

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0027 of 20 September 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

EJOT / SORMAT SDF-14A

Plastic anchor for redundant non-structural systems in concrete and masonry

EJOT SE & Co. KG Astenbergstraße 21 57319 Bad Berleburg DEUTSCHLAND

manufacturing plant EJOT 1, 2, 3 und 4

15 pages including 3 annexes which form an integral part of this assessment

EAD 330284-00-0604 edition 12/2020

ETA-15/0027 issued on 30 January 2015

European Technical Assessment ETA-15/0027

Page 2 of 15 | 20 September 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z81650.22 8.06.04-225/22

European Technical Assessment ETA-15/0027

Page 3 of 15 | 20 September 2022

English translation prepared by DIBt

Specific part

1 Technical description of the product

The frame fixing EJOT / SORMAT SDF-14A is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel, of galvanised steel with additional organic coating or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 1

3.2 Mechanical resistance and stability (BWR 4)

Essential characteristic	Performance
Resistance to steel failure under tension loading	See Annex C 1
Resistance to steel failure under shear loading	See Annex C 1
Resistance to pull-out or concrete failure under tension loading (base material group a)	See Annex C 1
Resistance in any load direction without lever arm (base material group b, c, d)	See Annexes C 2 and C 3
Edge distance and spacing (base material group a)	See Annex B 2
Edge distance and spacing (base material group b, c, d)	See Annex B 3 and B 4
Displacements under short-term and long-term loading	See Annex C 1 and C 3
Durability	See Annex B 1

Z81650.22 8.06.04-225/22

European Technical Assessment ETA-15/0027

Page 4 of 15 | 20 September 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD 330284-00-0604 the applicable European legal act is: 97/463/EC.

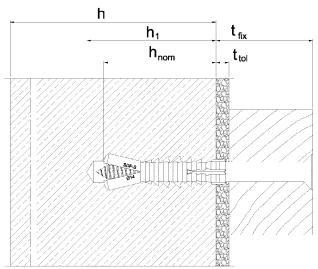
The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

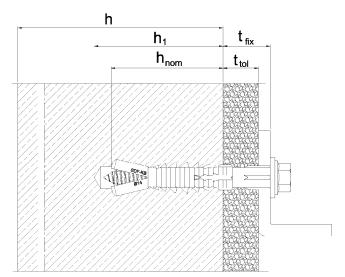
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 September 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:


Ziegler

Z81650.22 8.06.04-225/22



Intended use

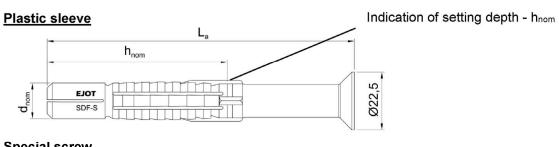
Anchorage in concrete, solid-bricks, hollow-bricks and autoclaved aerated concrete

Picture 1: Intended use: screw head-type: countersunk (S)

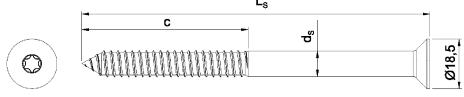
Picture 2: Intended use: screw head-type: hexagon head with collar (KB)

Legend

h = Thickness of member

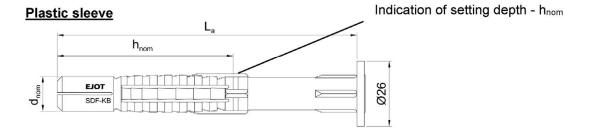

 h_1 = Depth of drilled hole to deepest point

 $h_{\text{nom}} = \text{Overall plastic anchor embedment depth in base material} \ t_{\text{tol}} = \text{Thickness of equalizing layer or non-load bearing coating}$

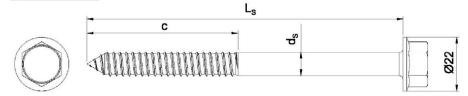

 t_{fix} = t_{tol} + Thickness of fixture

EJOT / SORMAT SDF-14A	
Product description Installed condition	Annex A 1

Special screw


Picture 1: type of anchor: countersunk (S)

Anchor marking:


manufacturer, anchor type incl. Head type, diameter, length (at the anchor tip) example: EJOT SDF-S-14A x 100

screw marking:

length of anchor (e.g. 100)

