



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-10/0130 of 26 October 2022

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Mungo Injection system MIT-SE Plus or MIT-COOL Plus for concrete

Bonded fastener for use in concrete

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Mungo Befestigungstechnik AG, Plant10 Germany

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-10/0130 issued on 13 December 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



European Technical Assessment ETA-10/0130 English translation prepared by DIBt

Page 2 of 31 | 26 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



European Technical Assessment ETA-10/0130 English translation prepared by DIBt

Page 3 of 31 | 26 October 2022

#### Specific Part

#### 1 Technical description of the product

The "Mungo Injection system MIT-SE Plus or MIT-COOL Plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar MIT-SE Plus or MIT-COOL Plus and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of  $\emptyset$  8 to  $\emptyset$  32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                          | Performance                                  |
|-----------------------------------------------------------------------------------|----------------------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)       | See Annex<br>B 3, C 1, C 2, C 3, C 5 and C 7 |
| Characteristic resistance to shear load (static and quasi-static loading)         | See Annex<br>C 1, C 4, C 6 and C 8           |
| Displacements<br>(static and quasi-static loading)                                | See Annex<br>C 9 to C 11                     |
| Characteristic resistance for seismic performance categories C1                   | See Annex<br>C 12 and C 13                   |
| Characteristic resistance and displacements for seismic performance categories C2 | No performance assessed                      |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

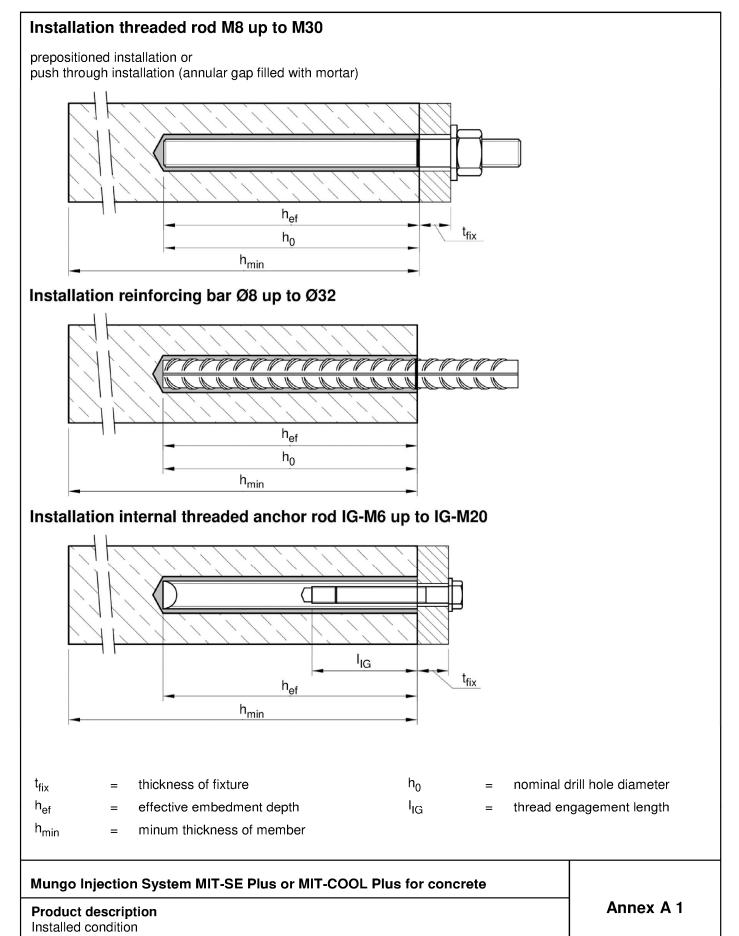


#### European Technical Assessment ETA-10/0130 English translation prepared by DIBt

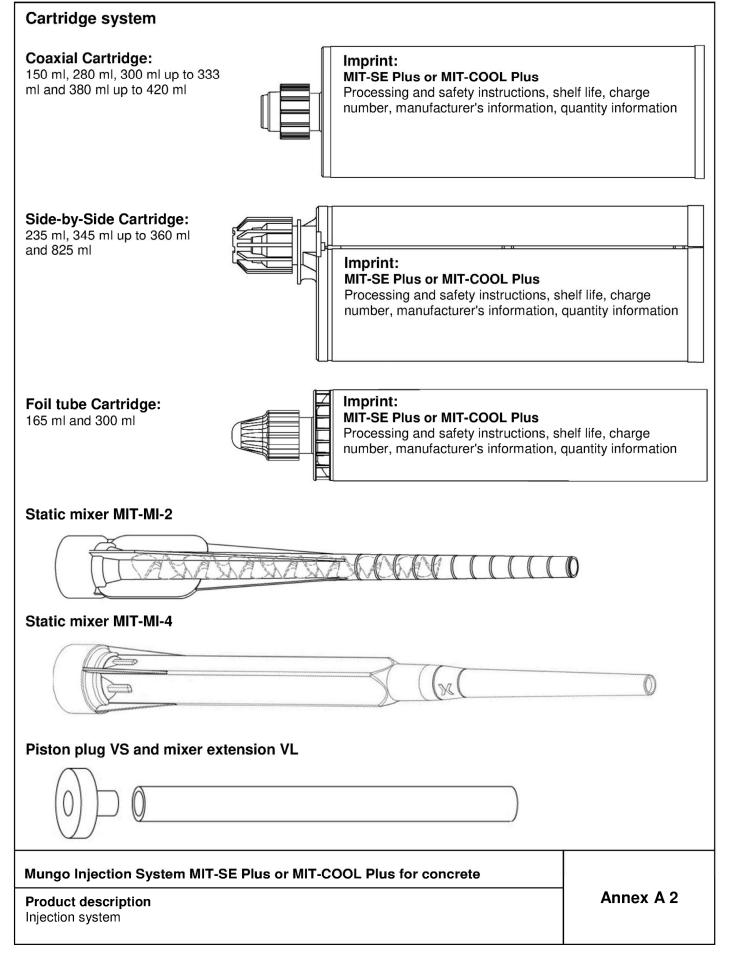
Page 4 of 31 | 26 October 2022

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 26 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider











| Threaded rod M8 up to M30 with washer and hexagon nut                                                       |                                                                                                                                                                                                              |              |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
|                                                                                                             | Mark of the embedment depth                                                                                                                                                                                  |              |  |  |  |
|                                                                                                             |                                                                                                                                                                                                              |              |  |  |  |
| Commercial standard rod with:                                                                               |                                                                                                                                                                                                              |              |  |  |  |
| - Materials, dimensions and mech                                                                            | anical properties acc. to Table A1<br>EN 10204:2004. The document shall be stored.                                                                                                                           |              |  |  |  |
| Internal threaded rod IG-M6 to                                                                              | IG-M20                                                                                                                                                                                                       |              |  |  |  |
| Threaded rod or screw                                                                                       | Producer marking                                                                                                                                                                                             |              |  |  |  |
|                                                                                                             |                                                                                                                                                                                                              | σ            |  |  |  |
|                                                                                                             | Producer marking: e.g. 📣 M8                                                                                                                                                                                  |              |  |  |  |
|                                                                                                             | <ul> <li>Marking Internal thread</li> <li>Mark</li> <li>M8 Thread size (Internal thread)</li> <li>A4 additional mark for stainless steel</li> <li>HCR additional mark for high-corrosion resisted</li> </ul> | stance steel |  |  |  |
| Filling washer VFS                                                                                          | Mixer reduction nozzle MR                                                                                                                                                                                    |              |  |  |  |
| (J)                                                                                                         |                                                                                                                                                                                                              | -            |  |  |  |
| Mungo Injection System MIT-SE PI                                                                            | us or MIT-COOL Plus for concrete                                                                                                                                                                             | Annex A 3    |  |  |  |
| <b>Product description</b><br>Threaded rod; Internal threaded rod<br>Filling washer; Mixer reduction nozzle |                                                                                                                                                                                                              | AIIIICX A J  |  |  |  |



| - hot-dip galvanised ≥ 40 µm acc. to B<br>- sherardized ≥ 45 µm acc. to B<br>Property class<br>1 Threaded rod acc. to<br>EN ISO 898-1<br>2 Hexagon nut acc. to<br>EN ISO 898-2<br>3a Washer Steel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EN ISO 4042<br>EN ISO 146<br>EN ISO 1766<br>3<br>:2013 4.6<br>4.8<br>5.6<br>5.8<br>8.8<br>4<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2:2018 or<br>1:2009 and EN ISO 10684                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     | Elongation at<br>fracture<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| - hot-dip galvanised ≥ 40 µm acc. to B<br>- sherardized ≥ 45 µm acc. to B<br>Property class<br>1 Threaded rod acc. to<br>EN ISO 898-1<br>2 Hexagon nut acc. to<br>EN ISO 898-2<br>3a Washer Steel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \frac{4.6}{5.8} \\ \frac{4.6}{5.8} \\ \frac{4.6}{5.8} \\ \frac{4.8}{5.8} \\ \frac{4.6}{5.8} \\ \frac{4.8}{5.8} \\$ | 1:2009 and EN ISO 10684<br>58:2016<br>Characteristic steel<br>ultimate tensile strength<br>$f_{uk} = 400 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$                                                                                                            |                                                                                                                                                                                     | fracture $A_5 > 8\%$                     |
| $  \frac{1}{1}  \frac$ | $ \frac{4.6}{4.8} $ :2013 $\frac{4.6}{5.8}$ $\frac{4.6}{5.8}$ $\frac{4.8}{5.8}$ $\frac{4.6}{5.8}$ $\frac{4.8}{5.8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} & 58:2016 \\ \hline & Characteristic steel \\ ultimate tensile strength \\ f_{uk} = 400 \ N/mm^2 \\ \hline f_{uk} = 400 \ N/mm^2 \\ \hline f_{uk} = 500 \ N/mm^2 \\ \hline f_{uk} = 500 \ N/mm^2 \\ \hline f_{uk} = 800 \ N/mm^2 \\ \hline f_{uk} = 800 \ N/mm^2 \\ \hline f_{or} \ anchor \ rod \ class \ 4.6 \ ccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                     | fracture $A_5 > 8\%$                     |
| 1Threaded rodProperty class1Threaded rodacc. to<br>EN ISO 898-12Hexagon nutacc. to<br>EN ISO 898-23aWasherSteel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Characteristic steel<br>ultimate tensile strength<br>$f_{uk} = 400 \text{ N/mm}^2$<br>$f_{uk} = 400 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$<br>for anchor rod class 4.6 c                                                                                                                    | yield strength<br>$f_{yk} = 240 \text{ N/mm}^2$<br>$f_{yk} = 320 \text{ N/mm}^2$<br>$f_{yk} = 300 \text{ N/mm}^2$<br>$f_{yk} = 400 \text{ N/mm}^2$<br>$f_{yk} = 640 \text{ N/mm}^2$ | fracture $A_5 > 8\%$                     |
| acc. to<br>EN ISO 898-12Hexagon nutacc. to<br>EN ISO 898-23aWasherSteel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{uk} = 400 \text{ N/mm}^2$<br>$f_{uk} = 400 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$<br>for anchor rod class 4.6 c                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                      |
| acc. to<br>EN ISO 898-12Hexagon nutacc. to<br>EN ISO 898-23aWasherSteel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{uk} = 400 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$<br>for anchor rod class 4.6 c                                                                                                                                                                                                          | $f_{yk} = 320 \text{ N/mm}^2$<br>$f_{yk} = 300 \text{ N/mm}^2$<br>$f_{yk} = 400 \text{ N/mm}^2$<br>$f_{yk} = 640 \text{ N/mm}^2$                                                    | $A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                             |
| acc. to<br>EN ISO 898-12Hexagon nutacc. to<br>EN ISO 898-23aWasherSteel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $   \begin{array}{r}       2013  \overline{)5.6} \\       5.8 \\       8.8 \\       8.8 \\       \overline{)5.8} \\       8.8 \\       5 \\       5 \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$<br>for anchor rod class 4.6 c                                                                                                                                                                                                                                           | $f_{yk} = 300 \text{ N/mm}^2$<br>$f_{yk} = 400 \text{ N/mm}^2$<br>$f_{yk} = 640 \text{ N/mm}^2$                                                                                     | A <sub>5</sub> > 8%<br>A <sub>5</sub> > 8%                                                           |
| 2 Hexagon nut acc. to<br>EN ISO 898-2<br>3a Washer Steel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{r}     \underline{12013} \\     \underline{5.8} \\     \underline{5.8} \\     \underline{8.8} \\     \underline{4} \\     \underline{5} \\     \underline{5} \\   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_{uk} = 500 \text{ N/mm}^2$<br>$f_{uk} = 800 \text{ N/mm}^2$<br>for anchor rod class 4.6 c                                                                                                                                                                                                                                                                            | $f_{yk} = 400 \text{ N/mm}^2$<br>$f_{yk} = 640 \text{ N/mm}^2$                                                                                                                      | A <sub>5</sub> > 8%                                                                                  |
| 2 Hexagon nut EN ISO 898-2<br>3a Washer Steel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.8<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>for anchor rod class 4.6 c                                                                                                                                                                                                                                                                                                   | $f_{yk} = 640 \text{ N/mm}^2$                                                                                                                                                       | v                                                                                                    |
| 2 Hexagon nut EN ISO 898-2<br>3a Washer Steel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | for anchor rod class 4.6 c                                                                                                                                                                                                                                                                                                                                              | 1 7                                                                                                                                                                                 | $\Lambda > 00/$                                                                                      |
| 2 Hexagon nut EN ISO 898-2<br>3a Washer Steel, zinc pla<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2012 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         | - 10                                                                                                                                                                                | A <sub>5</sub> ≥ 8%                                                                                  |
| 3a     Washer       Steel, zinc pla       (e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                      |
| 3a Washer (e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for anchor rod class 8.8                                                                                                                                                                                                                                                                                                                                                | J J.O                                                                                                                                                                               |                                                                                                      |
| 3a Washer (e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ted, hot-din                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | galvanised or sherardized                                                                                                                                                                                                                                                                                                                                               | ľ                                                                                                                                                                                   |                                                                                                      |
| 3b Filling washer Steel, zinc pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 887:2006, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N ISO 7089:2000, EN ISO                                                                                                                                                                                                                                                                                                                                                 | 0 7093:2000 or EN ISO                                                                                                                                                               | 7094:2000)                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ted, hot-dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | galvanised or sherardized                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                      |
| / Internal threaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Characteristic steel ultimate tensile strength                                                                                                                                                                                                                                                                                                                          | Characteristic steel<br>yield strength                                                                                                                                              | Elongation at<br>fracture                                                                            |
| 4 anchor rod acc. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                 | $f_{vk} = 400 \text{ N/mm}^2$                                                                                                                                                       | A <sub>5</sub> > 8%                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_{uk} = 800 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                           | $f_{vk} = 640 \text{ N/mm}^2$                                                                                                                                                       | A <sub>5</sub> > 8%                                                                                  |
| Stainless steel A2 (Material 1.4301 / 1.4<br>Stainless steel A4 (Material 1.4401 / 1.4<br>High corrosion resistance steel (Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 404 / 1.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 / 1.4362 or 1.4578, acc.<br>1.4565, acc. to EN 10088                                                                                                                                                                                                                                                                                                                  | to EN 10088-1:2014)<br>3-1: 2014)                                                                                                                                                   |                                                                                                      |
| Property class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Characteristic steel<br>ultimate tensile strength                                                                                                                                                                                                                                                                                                                       | Characteristic steel<br>yield strength                                                                                                                                              | Elongation at<br>fracture                                                                            |
| 1 Threaded rod <sup>1)3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                 | f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                                                                                                                             | A <sub>5</sub> ≥ 8%                                                                                  |
| acc. to<br>EN ISO 3506-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2020 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f <sub>uk</sub> = 700 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                 | f <sub>yk</sub> = 450 N/mm²                                                                                                                                                         | A <sub>5</sub> ≥ 8%                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f <sub>uk</sub> = 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                 | f <sub>yk</sub> = 600 N/mm <sup>2</sup>                                                                                                                                             | A <sub>5</sub> ≥ 8%                                                                                  |
| acc. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for anchor rod class 50                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                      |
| 2 Hexagon nut <sup>1)3)</sup> EN ISO 3506-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1:2020 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for anchor rod class 70                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                      |
| EN 130 3300-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for anchor rod class 80                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     | 1 0011                                                                                               |
| 3a Washer A2: Material 1<br>HCR: Material 1<br>HCR: Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .4301 / 1.43<br>.4401 / 1.44<br>I 1.4529 or 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07 / 1.4311 / 1.4567 or 1.4<br>04 / 1.4571 / 1.4362 or 1.4<br>.4565, acc. to EN 10088-                                                                                                                                                                                                                                                                                  | 4578, acc. to EN 10088-<br>1: 2014                                                                                                                                                  | 1:2014                                                                                               |
| 3a Washer A2: Material 1<br>HCR: Material 1<br>HCR: Materia<br>(e.g.: EN ISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .4301 / 1.43<br>.4401 / 1.44<br>I 1.4529 or 1<br>887:2006, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07 / 1.4311 / 1.4567 or 1.4<br>04 / 1.4571 / 1.4362 or 1.4                                                                                                                                                                                                                                                                                                              | 4578, acc. to EN 10088-<br>1: 2014                                                                                                                                                  | 1:2014                                                                                               |
| 3a       Washer       A2: Material 1         3a       Washer       A4: Material 1         HCR: Materia       HCR: Materia         (e.g.: EN ISO       Stainless steet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .4301 / 1.43<br>.4401 / 1.44<br>I 1.4529 or 1<br>887:2006, E<br>I A4, High c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07 / 1.4311 / 1.4567 or 1.4<br>04 / 1.4571 / 1.4362 or 1.4<br>.4565, acc. to EN 10088-<br>EN ISO 7089:2000, EN ISC<br>orrosion resistance steel<br>Characteristic steel                                                                                                                                                                                                 | 4578, acc. to EN 10088-<br>1: 2014                                                                                                                                                  | 1:2014<br>7094:2000)<br>Elongation at                                                                |
| 3a       Washer       A2: Material 1         3a       Washer       A4: Material 1         HCR: Materia (e.g.: EN ISO       B         3b       Filling washer       Stainless stee         Internal threaded       Property class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .4301 / 1.43<br>.4401 / 1.44<br>I 1.4529 or 1<br>887:2006, E<br>I A4, High c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07 / 1.4311 / 1.4567 or 1.4<br>04 / 1.4571 / 1.4362 or 1.4<br>.4565, acc. to EN 10088-<br>EN ISO 7089:2000, EN ISC<br>orrosion resistance steel<br>Characteristic steel<br>ultimate tensile strength                                                                                                                                                                    | 4578, acc. to EN 10088-<br>1: 2014<br>D 7093:2000 or EN ISO<br>Characteristic steel<br>yield strength                                                                               | 1:2014<br>7094:2000)<br>Elongation at<br>fracture                                                    |
| 3aWasherA2: Material 1<br>A4: Material 1<br>HCR: Materia<br>(e.g.: EN ISO3bFilling washerStainless stee<br>Property class<br>acc. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .4301 / 1.43<br>.4401 / 1.44<br>I 1.4529 or 1<br>887:2006, E<br>I A4, High c<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} 07 \ / \ 1.4311 \ / \ 1.4567 \ or \ 1.4\\ 04 \ / \ 1.4571 \ / \ 1.4362 \ or \ 1.4\\ .4565, \ acc. \ to \ EN \ 10088-\\ EN \ ISO \ 7089:2000, \ EN \ ISO\\ orrosion \ resistance \ steel\\ \hline Characteristic \ steel\\ ultimate \ tensile \ strength\\ f_{uk} = 500 \ N/mm^2 \end{array}$                                                          | 4578, acc. to EN 10088-<br>1: 2014<br>D 7093:2000 or EN ISO<br>Characteristic steel<br>yield strength<br>f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                    | 1:2014<br>7094:2000)<br>Elongation at<br>fracture<br>A <sub>5</sub> > 8%                             |
| 3aWasherA2: Material 1<br>A4: Material 1<br>HCR: Materia<br>(e.g.: EN ISO3bFilling washerStainless stee<br>Property class<br>acc. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .4301 / 1.43<br>.4401 / 1.44<br>I 1.4529 or 1<br>887:2006, E<br>I A4, High c<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 07 / 1.4311 / 1.4567 or 1.4<br>04 / 1.4571 / 1.4362 or 1.4<br>.4565, acc. to EN 10088-<br>EN ISO 7089:2000, EN ISC<br>orrosion resistance steel<br>Characteristic steel<br>ultimate tensile strength                                                                                                                                                                    | 4578, acc. to EN 10088-<br>1: 2014<br>D 7093:2000 or EN ISO<br>Characteristic steel<br>yield strength                                                                               | 1:2014<br>7094:2000)<br>Elongation at<br>fracture                                                    |



