fire attack from more than one side, the edge distance shall be c<sub>fi,min</sub> ≥ 300 mm

| Upat drop-in anchor USA                                |           |
|--------------------------------------------------------|-----------|
| Performances Characteristic loads for fire resistances | Annex C 3 |

<sup>2)</sup> Not for M..x25

<sup>3)</sup> Not valid for precast pre-stressed hollow core slabs

<sup>2)</sup> Not for M..x25

<sup>3)</sup> Not valid for precast pre-stressed hollow core slabs