Special screw

Picture 2: Type of anchor: collar with flange (KB)

Anchor marking:

manufacturer, anchor type incl. Head type, diameter, length (at the anchor tip) example: EJOT SDF-KB-14A x 100

screw marking:

length of anchor (e.g. 100)

EJOT / SORMAT SDF-14A	
Product description Anchor types, marking of anchor sleeve and specific screw	Annex A 2

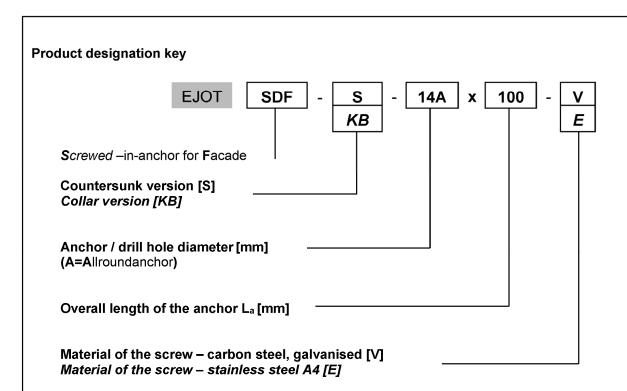


Table A3.1: Dimensions [mm]

Anchortuna	Anchor sleeve				Specific screw			
Anchor type	colour	d_{nom}	h _{nom}	min La	max La	Ls	d₅	С
SDF - KB - ø14	red	14	70	80	220	La + 8,0	9,6	60
SDF - S - Ø14	red	14	70	80	360	La + 8,0	9,6	60

Designations: Annex A 2

Table A3.2: Materials

Element	Material					
Anchor sleeve Polyamide PA6, colour see Table A3.1						
	Carbon steel, galvanized > 5 µm in accordance with EN ISO 4042:2018					
Special screw	Carbon steel, galvanized > 5 µm in accordance with EN ISO 4042:2018 with additional organic coating (C1000)					
33.3.	Stainless steel of corrosion resistance class CRC III in accordance with EN 1993-1-4:2006 + A1:2015					

EJOT / SORMAT SDF-14A	
Product description Dimensions and materials	Annex A 3

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Redundant non-structural systems

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres with strength classes
 ≥ C12/15 (base material group a), in accordance with EN 206:2013+A1:2016, Annex C 2
- Solid brick masonry (base material group b), according to Annex C 2.
 Note: The characteristic resistance is also valid for larger brick sizes and larger compressive strength of the masonry unit.
- Hollow brick masonry (base material group c), according to Annex C 2.
- Autoclaved aerated concrete (base material group d), according to Annex C 3.
- Mortar strength class of the masonry ≥ M2,5 at minimum according to EN 998-2:2010.
- For other base materials of the (base material group a, b, c and d) the characteristic resistance of the anchor may be determined by job site tests accordance with TR 051:2018-04.

Temperature Range:

- c: -20°C to 50°C (max. short term temperature + 50°C and max long term temperature +30°C)
- b: -20°C to 80°C (max. short term temperature + 80°C and max long term temperature +50°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- The specific screw made of galvanized steel may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefor there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).
- Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with TR 064:2018-05 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings

Installation:

- Hole drilling by the drill modes according to Annex C for base material group a,b,c and d.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from -10°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks
- No ingress of water in the borehole at temperatures < 0 °C.

EJOT / SORMAT SDF-14A	
Intended use Specifications	Annex B 1

Table B2.1: Installation parameters

Anchor type	SDF-KB-14A SDF-S-14A		
Base material group ¹⁾			a,b,c,d
Drill hole diameter	d₀ [mm]	=	14
Cutting diameter of drill bit	d _{cut} [mm]	≤	14,45
Depth of the drill hole to deepest point	h₁ [mm]	≥	85
Overall plastic anchor embedment depth ²⁾	h _{nom} [mm]	≥	70
Diameter of the clearance hole in the fixture	d _f [mm]	≤	15,4
Thickness of fixture	t _{fix} [mm]	≥	10
minimum temperature during installation process	[°C]		-20
Temperature range (c)	[°C]		30 - 50
Temperature range (b)	[°C]		50 - 80