|     | ANA ANANANANA                                                                                                                                                     |                                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Rib | imum value of related rip area f <sub>R,min</sub> acco<br>height of the bar shall be in the range 0,0<br>Nominal diameter of the bar; h <sub>rih</sub> : Rib heig | 15d ≤ h <sub>rib</sub> ≤ 0,07d |
|     |                                                                                                                                                                   |                                |
| Ta  | ble A2: Materials Reinforcing                                                                                                                                     |                                |
| Ta  | ble A2: Materials Reinforcing                                                                                                                                     | j bar                          |

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

#### **Product description** Materials reinforcing bar

Annex A 5



|                                                                                                                                             | Working life 5                                  | Working life                                              | 100 years        |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------|-----------------------|
| Base material                                                                                                                               | uncracked concrete                              | cracked concrete                                          | Base material    | uncracked<br>concrete |
| HD: Hammer drilling<br>HDB: Hammer drilling<br>with hollow drill bit<br>CD: Compressed air drilling                                         | M8 to M3<br>∅8 to ∅3<br>IG-M6 to IG             | No performan                                              | ce assessed      |                       |
| Temperature Range                                                                                                                           | I: - 40°C to<br>II: - 40°C to<br>III: - 40°C to |                                                           | No performan     | ce assessed           |
| Fasteners subject to (seismic a                                                                                                             | ction):                                         |                                                           |                  |                       |
|                                                                                                                                             | Performance Ca                                  | tegory C1                                                 | Performance      | Category C2           |
| Base material                                                                                                                               |                                                 | Cracked and ur                                            | cracked concrete |                       |
| HD: Hammer drilling<br>HDB: Hammer drilling<br>with hollow drill bit<br>CD: Compressed air drilling                                         | M8 to M3<br>Ø8 to Ø3                            |                                                           | No performar     | ice assessed          |
| Temperature Range                                                                                                                           | I: - 40°C to<br>II: - 40°C to<br>III: - 40°C to |                                                           | No performan     | ce assessed           |
| <ol> <li>(max. long-term temperature +24°C</li> <li>(max. long-term temperature +50°C</li> <li>(max. long-term temperature +72°C</li> </ol> | and max. short-term tem                         | oerature +80°C)                                           |                  |                       |
| <ul> <li>Base material:</li> <li>Compacted, reinforced or u<br/>EN 206:2013 + A1:2016.</li> <li>Strength classes C20/25 to</li> </ul>       |                                                 | -                                                         | -                |                       |
| Stainless steel Stahl                                                                                                                       | ernal conditions (all mat                       | 2006+Á1:2015 co<br>A 4, Table A1: Cl<br>A 4, Table A1: Cl | RC II<br>RC III  | on resistance         |
|                                                                                                                                             |                                                 |                                                           |                  |                       |
| Mungo Injection System MIT-S                                                                                                                | E Plus or MIT-COOL                              | Plus for concre                                           | ete              |                       |

Intended Use Specifications



### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

#### Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:
  - MIT-SE Plus:-10°C up to +40°C for the standard variation of temperature after installation.MIT-COOL Plus:-20°C up to +10°C for the standard variation of temperature after installation.

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

## Intended Use

Specifications (Continued)

Annex B 2

#### Deutsches Institut für Bautechnik

| Threaded rod                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                  |                                                      |                                                                                                                                                                                                                                                 | M8                                                                                                                | M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M12                                                                                                                             | M16                                                                                 | M20                                                                                                         | M24                                                                                      | M27                                         | / M30                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|
| Diameter of elemen                                                                                                                                                                                                                                                                                         | t                                                                                                                                                                | d = 0                                                                                                                                            | d <sub>nom</sub>                                     | [mm]                                                                                                                                                                                                                                            | 8                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                              | 16                                                                                  | 20                                                                                                          | 24                                                                                       | 27                                          | 30                                                              |
| Nominal drill hole diameter                                                                                                                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                  | d <sub>0</sub>                                       | [mm]                                                                                                                                                                                                                                            | 10                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                              | 18                                                                                  | 22                                                                                                          | 28                                                                                       | 30                                          | 35                                                              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  | h                                                                                                                                                | əf,min                                               | [mm]                                                                                                                                                                                                                                            | 60                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                                                                                              | 80                                                                                  | 90                                                                                                          | 96                                                                                       | 108                                         | 120                                                             |
| Effective embedme                                                                                                                                                                                                                                                                                          | fective embedment depth                                                                                                                                          |                                                                                                                                                  | f,max                                                | [mm]                                                                                                                                                                                                                                            | 160                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240                                                                                                                             | 320                                                                                 | 400                                                                                                         | 480                                                                                      | 540                                         | 600                                                             |
| Diameter of Prepositioned ins                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                                                                  |                                                      | [mm]                                                                                                                                                                                                                                            | 9                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                              | 18                                                                                  | 22                                                                                                          | 26                                                                                       | 30                                          | 33                                                              |
| clearance hole in the fixture                                                                                                                                                                                                                                                                              | Push thro                                                                                                                                                        | ugh installatio                                                                                                                                  | on d <sub>f</sub>                                    | [mm]                                                                                                                                                                                                                                            | 12                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                              | 20                                                                                  | 24                                                                                                          | 30                                                                                       | 33                                          | 40                                                              |
| Maximum installatio                                                                                                                                                                                                                                                                                        | n torque                                                                                                                                                         | max                                                                                                                                              | Tinst                                                | [Nm]                                                                                                                                                                                                                                            | 10                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                              | 60                                                                                  | 100                                                                                                         | 170                                                                                      | 250                                         | 300                                                             |
| Minimum thickness                                                                                                                                                                                                                                                                                          | of member                                                                                                                                                        |                                                                                                                                                  | h <sub>min</sub>                                     | [mm]                                                                                                                                                                                                                                            |                                                                                                                   | ef + 30 n<br>≥ 100 mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                                                     |                                                                                                             | h <sub>ef</sub> + 2d                                                                     | 0                                           |                                                                 |
| Minimum spacing                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                  | s <sub>min</sub>                                     | [mm]                                                                                                                                                                                                                                            | 40                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                              | 80                                                                                  | 100                                                                                                         | 120                                                                                      | 135                                         | 150                                                             |
| Minimum edge dista                                                                                                                                                                                                                                                                                         | ance                                                                                                                                                             |                                                                                                                                                  | C <sub>min</sub>                                     | [mm]                                                                                                                                                                                                                                            | 40                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                              | 80                                                                                  | 100                                                                                                         | 120                                                                                      | 135                                         | 150                                                             |
|                                                                                                                                                                                                                                                                                                            | Installatio                                                                                                                                                      | n parame                                                                                                                                         | ters                                                 | for rei                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ø 14                                                                                                                            | Ø 16                                                                                | Ø 20                                                                                                        | Ø 25 <sup>1)</sup>                                                                       | Ø 28                                        | Ø 3                                                             |
|                                                                                                                                                                                                                                                                                                            | Installatio                                                                                                                                                      | n parame                                                                                                                                         | ters                                                 |                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 | <i>α</i> 10                                                                         | <i>α</i> 00                                                                                                 | (X 051)                                                                                  | <i>α</i> .00                                |                                                                 |
| Table B2:         Reinforcing bar         Diameter of elemen                                                                                                                                                                                                                                               |                                                                                                                                                                  | •                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                 | nforci<br>Ø 10 <sup>1)</sup><br>10                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 | <b>Ø 16</b>                                                                         | Ø <b>20</b><br>20                                                                                           | <b>Ø 25</b> <sup>1)</sup><br>25                                                          | <b>Ø 28</b>                                 | <b>Ø 3</b> 2                                                    |
| Reinforcing bar<br>Diameter of elemen                                                                                                                                                                                                                                                                      | t                                                                                                                                                                | d = d <sub>nom</sub>                                                                                                                             | [mm]                                                 | Ø 8 <sup>1)</sup>                                                                                                                                                                                                                               | <b>Ø 10</b> <sup>1)</sup><br>10                                                                                   | Ø 12 <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø 14                                                                                                                            |                                                                                     | -                                                                                                           |                                                                                          |                                             |                                                                 |
| <b>Reinforcing bar</b><br>Diameter of elemen<br>Nominal drill hole di                                                                                                                                                                                                                                      | t<br>ameter                                                                                                                                                      | d = d <sub>nom</sub>                                                                                                                             | [mm]                                                 | Ø 8 <sup>1)</sup><br>8                                                                                                                                                                                                                          | <b>Ø 10</b> <sup>1)</sup><br>10                                                                                   | Ø 12 <sup>1)</sup><br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Ø 14</b><br>14                                                                                                               | 16                                                                                  | 20                                                                                                          | 25                                                                                       | 28                                          | 32<br>40                                                        |
| Reinforcing bar                                                                                                                                                                                                                                                                                            | t<br>ameter                                                                                                                                                      | d = d <sub>nom</sub><br>d <sub>0</sub>                                                                                                           | [mm]<br>[mm]                                         | Ø8 <sup>1)</sup><br>8<br>10 12<br>60<br>160                                                                                                                                                                                                     | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200                                                                    | Ø 12 <sup>1)</sup><br>12<br>14 16<br>70<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Ø 14</b><br>14<br>18                                                                                                         | 16<br>20                                                                            | 20<br>25                                                                                                    | 25<br>32                                                                                 | 28<br>35                                    | 32<br>40<br>128                                                 |
| <b>Reinforcing bar</b><br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmer                                                                                                                                                                                                                | t<br>ameter<br>nt depth                                                                                                                                          | d = d <sub>nom</sub><br>d <sub>0</sub><br>h <sub>ef,min</sub>                                                                                    | [mm]<br>[mm]<br>[mm]                                 | Ø 8 <sup>1)</sup> 8           10         12           60           160           h <sub>ef</sub> -                                                                                                                                              | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60                                                                           | Ø 12 <sup>1)</sup><br>12<br>14 16<br>70<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Ø 14</b><br>14<br>18<br>75                                                                                                   | 16<br>20<br>80                                                                      | 20<br>25<br>90                                                                                              | 25<br>32<br>100<br>500                                                                   | 28<br>35<br>112                             | 32<br>40<br>128                                                 |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmer<br>Minimum thickness                                                                                                                                                                                                  | t<br>ameter<br>nt depth                                                                                                                                          | d = d <sub>nom</sub><br>d <sub>0</sub><br>h <sub>ef,min</sub><br>h <sub>ef,max</sub>                                                             | [mm]<br>[mm]<br>[mm]                                 | Ø 8 <sup>1)</sup> 8           10         12           60           160           h <sub>ef</sub> -                                                                                                                                              | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>- 30 mm                                                         | Ø 12 <sup>1)</sup><br>12<br>14 16<br>70<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Ø 14</b><br>14<br>18<br>75                                                                                                   | 16<br>20<br>80                                                                      | 20<br>25<br>90<br>400                                                                                       | 25<br>32<br>100<br>500                                                                   | 28<br>35<br>112                             | 32<br>40<br>128<br>640                                          |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista                                                                                                                                                         | t<br>ameter<br>nt depth<br>of member<br>ance                                                                                                                     | d = d <sub>nom</sub><br>d <sub>0</sub><br>h <sub>ef,min</sub><br>h <sub>ef,max</sub><br>h <sub>min</sub><br>S <sub>min</sub><br>C <sub>min</sub> | [mm]<br>[mm]<br>[mm]<br>[mm]                         | Ø8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1                                                                                                                                                                         | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>- 30 mm<br>00 mm                                                | <b>Ø 12</b> <sup>1)</sup><br>12<br>14 16<br>70<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ø 14<br>14<br>18<br>75<br>280                                                                                                   | 16<br>20<br>80<br>320                                                               | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2                                                                | 25<br>32<br>100<br>500                                                                   | 28<br>35<br>112<br>560                      | 32<br>40<br>128<br>640<br>160                                   |
| <b>Reinforcing bar</b><br>Diameter of elemen<br>Nominal drill hole di                                                                                                                                                                                                                                      | t<br>ameter<br>nt depth<br>of member<br>ance                                                                                                                     | d = d <sub>nom</sub><br>d <sub>0</sub><br>h <sub>ef,min</sub><br>h <sub>ef,max</sub><br>h <sub>min</sub><br>S <sub>min</sub><br>C <sub>min</sub> | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]                 | Ø 8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1<br>40                                                                                                                                                                  | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>- 30 mm<br>00 mm<br>50                                          | Ø 12 <sup>1)</sup> 12       14     16       70       240       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø 14<br>14<br>18<br>75<br>280<br>70                                                                                             | 16<br>20<br>80<br>320<br>80                                                         | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2                                                                | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125                                         | 28<br>35<br>112<br>560<br>140               | 32                                                              |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill                                                                                                                     | t<br>ameter<br>nt depth<br>of member<br>ance                                                                                                                     | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $s_{min}$ $c_{min}$ $r can be used$                                                      | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]                 | Ø8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1<br>40<br>40                                                                                                                                                             | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>- 30 mm<br>00 mm<br>50<br>50                                    | Ø 12 <sup>1)</sup> 12       14     16       70       240       60       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ø 14<br>14<br>75<br>280<br>70<br>70                                                                                             | 16<br>20<br>80<br>320<br>80<br>80                                                   | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100                                                  | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125                                         | 28<br>35<br>112<br>560<br>140               | 32<br>40<br>128<br>640<br>160                                   |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill<br>Table B3:                                                                                                        | t<br>ameter<br>nt depth<br>of member<br>nnce<br>hole diameter                                                                                                    | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $s_{min}$ $c_{min}$ $can be used$ <b>n parame</b>                                        | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]         | Ø 8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1<br>40<br>40                                                                                                                                                            | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>- 30 mm<br>00 mm<br>50<br>50                                    | Ø 12 <sup>1)</sup> 12       14     16       70       240       60       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ø 14<br>14<br>75<br>280<br>70<br>70                                                                                             | 16<br>20<br>80<br>320<br>80<br>80<br>80                                             | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100                                                  | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125                                         | 28<br>35<br>112<br>560<br>140<br>140        | 32<br>40<br>128<br>640<br>160                                   |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill<br>Table B3:<br>Internal threaded a                                                                                 | t<br>ameter<br>nt depth<br>of member<br>nce<br>hole diameter<br>Installatio                                                                                      | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $s_{min}$ $c_{min}$ $can be used$ <b>n parame</b>                                        | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ters | Ø 8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1<br>40<br>40<br><b>for Inte</b>                                                                                                                                         | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>→ 30 mm<br>50<br>50<br>ernal t                                  | Ø 12 <sup>1)</sup> 12 14 16 70 240 60 60 hreade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ø 14<br>14<br>18<br>75<br>280<br>70<br>70<br>70                                                                                 | 16<br>20<br>80<br>320<br>80<br>80<br>80<br>chor r                                   | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100                                                  | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125<br>125                                  | 28<br>35<br>112<br>560<br>140<br>140        | 32<br>40<br>128<br>640<br>160<br>160                            |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill<br><b>Table B3:</b><br>Internal threaded a<br>Internal diameter of                                                  | t<br>ameter<br>nt depth<br>of member<br>nce<br>hole diameter<br><b>Installatio</b><br>nchor rod<br>anchor rod                                                    | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $s_{min}$ $c_{min}$ $can be used$ <b>n parame</b>                                        | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ters | Ø 8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> +<br>≥ 1<br>40<br>40<br><b>for Inte</b><br>m]                                                                                                                                   | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>→ 30 mm<br>00 mm<br>50<br>50<br>ernal t<br>-M6                  | Ø 12 <sup>1)</sup> 12 14 16 70 240 60 60 60 hreade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø 14<br>14<br>18<br>75<br>280<br>70<br>70<br>70<br>ed and<br>IG-N                                                               | 16<br>20<br>80<br>320<br>80<br>80<br>80<br><b>chor r</b>                            | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100<br><b>rod</b><br><b>IG-M12</b>                   | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125<br>125<br>125                           | 28<br>35<br>112<br>560<br>140<br>140<br>140 | 32<br>40<br>128<br>640<br>160<br>160                            |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill<br><b>Table B3:</b><br>Internal threaded a<br>Internal diameter of<br>Outer diameter of ar                          | t<br>ameter<br>nt depth<br>of member<br>nnce<br>hole diameter<br><b>Installatio</b><br><b>Installatio</b><br>anchor rod<br>anchor rod                            | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $s_{min}$ $c_{min}$ $can be used$ <b>n parame</b> $d = d_{no}$                           | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ters | Ø 8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1<br>40<br>40<br>for Inte<br>m]<br>m]                                                                                                                                    | Ø 10 <sup>1)</sup> 10 12 14 60 200 - 30 mm 50 50 ernal t -M6 6                                                    | Ø 12 <sup>1)</sup> 12         14       16         70       240         240         60         60         60         10         10         11         12         14         16         70         240         60         60         60         60         10         10         10         10         10         10         10         10         11         11         12         12         14         15         16         16         10         10         10         10         10         11         12         13         14         15         16         16         17         18 | Ø 14<br>14<br>18<br>75<br>280<br>70<br>70<br>70<br>70<br>ed and<br>IG-N<br>10                                                   | 16<br>20<br>80<br>320<br>80<br>80<br>80<br>chor r<br>110<br>5                       | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100                                                  | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125<br>125<br><b>IG-M</b><br>16             | 28<br>35<br>112<br>560<br>140<br>140<br>140 | 32<br>40<br>128<br>640<br>160<br>160<br>160<br>160<br>20        |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill<br><b>Table B3:</b><br>Internal threaded a<br>Internal diameter of<br>Outer diameter of an<br>Nominal drill hole di | t<br>ameter<br>nt depth<br>of member<br>nce<br>hole diameter<br><b>Installatio</b><br>anchor rod<br>anchor rod<br>nchor rod <sup>1)</sup><br>ameter              | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $s_{min}$ $c_{min}$ $can be used$ <b>n parame</b> $d = d_{no}$                           | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ters | Ø 8 <sup>1)</sup><br>8<br>10 12<br>60<br>160<br>h <sub>ef</sub> -<br>≥ 1<br>40<br>40<br>for Inte<br>m]<br>m]                                                                                                                                    | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>→ 30 mm<br>00 mm<br>50<br>50<br>ernal t<br>-M6<br>6<br>10       | Ø 12 <sup>1)</sup> 12         14       16         70       240         60       60         60       60         60       60         10       10         11       10         11       10         11       10         11       10         11       10         11       10         11       10         12       10                                                                                                                                                                                                                                                                             | Ø 14<br>14<br>18<br>75<br>280<br>70<br>70<br>70<br>ed and<br>IG-N<br>10<br>10                                                   | 16<br>20<br>80<br>320<br>80<br>80<br>80<br><b>chor r</b><br>110<br>5<br>3           | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100<br><b>rod</b><br><b>IG-M12</b><br>12<br>20       | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125<br>125<br><b>IG-M</b><br>16<br>24       | 28<br>35<br>112<br>560<br>140<br>140<br>140 | 32<br>40<br>128<br>640<br>160<br>160<br>160<br>160<br>160<br>30 |
| Reinforcing bar<br>Diameter of elemen<br>Nominal drill hole di<br>Effective embedmen<br>Minimum thickness<br>Minimum spacing<br>Minimum edge dista<br><sup>1)</sup> both nominal drill                                                                                                                     | t<br>ameter<br>nt depth<br>of member<br>nnce<br>hole diameter<br><b>Installatio</b><br>anchor rod<br>anchor rod<br>nchor rod <sup>1)</sup><br>ameter<br>nt depth | $d = d_{nom}$ $d_0$ $h_{ef,min}$ $h_{ef,max}$ $h_{min}$ $S_{min}$ $C_{min}$ $can be used$ <b>n parame</b> $d = d_{no}$ $d = d_{no}$              | [mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>[mm]<br>ters | Ø 8¹¹         10       12         60       160         160       hef +         ≥ 1       40         40       40         for Interminant       IG         m]       -         m]       -         m]       -         m]       -         m]       - | Ø 10 <sup>1)</sup><br>10<br>12 14<br>60<br>200<br>→ 30 mm<br>00 mm<br>50<br>50<br>ernal t<br>-M6<br>6<br>10<br>12 | Ø 12 <sup>1)</sup><br>12<br>14 16<br>70<br>240<br>60<br>60<br>60<br>hreade<br>IG-M8<br>8<br>12<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ø 14<br>14<br>18<br>75<br>280<br>70<br>70<br>70<br>70<br>70<br>1G-N<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 16<br>20<br>80<br>320<br>80<br>80<br>80<br><b>chor r</b><br>110<br>5<br>6<br>3<br>0 | 20<br>25<br>90<br>400<br>h <sub>ef</sub> + 2<br>100<br>100<br><b>rod</b><br><b>IG-M12</b><br>12<br>20<br>22 | 25<br>32<br>100<br>500<br>2d <sub>0</sub><br>125<br>125<br><b>IG-M</b><br>16<br>24<br>28 | 28<br>35<br>112<br>560<br>140<br>140<br>140 | 32<br>40<br>128<br>640<br>160<br>160<br>160<br>20<br>30<br>35   |

| Internal threaded anchor rod               |                       |         | IG-M6  | IG-M8         | IG-M10 | IG-M12            | IG-M16            | IG-M20 |
|--------------------------------------------|-----------------------|---------|--------|---------------|--------|-------------------|-------------------|--------|
| Internal diameter of anchor rod            | d <sub>2</sub>        |         | 6      | 8             | 10     | 12                | 16                | 20     |
| Outer diameter of anchor rod <sup>1)</sup> | d = d <sub>nom</sub>  | [mm]    | 10     | 12            | 16     | 20                | 24                | 30     |
| Nominal drill hole diameter                | d <sub>0</sub>        | [mm]    | 12     | 14            | 18     | 22                | 28                | 35     |
| Effective embedment depth                  | h <sub>ef,min</sub>   | [mm]    | 60     | 70            | 80     | 90                | 96                | 120    |
| Effective embedment depth                  | h <sub>ef,max</sub>   | [mm]    | 200    | 240           | 320    | 400               | 480               | 600    |
| Diameter of clearance hole in the fixture  | d <sub>f</sub> ≤      | [mm]    | 7      | 9             | 12     | 14                | 18                | 22     |
| Maximum installation torque                | max T <sub>inst</sub> | [Nm]    | 10     | 10            | 20     | 40                | 60                | 100    |
| Thread engagement length min/max           | l <sub>IG</sub>       | [mm]    | 8/20   | 8/20          | 10/25  | 12/30             | 16/32             | 20/40  |
| Minimum thickness of member                | h <sub>min</sub> [mm] |         | 0.     | 30 mm<br>) mm |        | h <sub>ef</sub> + | - 2d <sub>0</sub> |        |
| Minimum spacing                            | s <sub>min</sub>      | [mm]    | 50     | 60            | 80     | 100               | 120               | 150    |
| Minimum edge distance                      | c <sub>min</sub>      | [mm]    | 50     | 60            | 80     | 100               | 120               | 150    |
| 1) With metric threads according to        | EN 1993-1-8:2         | 2005+A0 | C:2009 |               |        |                   |                   |        |

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Intended Use

Installation parameters



|                                                       | LETERE                                                      |                                                        |                                                |                         | mannan     | and the state of t |                    | 6                               |                             |     |
|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|-----------------------------|-----|
| hreaded<br>Rod                                        | Re-<br>inforcing<br>bar                                     | Internal<br>threaded<br>anchor rod                     | d <sub>0</sub><br>Drill bit - Ø<br>HD, HDB, CD | d <sub>t</sub><br>Brust |            | d <sub>b,min</sub><br>min.<br>Brush - Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Piston<br>plug     |                                 | on direction<br>piston plu  |     |
| [mm]                                                  | [mm]                                                        | [mm]                                                   | [mm]                                           |                         | [mm]       | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | Ļ                               | $\rightarrow$               | t   |
| M8                                                    | 8                                                           |                                                        | 10                                             | BS10                    | 12         | 10,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                 |                             |     |
| M10                                                   | 8 / 10                                                      | IG-M6                                                  | 12                                             | BS12                    | 14         | 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | No plug                         | required                    |     |
| M12                                                   | 10/12                                                       | IG-M8                                                  | 14                                             | BS14                    | 16         | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                  | , to plug                       | . oqui ou                   |     |
| 1440                                                  | 12                                                          |                                                        | 16                                             | BS16                    | 18         | 16,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1010               | 1                               | <u>г</u>                    |     |
| M16                                                   | 14                                                          | IG-M10                                                 | 18                                             | BS18                    | 20         | 18,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS18               | -                               |                             |     |
| M20                                                   | 16                                                          | IG-M12                                                 | 20<br>24                                       | BS20<br>BS24            | 22         | 20,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS20<br>VS24       | -                               |                             |     |
| IVIZU                                                 | 20                                                          | IG-IVITZ                                               | 24                                             | BS24<br>BS25            | 26<br>27   | 24,5<br>25,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS24<br>VS25       | h.>                             | h.>                         |     |
| M24                                                   | 20                                                          | IG-M16                                                 | 25                                             | BS28                    | 30         | 25,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS25<br>VS28       | _ h <sub>ef</sub> ><br>│ 250 mm | h <sub>ef</sub> ><br>250 mm | all |
|                                                       | 05                                                          |                                                        | 32                                             | BS32                    | 34         | 32,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS20               |                                 |                             |     |
| IVIZ/                                                 | 23                                                          |                                                        |                                                |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                 |                             |     |
| M27<br>M30                                            | 25<br>28                                                    | IG-M20                                                 |                                                | BS35                    | 37         | 35.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS35               |                                 |                             |     |
| M30                                                   | 28<br>32                                                    | IG-M20                                                 | 35<br>40                                       | BS35<br>BS40            | 37<br>41,5 | <u>35,5</u><br>40,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VS35<br>VS40       | _                               |                             |     |
| M30<br>Cleaning<br>Hand purr                          | 28<br>32<br>g and inst                                      |                                                        | 35<br>40<br>ols                                |                         | 41,5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VS40               |                                 |                             |     |
| M30<br>Cleaning<br>Hand pum<br>Volume 75              | 28<br>32<br>g and insta<br>p<br>0 ml, h <sub>0</sub> ≥ 10 c | allation to                                            | 35<br>40<br>ols                                |                         | 41,5       | 40,5<br>Compressed<br>(min 6 bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VS40               | -                               |                             |     |
| M30<br>Cleaning<br>Hand purr                          | 28<br>32<br>g and insta<br>p<br>0 ml, h <sub>0</sub> ≥ 10 c | allation to                                            | 35<br>40<br>ols                                |                         | 41,5       | 40,5<br>Compressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VS40               |                                 |                             |     |
| M30<br>Cleaning<br>Hand purr<br>Volume 75<br>Brush BS | 28<br>32<br>g and insta<br>p<br>0 ml, h <sub>0</sub> ≥ 10 c | allation to<br>d <sub>s</sub> , d <sub>0</sub> ≤ 20mm) | 35<br>40<br>ols                                | BS40                    | 41,5       | 40,5<br>Compressed<br>(min 6 bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VS40<br>I air tool |                                 |                             |     |
| M30<br>Cleaning<br>Hand purr<br>Volume 75<br>Brush BS | 28<br>32<br>g and insta<br>p<br>0 ml, h <sub>0</sub> ≥ 10 c | allation to<br>d <sub>s</sub> , d <sub>0</sub> ≤ 20mm) | 35<br>40<br>ols                                | BS40                    | 41,5       | 40,5<br>Compressed<br>(min 6 bar)<br>Piston Plug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VS40<br>I air tool |                                 |                             |     |



| Table B5:         Working time and curing time MIT-SE Plus |             |             |                      |                                   |  |
|------------------------------------------------------------|-------------|-------------|----------------------|-----------------------------------|--|
| Temperat                                                   | ture in bas | se material | Maximum working time | Minimum curing time <sup>1)</sup> |  |
|                                                            | т           |             | t <sub>gel</sub>     | t <sub>cure</sub>                 |  |
| - 10°C                                                     | to          | - 6°C       | 90 min <sup>2)</sup> | 24 h                              |  |
| - 5 °C                                                     | to          | - 1 °C      | 90 min               | 14 h                              |  |
| 0°C                                                        | to          | + 4 °C      | 45 min               | 7 h                               |  |
| + 5 °C                                                     | to          | + 9°C       | 25 min               | 2 h                               |  |
| + 10°C                                                     | to          | + 19°C      | 15 min               | 80 min                            |  |
| + 20 °C                                                    | to          | + 29 °C     | 6 min                | 45 min                            |  |
| + 30 °C                                                    | to          | + 34 °C     | 4 min                | 25 min                            |  |
| + 35 °C                                                    | to          | + 39 °C     | 2 min                | 20 min                            |  |
|                                                            | +40°C       |             | 1,5 min              | 15 min                            |  |
| Cartr                                                      | idge tempe  | erature     | +5°C to              | +40°C                             |  |
| 4)                                                         |             |             |                      |                                   |  |

1) The minimum curing time is only valid for dry base material.

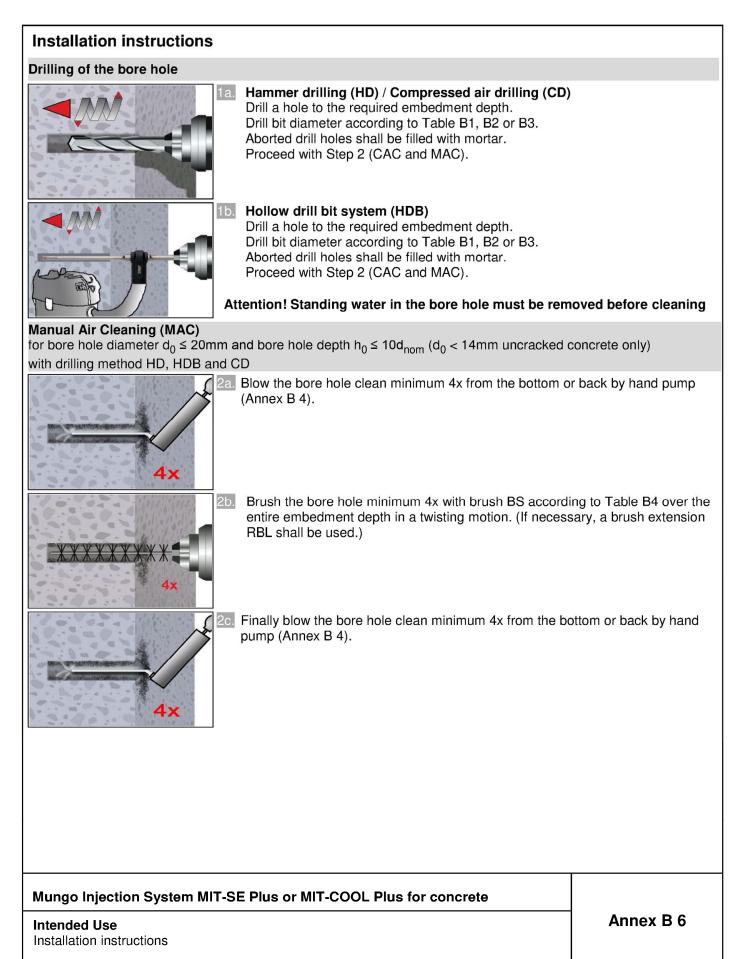
In wet base material the curing time must be doubled.

2) Cartridge temperature must be at least +15°C

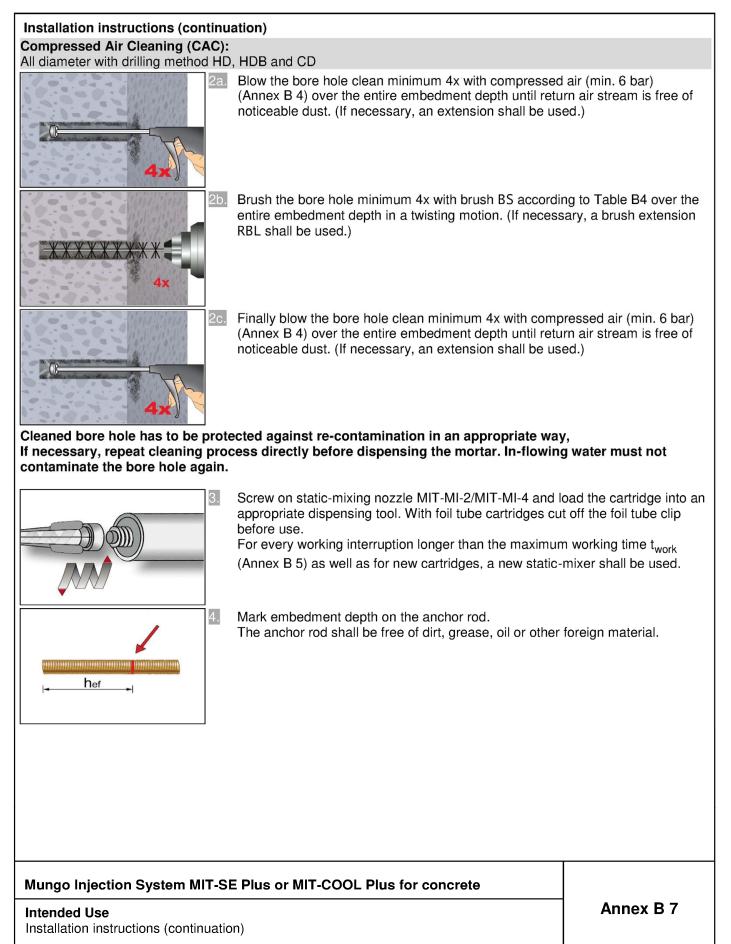
## Table B6: Working time and curing time MIT-COOL Plus

| Temper  | ature in bas | e material | Maximum working time | Minimum curing time <sup>1)</sup> |
|---------|--------------|------------|----------------------|-----------------------------------|
|         | Т            |            | t <sub>gel</sub>     | t <sub>cure</sub>                 |
| - 20 °C | to           | - 16 °C    | 75 min               | 24 h                              |
| - 15 °C | to           | - 11 °C    | 55 min               | 16 h                              |
| - 10°C  | to           | - 6 °C     | 35 min               | 10 h                              |
| - 5 °C  | to           | - 1 °C     | 20 min               | 5 h                               |
| 0°C     | to           | + 4 °C     | 10 min               | 2,5 h                             |
| + 5 °C  | to           | + 9 °C     | 6 min                | 80 min                            |
|         | + 10 °C      |            | 6 min                | 60 min                            |
| Car     | tridge tempe | rature     | -20°C to             | o +10°C                           |

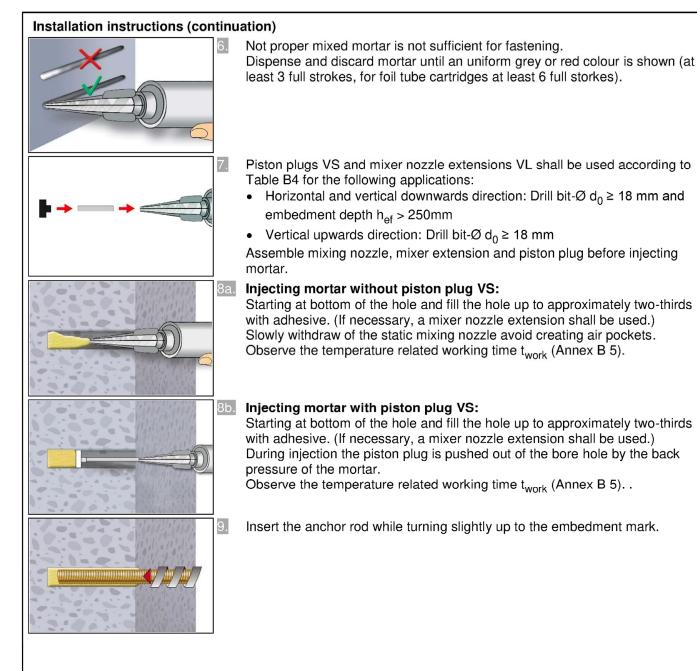
 The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

#### Intended Use


Working time and curing time

Annex B 5














## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Intended Use Installation instructions (continuation) Annex B 8



| Installation instructions (continu | lation)                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.                                | Annular gap between anchor rod and base material must be completely filled<br>with mortar. In case of push through installation the annular gap in the fixture<br>must be filled with mortar also.<br>Otherwise, the installation must be repeated starting from step 7 before the<br>maximum working time t <sub>work</sub> has expired. |
| 11.                                | For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).                                                                                                                                                                                                                                                |
| 12.                                | Temperature related curing time t <sub>cure</sub> (Annex B 5) must be observed.<br>Do not move or load the fastener during curing time.                                                                                                                                                                                                   |
| 12.                                | Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).<br>In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.           |
|                                    |                                                                                                                                                                                                                                                                                                                                           |

Intended Use Installation instructions (continuation) Annex B 9



| Th            | readed rod                                                                       |                                        |            | M8      | M10     | M12  | M16        | M20 | M24 | M27  | M30  |
|---------------|----------------------------------------------------------------------------------|----------------------------------------|------------|---------|---------|------|------------|-----|-----|------|------|
| Cr            | oss section area                                                                 | A <sub>s</sub>                         | [mm²]      | 36,6    | 58      | 84,3 | 157        | 245 | 353 | 459  | 561  |
| Cł            | aracteristic tension resistance, Steel failu                                     | re <sup>1)</sup>                       |            |         |         |      |            |     |     |      |      |
| St            | eel, Property class 4.6 and 4.8                                                  | N <sub>Rk,s</sub>                      | [kN]       | 15 (13) | 23 (21) | 34   | 63         | 98  | 141 | 184  | 224  |
| St            | eel, Property class 5.6 and 5.8                                                  | N <sub>Rk,s</sub>                      | [kN]       | 18 (17) | 29 (27) | 42   | 78         | 122 | 176 | 230  | 280  |
| St            | eel, Property class 8.8                                                          | N <sub>Rk,s</sub>                      | [kN]       | 29 (27) | 46 (43) | 67   | 125        | 196 | 282 | 368  | 449  |
| St            | ainless steel A2, A4 and HCR, class 50                                           | N <sub>Rk,s</sub>                      | [kN]       | 18      | 29      | 42   | 79         | 123 | 177 | 230  | 281  |
| St            | ainless steel A2, A4 and HCR, class 70                                           | N <sub>Rk,s</sub>                      | [kN]       | 26      | 41      | 59   | 110        | 171 | 247 | _3)  | _3)  |
|               | ainless steel A4 and HCR, class 80                                               | N <sub>Rk,s</sub>                      | [kN]       | 29      | 46      | 67   | 126        | 196 | 282 | _3)  | _3)  |
| Cł            | naracteristic tension resistance, Partial fac                                    | tor <sup>2)</sup>                      |            |         |         |      |            |     |     |      |      |
| St            | eel, Property class 4.6 and 5.6                                                  | γ <sub>Ms,N</sub>                      | [-]        |         |         |      | 2,0        | 0   |     |      |      |
| St            | eel, Property class 4.8, 5.8 and 8.8                                             | γ <sub>Ms,N</sub>                      | [-]        | 4       |         |      | 1,         | 5   |     |      |      |
| St            | ainless steel A2, A4 and HCR, class 50                                           | γ <sub>Ms,N</sub>                      | [-]        |         |         |      | 2,8        | 6   |     |      |      |
| Sta           | ainless steel A2, A4 and HCR, class 70                                           | γ <sub>Ms,N</sub>                      | [-]        |         |         |      | 1,8        | 37  |     |      |      |
|               | ainless steel A4 and HCR, class 80                                               | γ <sub>Ms,N</sub>                      | [-]        |         |         |      | 1,6        | 6   |     |      |      |
| Cł            | naracteristic shear resistance, Steel failure                                    | 1)                                     |            | r       |         |      |            |     |     |      |      |
| F             | Steel, Property class 4.6 and 4.8                                                | V <sup>0</sup> Rk,s                    | [kN]       | 9 (8)   | 14 (13) | 20   | 38         | 59  | 85  | 110  | 135  |
| arm           | Steel, Property class 5.6 and 5.8                                                | V <sup>0</sup> Rk,s                    | [kN]       | 11 (10) | 17 (16) | 25   | 47         | 74  | 106 | 138  | 168  |
| evel          | Steel, Property class 8.8                                                        | V <sup>0</sup> Rk,s                    | [kN]       | 15 (13) | 23 (21) | 34   | 63         | 98  | 141 | 184  | 224  |
| Without lever | Stainless steel A2, A4 and HCR, class 50                                         | V <sup>0</sup> Rk,s                    | [kN]       | 9       | 15      | 21   | 39         | 61  | 88  | 115  | 140  |
| /ithc         | Stainless steel A2, A4 and HCR, class 70                                         | V <sup>0</sup> Rk,s                    | [kN]       | 13      | 20      | 30   | 55         | 86  | 124 | _3)  | _3)  |
| \$            | Stainless steel A4 and HCR, class 80                                             | V <sup>0</sup> Rk,s                    | [kN]       | 15      | 23      | 34   | 63         | 98  | 141 | _3)  | _3)  |
|               | Steel, Property class 4.6 and 4.8                                                | M <sup>0</sup> <sub>Rk,s</sub>         |            | 15 (13) | 30 (27) | 52   | 133        | 260 | 449 | 666  | 900  |
| arm           | Steel, Property class 5.6 and 5.8                                                | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]       |         | 37 (33) | 65   | 166        | 324 | 560 | 833  | 1123 |
| er al         | Steel, Property class 8.8                                                        | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]       | 30 (26) | 60 (53) | 105  | 266        | 519 | 896 | 1333 | 1797 |
| h lever       | Stainless steel A2, A4 and HCR, class 50                                         | M <sup>0</sup> <sub>Rk,s</sub>         |            | 19      | 37      | 66   | 167        | 325 | 561 | 832  | 1125 |
| With          |                                                                                  | M <sup>0</sup> <sub>Rk,s</sub>         | [Nm]       | 26      | 52      | 92   | 232        | 454 | 784 | _3)  | _3)  |
| >             |                                                                                  | M0                                     |            |         |         |      |            |     |     | _3)  | _3)  |
| 0             | Stainless steel A4 and HCR, class 80                                             | $M^0_{Rk,s}$                           | [Nm]       | 30      | 59      | 105  | 266        | 519 | 896 |      | )    |
|               | naracteristic shear resistance, Partial facto                                    |                                        |            |         |         |      | 1.0        | ~~  |     |      |      |
|               | eel, Property class 4.6 and 5.6                                                  | γMs,V                                  | [-]        |         |         |      | 1,6        |     |     |      |      |
|               | eel, Property class 4.8, 5.8 and 8.8                                             | γMs,V                                  | [-]        |         |         |      | 1,2        |     |     |      |      |
|               | ainless steel A2, A4 and HCR, class 50<br>ainless steel A2, A4 and HCR, class 70 | γMs,V                                  | [-]        |         |         |      | 2,3        |     |     |      |      |
| 36            | ainless steel A2, A4 and HCR, class 70                                           | <sup>γ</sup> Ms,V<br><sup>γ</sup> Ms,V | [-]<br>[-] |         |         |      | 1,5<br>1,3 |     |     |      |      |

stress area As for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Fastener type not part of the ETA

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

## Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods



| Table C2:        | Characteristic v              | alues of te        | nsion load | Is under static and quasi-static action                |
|------------------|-------------------------------|--------------------|------------|--------------------------------------------------------|
| Fastener         |                               |                    |            | All Anchor types and sizes                             |
| Concrete cone fa | ailure                        |                    |            |                                                        |
| Uncracked concre | ete                           | k <sub>ucr,N</sub> | [-]        | 11,0                                                   |
| Cracked concrete | )                             | k <sub>cr,N</sub>  | [-]        | 7,7                                                    |
| Edge distance    |                               | C <sub>cr,N</sub>  | [mm]       | 1,5 h <sub>ef</sub>                                    |
| Axial distance   |                               | s <sub>cr,N</sub>  | [mm]       | 2 c <sub>cr,N</sub>                                    |
| Splitting        |                               | 1                  |            |                                                        |
|                  | h/h <sub>ef</sub> ≥ 2,0       |                    |            | 1,0 h <sub>ef</sub>                                    |
| Edge distance    | 2,0 > h/h <sub>ef</sub> > 1,3 | C <sub>cr,sp</sub> | [mm]       | $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ |
|                  | h/h <sub>ef</sub> ≤ 1,3       |                    |            | 2,4 h <sub>ef</sub>                                    |
| Axial distance   |                               | s <sub>cr,sp</sub> | [mm]       | 2 c <sub>cr,sp</sub>                                   |

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

## Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action



|                      | ded rod                                    |                                          |                     |                       | M8         | M10        | M12                           | M16                  | M20         | M24              | M27    | M30 |
|----------------------|--------------------------------------------|------------------------------------------|---------------------|-----------------------|------------|------------|-------------------------------|----------------------|-------------|------------------|--------|-----|
| Steel f              |                                            |                                          | N                   | FL-N 17               |            |            | <b>A</b> . f                  | · /or s              | oo Tab      |                  |        |     |
|                      | cteristic tension res                      | Istance                                  | N <sub>Rk,s</sub>   | [kN]                  |            |            | A <sub>S</sub> <sup>+</sup> ι | uk (or s             |             |                  |        |     |
| Partial              | an at search searcher se                   |                                          | <sup>γ</sup> Ms,N   | [-]                   |            |            |                               | see Ta               | ble C1      |                  |        |     |
|                      | ined pull-out and<br>cteristic bond resist |                                          | d concrete (        | 20/25                 |            |            |                               |                      |             |                  |        |     |
| Unara                |                                            |                                          |                     | 20/25                 | 10         | 40         | 10                            | 40                   | 10          |                  |        | 0.0 |
| ge                   | I: 40°C/24°C                               | Dry, wet                                 |                     |                       | 10         | 12         | 12                            | 12                   | 12          | 11               | 10     | 9,0 |
| e ranç               | II: 80°C/50°C                              | concrete                                 |                     |                       | 7,5        | 9,0        | 9,0                           | 9,0                  | 9,0         | 8,5              | 7,5    | 6,5 |
| rature               | III: 120°C/72°C<br>I: 40°C/24°C            |                                          | <sup>τ</sup> Rk,ucr | [N/mm²]               | 5,5        | 6,5<br>8,5 | 6,5<br>8,5                    | 6,5                  | 6,5         | 6,5              | 5,5    | 5,0 |
| Temperature range    | I: 40°C/24°C<br>II: 80°C/50°C              | flooded bore                             |                     |                       | 7,5<br>5,5 | 6,5<br>6,5 | 6,5<br>6,5                    | 8,5<br>6,5           | N           | lo Perfo         | ormanc | e   |
| Те                   | III: 120°C/72°C                            | hole                                     |                     |                       | 4,0        | 5,0        | 5,0                           | 5,0                  |             | Asse             | ssed   |     |
| Chara                | cteristic bond resist                      |                                          | operate C20         | V/2E                  | 4,0        | 5,0        | 5,0                           | 5,0                  |             |                  |        |     |
| Ghara                |                                            |                                          |                     | //25                  | 4.0        | 5.0        |                               |                      |             |                  | 0.5    | 0.0 |
| ge                   | I: 40°C/24°C                               | Dry, wet                                 |                     |                       | 4,0        | 5,0        | 5,5                           | 5,5                  | 5,5         | 5,5              | 6,5    | 6,5 |
| e ranç               | II: 80°C/50°C                              | concrete                                 |                     |                       | 2,5        | 3,5        | 4,0                           | 4,0                  | 4,0         | 4,0              | 4,5    | 4,5 |
| rature               | III: 120°C/72°C<br>I: 40°C/24°C            |                                          | <sup>τ</sup> Rk,cr  | [N/mm²]               | 2,0<br>4,0 | 2,5<br>4,0 | 3,0<br>5,5                    | 3,0<br>5,5           | 3,0         | 3,0              | 3,5    | 3,  |
| Temperature range    | II: 80°C/50°C                              | flooded bore                             |                     |                       | 2,5        | 3,0        | 4,0                           | 4,0                  | No Performa |                  |        | e   |
| Te                   | III: 120°C/72°C                            | hole                                     |                     |                       | 2,0        | 2,5        | 3,0                           | 3,0                  |             | Asse             | ssed   |     |
| Reduk                | tion factor $\psi^0_{SUS}$ ir              | cracked and und                          | racked conc         | rete C20/25           | ,0         | _,0        | 0,0                           | 0,0                  |             |                  |        |     |
|                      | I: 40°C/24°C                               |                                          |                     |                       |            |            |                               | 0,                   | 73          |                  |        |     |
| Temperature<br>range | II: 80°C/50°C                              | Dry, wet<br>concrete and<br>flooded bore | Ψ <sup>0</sup> sus  | [-]                   |            |            |                               | 0,                   | 65          |                  |        |     |
| Temp                 | III: 120°C/72°C                            | hole                                     |                     |                       |            |            |                               | 0,                   | 57          |                  |        |     |
| Increa               | sing factors for con                       | crete                                    | Ψc                  | [-]                   |            |            |                               | (f <sub>ck</sub> / 2 | 20) 0,11    |                  |        |     |
|                      | cteristic bond resist                      |                                          |                     | τ <sub>Rk,ucr</sub> = |            |            | Ψe                            | • τ <sub>Rk,u</sub>  |             | 25)              |        |     |
|                      | concrete strength                          |                                          |                     | τ <sub>Rk,cr</sub> =  |            |            |                               | • <sup>7</sup> Rk,c  |             |                  |        |     |
|                      | ete cone failure                           |                                          |                     |                       |            |            |                               |                      |             |                  |        |     |
|                      | ant parameter                              |                                          |                     |                       |            |            |                               | see Ta               | ble C2      |                  |        |     |
| Splitti              | <b>ng</b><br>ant parameter                 |                                          |                     |                       |            |            |                               | see Ta               | bla C2      |                  |        |     |
|                      | ation factor                               |                                          |                     |                       | I          |            |                               | 000 10               |             |                  |        |     |
| for dry              | and wet concrete                           |                                          |                     |                       | 1,0        |            |                               |                      | 1,2         |                  |        |     |
|                      | oded bore hole                             |                                          | γinst               | [-]                   |            | 1          | ,4                            |                      | N           | lo Perfo<br>Asse |        | e   |
| for floc             | oded bore hole                             |                                          |                     |                       |            | 1          | ,4                            |                      |             |                  |        |     |
|                      |                                            |                                          |                     |                       |            |            |                               |                      | 1           |                  |        |     |
| Mung                 | go Injection Syst                          | tem MIT-SE Plu                           | is or MIT-C         | OOL Plus fo           | or con     | crete      |                               |                      |             |                  |        |     |

Г



| Threaded rod                                                                                                   |                                |           | M8                                               | M10   | M12                             | M16                               | M20     | M24     | M27                   | M30   |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|--------------------------------------------------|-------|---------------------------------|-----------------------------------|---------|---------|-----------------------|-------|--|--|
| Steel failure without lever arm                                                                                |                                |           |                                                  |       |                                 |                                   |         |         |                       |       |  |  |
| Characteristic shear resistance<br>Steel, strength class 4.6, 4.8, 5.6 and<br>5.8                              | V <sup>0</sup> <sub>Rk,s</sub> | [kN]      | $0.6 \cdot A_{s} \cdot f_{uk}$ (or see Table C1) |       |                                 |                                   |         |         |                       |       |  |  |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A2, A4 and HCR, all<br>classes | [kN]                           |           |                                                  | 0,5 · | A <sub>s</sub> ∙f <sub>uk</sub> | (or see                           | Table C | 1)      |                       |       |  |  |
| Partial factor                                                                                                 | γ <sub>Ms,V</sub>              | [-]       |                                                  |       |                                 | see                               | Table C | 1       |                       |       |  |  |
| Ductility factor                                                                                               | k7                             | [-]       |                                                  |       |                                 |                                   | 1,0     |         |                       |       |  |  |
| Steel failure with lever arm                                                                                   | 1                              | · · · · · |                                                  |       |                                 |                                   |         |         |                       |       |  |  |
| Characteristic bending moment                                                                                  | M <sup>0</sup> Rk,s            | [Nm]      |                                                  |       | 1,2 • \                         | N <sub>el</sub> • f <sub>uk</sub> | (or see | Table C | ;1)                   |       |  |  |
| Elastic section modulus                                                                                        | W <sub>el</sub>                | [mm³]     | 31                                               | 62    | 109                             | 277                               | 541     | 935     | 1387                  | 1874  |  |  |
| Partial factor                                                                                                 | γ <sub>Ms,V</sub>              | [-]       |                                                  |       |                                 | see                               | Table C | 1       |                       |       |  |  |
| Concrete pry-out failure                                                                                       |                                |           |                                                  |       |                                 |                                   |         |         |                       |       |  |  |
| Factor                                                                                                         | k <sub>8</sub>                 | [-]       |                                                  |       |                                 |                                   | 2,0     |         |                       |       |  |  |
| Installation factor                                                                                            | γ <sub>inst</sub>              | [-]       |                                                  |       |                                 |                                   | 1,0     |         |                       |       |  |  |
| Concrete edge failure                                                                                          |                                |           |                                                  |       |                                 |                                   |         |         |                       |       |  |  |
| Effective length of fastener                                                                                   | l <sub>f</sub>                 | [mm]      |                                                  | m     | iin(h <sub>ef</sub> ; 1         | 2 · d <sub>nor</sub>              | n)      |         | min(h <sub>ef</sub> ; | 300mm |  |  |
| Outside diameter of fastener                                                                                   | d <sub>nom</sub>               | [mm]      | 8                                                | 10    | 12                              | 16                                | 20      | 24      | 27                    | 30    |  |  |
| Installation factor                                                                                            | γinst                          | [-]       |                                                  |       |                                 |                                   | 1,0     |         |                       |       |  |  |

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Performances

Characteristic values of shear loads under static and quasi-static action (Threaded rod)



| Internal threaded anchor rods                                                                                                        |                              |                     |                      | IG-M6 | IG-M8 | IG-M10                 | IG-M12                 | IG-M16    | IG-M20  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|----------------------|-------|-------|------------------------|------------------------|-----------|---------|
| Steel failure <sup>1)</sup>                                                                                                          |                              |                     |                      |       |       |                        |                        |           |         |
| Characteristic tension resistance                                                                                                    | e, 5.8                       | N <sub>Rk,s</sub>   | [kN]                 | 10    | 17    | 29                     | 42                     | 76        | 123     |
| Steel, strength class                                                                                                                | 8.8                          | N <sub>Rk,s</sub>   | [kN]                 | 16    | 27    | 46                     | 67                     | 121       | 196     |
| Partial factor, strength class 5.8                                                                                                   |                              |                     | [-]                  | 1.5   |       | 2.02                   | ,5                     |           |         |
| Characteristic tension resistance                                                                                                    |                              | <sup>γ</sup> Ms,N   |                      |       |       |                        |                        |           |         |
| Steel A4 and HCR, Strength class                                                                                                     |                              | N <sub>Rk,s</sub>   | [kN]                 | 14    | 26    | 41                     | 59                     | 110       | 124     |
| Partial factor                                                                                                                       |                              | γ <sub>Ms,N</sub>   | [-]                  |       |       | 1,87                   |                        |           | 2,86    |
| Combined pull-out and concre                                                                                                         | ete cone failu               |                     |                      |       |       | 01                     |                        |           |         |
| Characteristic bond resistance in                                                                                                    | n uncracked c                | oncrete             | C20/25               |       |       |                        |                        |           |         |
| n I: 40°C/24°C                                                                                                                       | Descusat                     |                     |                      | 12    | 12    | 12                     | 12                     | 11        | 9,0     |
| II: 80°C/50°C                                                                                                                        | Dry, wet                     |                     |                      | 9,0   | 9,0   | 9,0                    | 9,0                    | 8,5       | 6,5     |
| te 8 III: 120°C/72°C                                                                                                                 | concrete                     | -                   | [N.I./               | 6,5   | 6,5   | 6,5                    | 6,5                    | 6,5       | 5,0     |
|                                                                                                                                      |                              | <sup>τ</sup> Rk,ucr | [N/mm <sup>2</sup> ] | 8,5   | 8,5   | 8,5                    |                        |           |         |
|                                                                                                                                      | flooded bore                 |                     |                      | 6,5   | 6,5   | 6,5                    | No Perfe               | ormance A | ssessec |
| ⊢ III: 120°C/72°C                                                                                                                    | hole                         |                     |                      | 5,0   | 5,0   | 5,0                    |                        |           |         |
| Characteristic bond resistance in                                                                                                    | n cracked con                | crete C2            | 20/25                | -,-   | -,-   |                        |                        |           |         |
| a) I: 40°C/24°C                                                                                                                      |                              |                     |                      | 5,0   | 5,5   | 5,5                    | 5,5                    | 5,5       | 6,5     |
| II: 80°C/50°C                                                                                                                        | Dry, wet                     |                     |                      | 3,5   | 4,0   | 4,0                    | 4,0                    | 4,0       | 4,5     |
| ege all: 120°C/72°C                                                                                                                  | concrete                     |                     |                      | 2,5   | 3,0   | 3,0                    | 3,0                    | 3,0       | 3,5     |
| 0 I: 40°C/24°C                                                                                                                       |                              | <sup>τ</sup> Rk,cr  | [N/mm <sup>2</sup> ] | 4,0   | 5,5   | 5,5                    | -,-                    | -,-       | -,-     |
|                                                                                                                                      | flooded bore                 |                     |                      | 3,0   | 4,0   | 4,0                    | No Perf                | ormance A | 2222222 |
| ⊢ <u>III: 120°C/72°C</u>                                                                                                             | hole                         |                     |                      | 2,5   | 3,0   | 3,0                    | Norein                 |           | 3363360 |
| Reduktion factor $\psi^0_{sus}$ in crack                                                                                             | ed and uncra                 | ked con             | crete C2             |       | 0,0   | 0,0                    |                        |           |         |
|                                                                                                                                      |                              |                     |                      | 0/20  |       |                        |                        |           |         |
| I: 40°C/24°C                                                                                                                         | Dry, wet                     |                     |                      |       |       | 0,                     | 73                     |           |         |
|                                                                                                                                      | concrete and<br>flooded bore | $\Psi^0$ sus        | [-]                  |       |       | 0,                     | 65                     |           |         |
| ਸ਼ੁੱ Ⅲ: 120°C/72°C                                                                                                                   | hole                         |                     |                      |       |       |                        | 57                     |           |         |
| Increasing factors for concrete                                                                                                      |                              | Ψc                  | [-]                  |       |       | (f <sub>ck</sub> / 2   | 20) <sup>0,11</sup>    |           |         |
| Characteristic bond resistance d                                                                                                     | lepending on                 | τ                   | Rk,ucr =             |       |       | Ψc • <sup>τ</sup> Rk,u | <sub>cr</sub> (C20/25) |           |         |
| the concrete strength class                                                                                                          |                              |                     | τ <sub>Rk,cr</sub> = |       |       | Ψc • <sup>τ</sup> Rk.α | <sub>cr</sub> (C20/25) |           |         |
| Concrete cone failure                                                                                                                |                              |                     | ,                    |       |       | ,                      |                        |           |         |
| Relevant parameter                                                                                                                   |                              |                     |                      |       |       | see Ta                 | able C2                |           |         |
| Splitting failure                                                                                                                    |                              |                     |                      |       |       |                        |                        |           |         |
| Relevant parameter                                                                                                                   |                              |                     |                      |       |       | see la                 | able C2                |           |         |
| Installation factor                                                                                                                  |                              |                     |                      |       |       |                        | 0                      |           |         |
| for dry and wet concrete                                                                                                             |                              | γ <sub>inst</sub>   | [-]                  |       |       | 1                      | ,2                     |           |         |
| for flooded bore hole                                                                                                                | 141 101                      |                     |                      |       | 1,4   |                        |                        | ormance A |         |
| <ol> <li>Fastenings (incl. nut and wash<br/>The characteristic tension resistion)</li> <li>For IG-M20 strength class 50 i</li> </ol> | stance for stee              |                     |                      |       |       |                        |                        |           | eu 100. |

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Performances

Z98480.22

Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)

Г



| Internal threaded anchor rods                                                                                                      |          |                     |      | IG-M6 | IG-M8 | IG-M10                    | IG-M12 | IG-M16 | IG-M20                           |
|------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|------|-------|-------|---------------------------|--------|--------|----------------------------------|
| Steel failure without lever arm <sup>1)</sup>                                                                                      |          |                     |      |       | h     |                           |        |        | ,                                |
| Characteristic shear resistance,                                                                                                   | 5.8      | V <sup>0</sup> Rk,s | [kN] | 5     | 9     | 15                        | 21     | 38     | 61                               |
| Steel, strength class                                                                                                              | 8.8      | V <sup>0</sup> Rk,s | [kN] | 8     | 14    | 23                        | 34     | 60     | 98                               |
| Partial factor, strength class 5.8 a                                                                                               | nd 8.8   | γ <sub>Ms,V</sub>   | [-]  |       |       |                           | 1,25   |        |                                  |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>                                 |          | V <sup>0</sup> Rk,s | [kN] | 7     | 13    | 20                        | 30     | 55     | 40                               |
| Partial factor                                                                                                                     |          | γ <sub>Ms,V</sub>   | [-]  |       |       | 1,56                      |        |        | 2,38                             |
| Ductility factor                                                                                                                   |          | k <sub>7</sub>      | [-]  |       |       |                           | 1,0    |        |                                  |
| Steel failure with lever arm <sup>1)</sup>                                                                                         |          |                     |      |       |       |                           |        |        |                                  |
| Characteristic bending moment,                                                                                                     | 5.8      | M <sup>0</sup> Rk,s | [Nm] | 8     | 19    | 37                        | 66     | 167    | 325                              |
| Steel, strength class                                                                                                              | 8.8      | M <sup>0</sup> Rk,s | [Nm] | 12    | 30    | 60                        | 105    | 267    | 519                              |
| Partial factor, strength class 5.8 a                                                                                               | nd 8.8   | γ <sub>Ms,V</sub>   | [-]  |       |       |                           | 1,25   |        | -                                |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>                                   |          | M <sup>0</sup> Rk,s | [Nm] | 11    | 26    | 52                        | 92     | 233    | 456                              |
| Partial factor                                                                                                                     |          | γ <sub>Ms,V</sub>   | [-]  |       |       | 1,56                      |        | n'     | 2,38                             |
| Concrete pry-out failure                                                                                                           |          |                     |      |       |       |                           |        |        |                                  |
| Factor                                                                                                                             |          | k <sub>8</sub>      | [-]  |       |       |                           | 2,0    |        |                                  |
| Installation factor                                                                                                                |          | γ <sub>inst</sub>   | [-]  |       |       |                           | 1,0    |        |                                  |
| Concrete edge failure                                                                                                              |          |                     |      |       |       |                           |        |        |                                  |
| Effective length of fastener                                                                                                       |          | ۱ <sub>f</sub>      | [mm] |       | min   | (h <sub>ef</sub> ; 12 ⋅ d | nom)   |        | min<br>(h <sub>ef</sub> ; 300mm) |
| Outside diameter of fastener                                                                                                       |          | d <sub>nom</sub>    | [mm] | 10    | 12    | 16                        | 20     | 24     | 30                               |
| Installation factor                                                                                                                |          | γ <sub>inst</sub>   | [-]  |       |       |                           | 1,0    |        |                                  |
| <ol> <li>Fastenings (incl. nut and washe<br/>The characteristic tension resist</li> <li>For IG-M20 strength class 50 is</li> </ol> | ance for |                     |      |       |       |                           |        |        |                                  |

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Performances

Characteristic values of shear loads under static and quasi-static action (Internal threaded anchor rod)



| Reinforcing bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                       | Ø8         | Ø 10       | Ø 12       | Ø 14                      | Ø 16                               | Ø 20       | Ø 25            | Ø 28                                    | Ø3       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------|------------|------------|---------------------------|------------------------------------|------------|-----------------|-----------------------------------------|----------|
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                     |                       | ~ ~        | ~ 10       | ~ 1        | ~ 14                      | ~ 10                               | ~ =0       | ~ 10            | ~ 10                                    | ~~ ~     |
| Characteristic tension resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ance                                                                                                            | N <sub>Rk,s</sub>   | [kN]                  |            |            |            | ,                         | A <sub>s</sub> ∙ f <sub>uk</sub> † | )          |                 |                                         |          |
| Cross section area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | A <sub>s</sub>      | [mm <sup>2</sup> ]    | 50         | 79         | 113        | 154                       | 201                                | 314        | 491             | 616                                     | 80       |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | γMs,N               | [-]                   |            |            |            |                           | 1,4 <sup>2)</sup>                  |            | To Distance and |                                         |          |
| Combined pull-out and co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ncrete failu                                                                                                    |                     |                       |            |            |            |                           |                                    |            |                 |                                         |          |
| Characteristic bond resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                     | te C20/25             |            |            |            |                           |                                    |            |                 |                                         |          |
| φ <u>I: 40°C/24°C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry, wet                                                                                                        |                     |                       | 10         | 12         | 12         | 12                        | 12                                 | 12         | 11              | 10                                      | 8,       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | concrete                                                                                                        |                     |                       | 7,5        | 9,0        | 9,0        | 9,0                       | 9,0                                | 9,0        | 8,0             | 7,0                                     | 6,       |
| III:         120°C/72°C         C           11:         40°C/24°C         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a                                                                                                               | <sup>τ</sup> Rk,ucr | [N/mm <sup>2</sup> ]  | 5,5<br>7,5 | 6,5<br>8,5 | 6,5<br>8,5 | 6,5<br>8,5                | 6,5<br>8,5                         | 6,5        | 6,0             | 5,0                                     | 4,       |
| E II: 80°C/50°C fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | looded                                                                                                          |                     |                       | 5,5        | 6,5        | 6,5        | 6,5                       | 6,5                                | N          |                 | ormanc                                  | e        |
| III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore hole                                                                                                        |                     |                       | 4,0        | 5,0        | 5,0        | 5,0                       | 5,0                                |            | Asse            | essed                                   |          |
| Characteristic bond resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ice in cracke                                                                                                   | ed concrete         | C20/25                |            |            |            |                           |                                    |            |                 |                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet                                                                                                        |                     |                       | 4,0        | 5,0        | 5,5        | 5,5                       | 5,5                                | 5,5        | 5,5             | 6,5                                     | 6,       |
| تا <u>اا: 80°C/50°C</u> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | concrete                                                                                                        |                     | 100000 N              | 2,5<br>2,0 | 3,5<br>2,5 | 4,0<br>3,0 | 4,0<br>3,0                | 4,0<br>3,0                         | 4,0<br>3,0 | 4,0<br>3,0      | 4,5<br>3,5                              | 4,<br>3, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1                                                                                                           | $\tau_{\rm Rk,cr}$  | [N/mm <sup>2</sup> ]  | 4,0        | 4,0        | 5,5        | 5,5                       | 5,5                                |            |                 | , , , , , , , , , , , , , , , , , , , , |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | looded<br>oore hole                                                                                             |                     |                       | 2,5        | 3,0        | 4,0        | 4,0                       | 4,0                                |            |                 | ormanc<br>essed                         | e        |
| III: 120°C//2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                       | 2,0        | 2,5        | 3,0        | 3,0                       | 3,0                                |            | Asse            | 55eu                                    |          |
| Reduktion factor $\psi^0_{sus}$ in ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | racked and                                                                                                      | uncracked c         | concrete C            | 20/25      |            |            |                           |                                    |            |                 |                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet                                                                                                        |                     |                       |            |            |            |                           | 0,73                               |            |                 |                                         |          |
| a Contraction of the contraction | oncrete<br>and                                                                                                  | $\Psi^0$ sus        | [-]                   |            |            |            |                           | 0,65                               |            |                 |                                         |          |
| <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | looded<br>oore hole                                                                                             |                     |                       |            |            |            |                           | 0,57                               |            |                 |                                         |          |
| ncreasing factors for concre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ete                                                                                                             | Ψc                  | [-]                   |            |            |            | (f <sub>c</sub>           | k / 20) <sup>(</sup>               | 0,11       |                 |                                         |          |
| Characteristic bond resistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1994 - 25 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1 |                     | τ <sub>Rk,ucr</sub> = |            |            |            | $\psi_{c} \cdot \tau_{f}$ | Rk,ucr(C                           | 20/25)     |                 |                                         |          |
| depending on the concrete s<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | strengtri                                                                                                       |                     | τ <sub>Rk,cr</sub> =  |            |            |            | ψ <sub>c</sub> •τ         | Rk,cr(C                            | 20/25)     |                 |                                         |          |
| Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                     |                       |            |            |            |                           |                                    |            |                 |                                         |          |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                     |                       |            |            |            | see                       | e Table                            | C2         |                 |                                         |          |
| Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                     |                       |            |            |            |                           |                                    |            |                 |                                         |          |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                     |                       |            |            |            | see                       | e Table                            | C2         |                 |                                         |          |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                     |                       | 10         |            |            |                           | 4                                  | 2          |                 |                                         |          |
| for dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | γinst               | [-]                   | 1,0        |            | 1 12       |                           | 1                                  | ,2<br>N    | lo Perf         | ormanc                                  | e        |
| for flooded bore hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | rinst               | 1.1                   |            |            | 1,4        |                           |                                    |            |                 | essed                                   |          |
| <ol> <li>f<sub>uk</sub> shall be taken from the</li> <li>in absence of national reg</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |                     | ung Dars              |            |            |            |                           |                                    |            |                 |                                         |          |
| Mungo Injection System<br>Performances<br>Characteristic values of te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |                     |                       |            |            |            |                           |                                    | -          | Anne            | ex C 7                                  | ,        |

Г



٦

| Table C8:       Characteristic values of shear loads under static and quasi-static action         Deinforcing her       G to |                                |       |     |      |                       |                      |                     |                    |      |                       |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|-----|------|-----------------------|----------------------|---------------------|--------------------|------|-----------------------|------|--|
| Reinforcing bar                                                                                                                                                 |                                |       | Ø 8 | Ø 10 | Ø 12                  | Ø 14                 | Ø 16                | Ø 20               | Ø 25 | Ø 28                  | Ø 32 |  |
| Steel failure without lever arm                                                                                                                                 |                                |       |     |      |                       |                      |                     |                    |      |                       |      |  |
| Characteristic shear resistance                                                                                                                                 | V <sup>0</sup> Rk,s            | [kN]  |     |      |                       | 0,5                  | 0•A <sub>s</sub> •  | f <sub>uk</sub> 1) |      |                       |      |  |
| Cross section area                                                                                                                                              | A <sub>s</sub>                 | [mm²] | 50  | 79   | 113                   | 154                  | 201                 | 314                | 491  | 616                   | 804  |  |
| Partial factor                                                                                                                                                  | γ <sub>Ms,V</sub>              | [-]   |     |      |                       |                      | 1,5 <sup>2)</sup>   |                    |      |                       |      |  |
| Ductility factor                                                                                                                                                | k <sub>7</sub>                 | [-]   |     |      |                       |                      | 1,0                 |                    |      |                       |      |  |
| Steel failure with lever arm                                                                                                                                    |                                |       |     |      |                       |                      |                     |                    |      |                       |      |  |
| Characteristic bending moment                                                                                                                                   | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]  |     |      |                       | 1.2                  | • w <sub>el</sub> • | f <sub>uk</sub> 1) |      |                       |      |  |
| Elastic section modulus                                                                                                                                         | W <sub>el</sub>                | [mm³] | 50  | 98   | 170                   | 269                  | 402                 | 785                | 1534 | 2155                  | 3217 |  |
| Partial factor                                                                                                                                                  | γ <sub>Ms,V</sub>              | [-]   |     |      |                       |                      | 1,5 <sup>2)</sup>   |                    |      |                       |      |  |
| Concrete pry-out failure                                                                                                                                        |                                |       |     |      |                       |                      |                     |                    |      |                       |      |  |
| Factor                                                                                                                                                          | k <sub>8</sub>                 | [-]   |     |      |                       |                      | 2,0                 |                    |      |                       |      |  |
| Installation factor                                                                                                                                             | γ <sub>inst</sub>              | [-]   |     |      |                       |                      | 1,0                 |                    |      |                       |      |  |
| Concrete edge failure                                                                                                                                           |                                |       |     |      |                       |                      |                     |                    |      |                       |      |  |
| Effective length of fastener                                                                                                                                    | ۱ <sub>f</sub>                 | [mm]  |     | miı  | n(h <sub>ef</sub> ; 1 | 2 • d <sub>nor</sub> | m)                  |                    | min( | h <sub>ef</sub> ; 300 | mm)  |  |
| Outside diameter of fastener                                                                                                                                    | d <sub>nom</sub>               | [mm]  | 8   | 10   | 12                    | 14                   | 16                  | 20                 | 25   | 28                    | 32   |  |
| Installation factor                                                                                                                                             | γinst                          | [-]   |     |      |                       |                      | 1,0                 |                    |      |                       |      |  |
| <ol> <li>f<sub>uk</sub> shall be taken from the specification</li> <li>in absence of national regulation</li> </ol>                                             | brcing bars                    | 3     |     |      |                       |                      |                     |                    |      |                       |      |  |

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

**Performances** Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)



| Temperature range                                              |                         |                           | M8         | M10   | M12   | M16   | M20   | M24   | M27   | M30   |
|----------------------------------------------------------------|-------------------------|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                | C20/25 und              | der static and quasi-sta  | atic actio | on    |       |       |       |       |       |       |
|                                                                | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,021      | 0,023 | 0,026 | 0,031 | 0,036 | 0,041 | 0,045 | 0,049 |
| I: 40°C/24°C                                                   | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,030      | 0,033 | 0,037 | 0,045 | 0,052 | 0,060 | 0,065 | 0,07  |
| Temperature range                                              | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,050      | 0,056 | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,11  |
| II: 80°C/50°C                                                  | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,072      | 0,081 | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,17  |
| Temperature range                                              | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,050      | 0,056 | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,11  |
| III: 120°C/72°C                                                | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,072      | 0,081 | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,17  |
| Cracked concrete C                                             | 20/25 under             | static and quasi-station  | c action   |       |       |       |       |       |       |       |
| Temperature range                                              | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,0        | 90    |       |       | 0,0   | )70   |       |       |
| I: 40°C/24°C                                                   | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,1        | 05    |       |       | 0,1   | 05    |       |       |
| Temperature range                                              | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,2        | 19    |       |       | 0,1   | 70    |       |       |
| II: 80°C/50°C                                                  | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,2        | 255   |       |       | 0,2   | 245   |       |       |
| Temperature range                                              | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,2        | 19    |       |       | 0,1   | 70    |       |       |
| III: 120°C/72°C                                                | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,2        | 55    |       |       | 0,2   | 45    |       |       |
| hreaded rod                                                    |                         |                           | M8         | M10   | M12   | M16   | M20   | M24   | M27   | M30   |
| Incracked concrete                                             | C20/25 und              | der static and quasi-sta  | atic actio | on    |       |       |       |       |       |       |
| Il temperature                                                 | $\delta_{V0}$ -factor   | [mm/kN]                   | 0,06       | 0,06  | 0,05  | 0,04  | 0,04  | 0,03  | 0,03  | 0,03  |
| anges                                                          | δv∞-factor              | [mm/kN]                   | 0,09       | 0,08  | 0,08  | 0,06  | 0,06  | 0,05  | 0,05  | 0,05  |
| Cracked concrete C                                             | 20/25 under             | static and quasi-station  | c action   |       |       |       |       |       |       |       |
|                                                                | $\delta_{V0}$ -factor   | [mm/kN]                   | 0,12       | 0,12  | 0,11  | 0,10  | 0,09  | 0,08  | 0,08  | 0,07  |
| Il temperature                                                 | δ <sub>v∞</sub> -factor | [mm/kN]                   | 0,18       | 0,18  | 0,17  | 0,15  | 0,14  | 0,13  | 0,12  | 0,10  |
| All temperature<br>anges<br><sup>1)</sup> Calculation of the c | lisplacement            |                           |            |       |       |       |       |       |       |       |

(threaded rods)

Displacements under static and quasi-static action



| Internal threaded                                                                                                                  | anchor rod              |                           | IG-M6         | IG-M8  | IG-M10 | IG-M12   | IG-M16 | IG-M20   |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|---------------|--------|--------|----------|--------|----------|
| Uncracked concre                                                                                                                   | te C20/25 under         | static and quas           | i-static acti | on     | 1      |          |        |          |
| Temperature range                                                                                                                  | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,023         | 0,026  | 0,031  | 0,036    | 0,041  | 0,049    |
| I: 40°C/24°C                                                                                                                       | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,033         | 0,037  | 0,045  | 0,052    | 0,060  | 0,071    |
| Temperature range                                                                                                                  | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,056         | 0,063  | 0,075  | 0,088    | 0,100  | 0,119    |
| II: 80°C/50°C                                                                                                                      | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,081         | 0,090  | 0,108  | 0,127    | 0,145  | 0,172    |
| Temperature range                                                                                                                  | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,056         | 0,063  | 0,075  | 0,088    | 0,100  | 0,119    |
| III: 120°C/72°C                                                                                                                    | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,081         | 0,090  | 0,108  | 0,127    | 0,145  | 0,172    |
| Cracked concrete                                                                                                                   | C20/25 under st         | atic and quasi-s          | tatic action  | Î      |        |          |        |          |
| Temperature range                                                                                                                  | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,090         |        |        | 0,070    |        |          |
| I: 40°C/24°C                                                                                                                       | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,105         |        |        | 0,105    |        |          |
| Temperature range                                                                                                                  | $\delta_{NO}$ -factor   | [mm/(N/mm <sup>2</sup> )] | 0,219         |        |        | 0,170    |        |          |
| II: 80°C/50°C                                                                                                                      | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,255         |        |        | 0,245    |        |          |
| Temperature range                                                                                                                  | δ <sub>N0</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,219         |        |        | 0,170    |        |          |
| III: 120°C/72°C                                                                                                                    | δ <sub>N∞</sub> -factor | [mm/(N/mm <sup>2</sup> )] | 0,255         |        |        | 0,245    |        |          |
| 1) Calculation of the<br>$\delta_{N0} = \delta_{N0}$ -factor<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor<br><b>Table C12:</b> | · τ; τ:<br>· τ;         | action bond stress        |               |        |        |          |        |          |
|                                                                                                                                    |                         |                           |               | 10.140 | IG-M10 | IG-M12   | IG-M16 | IG-M20   |
| Internal threaded                                                                                                                  | anchor rod              |                           | IG-M6         | IG-M8  |        |          |        | IG-IVI20 |
| Internal threaded<br>Uncracked and cra                                                                                             |                         | C20/25 under sta          |               |        |        | IG-IVIT2 |        | 10-11/20 |
| Uncracked and cra                                                                                                                  |                         | C20/25 under sta          |               |        |        | 0,05     | 0,04   | 0,04     |

1) Calculation of the displacement  $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta v_0 = \delta v_0 \text{-factor} \cdot V;$  $\delta v_\infty = \delta v_\infty \text{-factor} \cdot V;$ 

**Performances** Displacements under static and quasi-static action (Internal threaded anchor rod)



| Anchor size rein                                                                                                                                                                                                                                                                                               | forcing bar                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | Ø 8                                                                     | Ø 10                                                                                  | Ø 12                                         | Ø 14                 | Ø 16                 | Ø 20                 | Ø 25                 | Ø 28                 | Ø 32              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|
| Uncracked concr                                                                                                                                                                                                                                                                                                | ete C20/25 ι                                                                                                                                                                                                                                                                                                                                                   | Inder static and                                                                                                           | quasi-s                                                                 | tatic act                                                                             | ion                                          | 1                    | 1                    | 1                    |                      | 1                    | I                 |
| Temperature                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,021                                                                   | 0,023                                                                                 | 0,026                                        | 0,028                | 0,031                | 0,036                | 0,043                | 0,047                | 0,052             |
| range I:<br>40°C/24°C                                                                                                                                                                                                                                                                                          | δ <sub>N∞</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,030                                                                   | 0,033                                                                                 | 0,037                                        | 0,041                | 0,045                | 0,052                | 0,061                | 0,071                | 0,07              |
| Temperature                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,050                                                                   | 0,056                                                                                 | 0,063                                        | 0,069                | 0,075                | 0,088                | 0,104                | 0,113                | 0,12              |
| range II:<br>80°C/50°C                                                                                                                                                                                                                                                                                         | δ <sub>N∞</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,072                                                                   | 0,081                                                                                 | 0,090                                        | 0,099                | 0,108                | 0,127                | 0,149                | 0,163                | 0,18              |
| Temperature                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,050                                                                   | 0,056                                                                                 | 0,063                                        | 0,069                | 0,075                | 0,088                | 0,104                | 0,113                | 0,12              |
| range III:<br>120°C/72°C                                                                                                                                                                                                                                                                                       | $\delta_{N\infty}$ -factor                                                                                                                                                                                                                                                                                                                                     | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,072                                                                   | 0,081                                                                                 | 0,090                                        | 0,099                | 0,108                | 0,127                | 0,149                | 0,163                | 0,18              |
| Cracked concrete                                                                                                                                                                                                                                                                                               | e C20/25 und                                                                                                                                                                                                                                                                                                                                                   | ler static and qu                                                                                                          | uasi-stat                                                               | ic actior                                                                             | ו                                            |                      | •                    |                      |                      | •                    |                   |
| Temperature                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,0                                                                     | )90                                                                                   |                                              |                      |                      | 0,070                |                      |                      |                   |
| range I:<br>40°C/24°C                                                                                                                                                                                                                                                                                          | δ <sub>N∞</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,1                                                                     | 105                                                                                   |                                              |                      |                      | 0,105                |                      |                      |                   |
| Temperature                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,2                                                                     | 219                                                                                   |                                              |                      |                      | 0,170                |                      |                      |                   |
| range II:<br>80°C/50°C                                                                                                                                                                                                                                                                                         | δ <sub>N∞</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,2                                                                     | 255                                                                                   |                                              |                      |                      | 0,245                |                      |                      |                   |
| Temperature                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,2                                                                     | 219                                                                                   |                                              |                      |                      | 0,170                |                      |                      |                   |
| range III:<br>120°C/72°C                                                                                                                                                                                                                                                                                       | δ <sub>N∞</sub> -factor                                                                                                                                                                                                                                                                                                                                        | [mm/(N/mm <sup>2</sup> )]                                                                                                  | 0,2                                                                     | 255                                                                                   |                                              |                      |                      | 0,245                |                      |                      |                   |
| 1) Calculation of th<br>$\delta_{N0} = \delta_{N0}$ -facto<br>$\delta_{N\infty} = \delta_{N\infty}$ -facto<br><b>Table C14:</b>                                                                                                                                                                                | pr · τ;<br>Dr · τ;                                                                                                                                                                                                                                                                                                                                             | τ: action bonc                                                                                                             |                                                                         |                                                                                       |                                              |                      |                      |                      |                      |                      |                   |
| $δ_{N0} = δ_{N0}$ -facto<br>$δ_{N∞} = δ_{N∞}$ -facto<br><b>Table C14:</b>                                                                                                                                                                                                                                      | nr · τ;<br>pr · τ;<br>Displacen                                                                                                                                                                                                                                                                                                                                | τ: action bonc                                                                                                             |                                                                         |                                                                                       |                                              | Ø 14                 | Ø 16                 | Ø 20                 | Ø 25                 | Ø 28                 | Ø3                |
| $ δ_{N0} = δ_{N0} $ -facto<br>$ δ_{N\infty} = δ_{N\infty} $ -facto<br>Table C14:<br>Anchor size rein                                                                                                                                                                                                           | or · τ;<br>or · τ;<br>Displacen<br>forcing bar                                                                                                                                                                                                                                                                                                                 | τ: action bonc                                                                                                             | hear lo<br>Ø 8                                                          | øad <sup>1)</sup> (r<br>Ø 10                                                          | ebar)<br>Ø 12                                | Ø 14                 | Ø 16                 | Ø 20                 | Ø 25                 | Ø 28                 | Ø 3               |
| δN0 = δN0-facto δN∞ = δN∞-facto                                                                                                                                                                                                                                                                                | or · τ;<br>or · τ;<br>Displacen<br>forcing bar                                                                                                                                                                                                                                                                                                                 | τ: action bond                                                                                                             | hear lo<br>Ø 8                                                          | øad <sup>1)</sup> (r<br>Ø 10                                                          | ebar)<br>Ø 12                                | Ø 14<br>0,04         | Ø 16                 | Ø 20<br>0,04         | Ø 25<br>0,03         | Ø 28                 | Ø 32              |
| δ <sub>N0</sub> = δ <sub>N0</sub> -facto<br>δ <sub>N∞</sub> = δ <sub>N∞</sub> -facto<br>Table C14: I<br>Anchor size rein<br>Uncracked concr<br>All temperature                                                                                                                                                 | or · τ;<br>or · τ;<br>forcing bar<br>ete C20/25 u                                                                                                                                                                                                                                                                                                              | τ: action bond<br>nent under s<br>Inder static and<br>[mm/kN]                                                              | hear lo<br>Ø 8<br>quasi-si                                              | oad <sup>1)</sup> (r<br>Ø 10<br>tatic acti                                            | ebar)<br>Ø 12                                |                      |                      |                      | 1                    |                      | 0,03              |
| $\delta_{N0} = \delta_{N0} - facto\delta_{N\infty} = \delta_{N\infty} - factoTable C14: Anchor size reinUncracked concr$                                                                                                                                                                                       | Displacen<br>forcing bar<br>ete C20/25 μ<br>$\delta_{V0}$ -factor<br>$\delta_{V\infty}$ -factor                                                                                                                                                                                                                                                                | τ: action bond<br>nent under s<br>Inder static and<br>[mm/kN]<br>[mm/kN]                                                   | hear lo<br>Ø 8<br>quasi-si<br>0,06<br>0,09                              | Ø 10<br>Ø 10<br>tatic acti<br>0,05<br>0,08                                            | ebar)<br>Ø 12<br>ion<br>0,05<br>0,08         | 0,04                 | 0,04                 | 0,04                 | 0,03                 | 0,03                 |                   |
| $δ_{N0} = \delta_{N0}$ -facto<br>$\delta_{N\infty} = \delta_{N\infty}$ -facto<br><b>Table C14:</b> I<br>Anchor size rein<br>Uncracked concr<br>All temperature<br>ranges<br>Cracked concrete<br>All temperature                                                                                                | Displacen<br>forcing bar<br>ete C20/25 μ<br>$\delta_{V0}$ -factor<br>$\delta_{V\infty}$ -factor                                                                                                                                                                                                                                                                | τ: action bond<br>nent under s<br>Inder static and<br>[mm/kN]<br>[mm/kN]                                                   | hear lo<br>Ø 8<br>quasi-si<br>0,06<br>0,09                              | Ø 10<br>Ø 10<br>tatic acti<br>0,05<br>0,08                                            | ebar)<br>Ø 12<br>ion<br>0,05<br>0,08         | 0,04                 | 0,04                 | 0,04                 | 0,03                 | 0,03                 | 0,03              |
| $\delta_{N0} = \delta_{N0}$ -facto<br>$\delta_{N\infty} = \delta_{N\infty}$ -facto<br><b>Table C14:</b> I<br>Anchor size rein<br>Uncracked concrete<br>All temperature<br>ranges<br>Cracked concrete<br>All temperature                                                                                        | $\begin{array}{l} \text{Displacen}\\ \hline \text{forcing bar}\\ \hline \text{ete C20/25 u}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline ue displaceme\\ r \cdot V; \end{array}$ | r: action bond<br>nent under s<br>nder static and<br>[mm/kN]<br>[mm/kN]<br>ler static and qu<br>[mm/kN]<br>[mm/kN]         | hear lo<br>Ø 8<br>quasi-st<br>0,06<br>0,09<br>uasi-stat<br>0,12<br>0,18 | oad <sup>1)</sup> (r<br>Ø 10<br>tatic acti<br>0,05<br>0,08<br>ic action               | ebar)<br>Ø 12<br>ion<br>0,05<br>0,08         | 0,04                 | 0,04                 | 0,04                 | 0,03                 | 0,03                 | 0,03              |
| $\delta_{N0} = \delta_{N0}$ -facto<br>$\delta_{N\infty} = \delta_{N\infty}$ -facto<br><b>Table C14:</b> I<br>Anchor size rein<br>Uncracked concr<br>All temperature<br>ranges<br><b>Cracked concrete</b><br>All temperature<br>ranges<br><sup>1)</sup> Calculation of th<br>$\delta_{V0} = \delta_{V0}$ -facto | $\begin{array}{l} \text{Displacen}\\ \hline \text{forcing bar}\\ \hline \text{ete C20/25 u}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline \delta_{Vo}\text{-factor}\\ \hline ue displaceme\\ r \cdot V; \end{array}$ | r: action bond<br>nent under s<br>Inder static and<br>[mm/kN]<br>[mm/kN]<br>[mm/kN]<br>[mm/kN]<br>[mm/kN]<br>[mm/kN]<br>nt | hear lo<br>Ø 8<br>quasi-st<br>0,06<br>0,09<br>uasi-stat<br>0,12<br>0,18 | <b>ad</b> <sup>1)</sup> (r<br>Ø 10<br>tatic acti<br>0,05<br>0,08<br>ic action<br>0,12 | ebar)<br>Ø 12<br>ion<br>0,05<br>0,08<br>0,11 | 0,04<br>0,06<br>0,11 | 0,04<br>0,06<br>0,10 | 0,04<br>0,05<br>0,09 | 0,03<br>0,05<br>0,08 | 0,03<br>0,04<br>0,07 | 0,0<br>0,0<br>0,0 |

(Reinforcing bar)



#### Characteristic values of tension loads under seismic action Table C15: (performance category C1) Threaded rod M8 M10 M12 M16 M20 M24 M27 M30 Steel failure 1,0 • N<sub>Rk.s</sub> Characteristic tension resistance N<sub>Rk,s,eq,C1</sub> [kN] Partial factor γMs,N [-] see Table C1 Combined pull-out and concrete failure Characteristic bond resistance in uncracked and cracked concrete C20/25 3,7 40°C/24°C 4,5 1: 2.5 3,1 3,7 3,7 3,8 4,5 **Temperature** range Dry, wet II: 80°C/50°C 2.2 2.7 2.8 1,6 2.7 2,7 3,1 3,1 concrete III: 120°C/72°C 1,3 1,6 2,0 2,0 2,1 2,4 2,4 2,0 [N/mm<sup>2</sup>] <sup>τ</sup>Rk.eq.C1 I: 40°C/24°C 2,5 2,5 3,7 3,7 flooded bore No Performance II: 80°C/50°C 1,6 1,9 2,7 2,7 hole Assessed III: 120°C/72°C 1,3 1,6 2.0 2,0 $\Psi \underline{c}$ Increasing factors for concrete [-] 1.0 Characteristic bond resistance depending $\psi_{c} \cdot \tau_{\text{Rk,eq,C1}}(\text{C20/25})$ $\tau_{Rk,eq,C1} =$ on the concrete strength class Installation factor for dry and wet concrete 1,0 1,2 [-] Yinst No Performance for flooded bore hole 1,4 Assessed

# Table C16:Characteristic values of shear loads under seismic action<br/>(performance category C1)

| Threaded rod                                    |                         |      | M8 | M10 | M12 | M16  | M20                   | M24 | M27 | M30 |
|-------------------------------------------------|-------------------------|------|----|-----|-----|------|-----------------------|-----|-----|-----|
| Steel failure without lever arm                 |                         |      |    |     |     |      |                       |     |     |     |
| Characteristic shear resistance<br>(Seismic C1) | V <sub>Rk,s,eq,C1</sub> | [kN] |    |     |     | 0,70 | )∙V <sup>0</sup> Rk   | ,s  |     |     |
| Partial factor                                  | γ <sub>Ms,V</sub>       | [-]  |    |     |     | see  | Table C               | ;1  |     |     |
| Factor for annular gap                          | α <sub>gap</sub>        | [-]  |    |     |     | 0,5  | 5 (1,0) <sup>1)</sup> |     |     |     |

<sup>1)</sup> Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

## Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete

Annex C 12

**Performances** Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Threaded rod)



#### Table C17: Characteristic values of tension loads under seismic action (performance category C1) Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32 Steel failure $1,0 \cdot \overline{A_s \cdot f_{uk}^{1}}$ N<sub>Rk,s,eq,C1</sub> [kN] Characteristic tension resistance As 50 79 113 154 201 314 491 616 804 Cross section area [mm<sup>2</sup>] 1,42) Partial factor [-] γMs,N Combined pull-out and concrete failure Characteristic bond resistance in uncracked and cracked concrete C20/25 1: 40°C/24°C 2.5 3.1 3,7 3.7 3.7 3.7 3.8 4.5 4.5 Dry, wet 11: 80°C/50°C 1,6 2,2 2,7 2,8 3,1 2,7 2,7 2.7 3,1 Temperatu concrete range III: 120°C/72°C 2,0 2,0 2,1 2,4 1,3 1,6 2,0 2,0 2,4 [N/mm<sup>2</sup>] <sup>τ</sup>Rk, eq,C1 40°C/24°C 1: 2,5 2,5 3,7 3,7 3,7 flooded No Performance II: 80°C/50°C 1,6 1,9 2,7 2,7 2,7 bore hole Assessed III: 120°C/72°C 1,6 2,0 2,0 1,3 2,0 Increasing factors for concrete [-] 1,0 Ψc Characteristic bond resistance depending on the concrete strength ψ<sub>c</sub> • τ<sub>Rk,eq,C1</sub>(C20/25) $\tau_{Rk,eq,C1} =$ class Installation factor for dry and wet concrete 1,2 1,2 No Performance Yinst [-] 1,4 for flooded bore hole Assessed 1) fuk shall be taken from the specifications of reinforcing bars 2) in absence of national regulation Table C18: Characteristic values of shear loads under seismic action (performance category C1) **Reinforcing bar** Ø8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32 Steel failure without lever arm $0,35 \cdot A_{s} \cdot f_{uk}^{2}$ V<sub>Rk,s,eq,C1</sub> [kN] Characteristic shear resistance $A_s$ 491 804 50 79 113 154 201 314 616 Cross section area [mm<sup>2</sup>] Partial factor $1,5^{2}$ [-] γMs,V 0,5 (1,0)3) Factor for annular gap [-] $\alpha_{gap}$ <sup>1)</sup> $f_{ijk}$ shall be taken from the specifications of reinforcing bars 2) in absence of national regulation 3) Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended Mungo Injection System MIT-SE Plus or MIT-COOL Plus for concrete Annex C 13 Performances

Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Reinforcing bar)