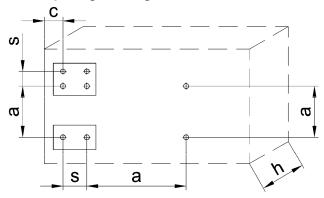

¹⁾ Base material group: a = concrete, b = solid masonry, c = hollow or perforated masonry, d = autoclaved aerated concrete

Table B2.2: Minimum member thickness, spacing and edge distance in concrete (base material group a)

Compressive strength of concrete	Minimum member thickness h _{min} [mm]	Characteristic edge distance c _{cr,N} [mm]	Characteristic spacing a [mm]	Minimum spacing c _{min} [mm]	Minimum edge distance s _{min} [mm]
≥ C12/15	130	140	135	140	110
≥ C16/20	130	100	120	100	80

Fixing points with a spacing \leq a are considered as a group with maximum characteristic resistance $N_{Rk,p}$ according to Table C1.3. For a spacing > a the anchors are always considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ according to Table C1.3.

Scheme of spacing and edge distances in concrete

- h = member thickness
- c = edge distance
- a = spacing
- s = spacing within an anchor group

EJOT / SORMAT SDF-14A	
Intended use Installation parameters, member thickness, spacing and edge distance in concrete	Annex B 2

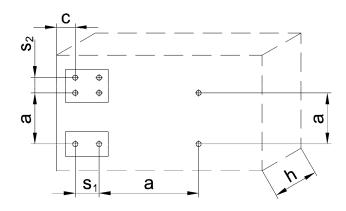

For masonry of hollow or perforated brick the influence h_{nom} > 70 mm has to be determined by job-site tests in accordance with TR 051:2018-04.

Table B3.1: Minimum member thickness, spacing and edge distance in masonry (base material group b and c)

		Single	Anchor	Ar	nchor Group	
Base Material	Minimum thickness of member	Minimum edge distance	Minimum spacing	Minimum edge distance	Minimum spacing	Minimum spacing
	h _{min} [mm]	C _{min} [mm]	a [mm]	C _{min} [mm]	S _{1,min} [mm]	S _{2,min} [mm]
	•	sol	id masonry	•	•	
771 1-001 Mz	115	120	250	120	120	120
771 2-009 KS	115	120	250	120	120	120
771 2-002 KS	240	125	250	125	120	120
771 3-006 V	175	120	250	120	120	120
		holl	ow masonry			
771 1-002 HIz	115	120	250	120	120	120
771 2-003 KSL	239	100	250	100	80	80
771 3-005 Hbl	175	100	250	100	80	250

Scheme of spacing and edge distances in masonry

h = member thickness

c = edge distance

a = spacing

s₁ = spacing (perpendicular to free edge) within an anchor group

s₂ = spacing (parallel to free edge) within an anchor group

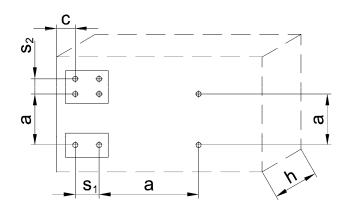

EJOT / SORMAT SDF-14A	
Intended use Member thickness, spacing and edge distance in masonry	Annex B 3

Table B4.1: Minimum distances and dimensions in autoclaved aerated concrete (base material group d)

Autoclave	f _{ck} ≥ 2 N/mm²	f _{ck} ≥ 4 N/mm²		
Nominal embedment depth	h _{nom}	[mm]	70	70
Single anchor				
Minimum thickness of member	h _{min}	[mm]	175	300
Minimum edge distance	C _{min}	[mm]	100	100
Minimum spacing	S _{min}	[mm]	250	250
Anchor Group				
Minimum thickness of member	h _{min}	[mm]	300	300
Minimum edge distance	C _{1,min}	[mm]	100	120
Minimum edge distance (perpendicular to c _{1,min})	C 2,min	[mm]	120	150
Minimum spacing (perpendicular to free edge)	S1,min	[mm]	80	100
Minimum spacing parallel to free edge	S 2,min	[mm]	100	120

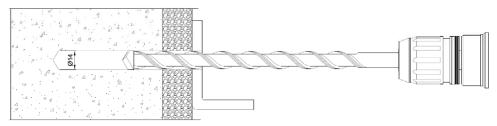
Scheme of spacing and edge distances in autoclaved aerated concrete

h = member thickness

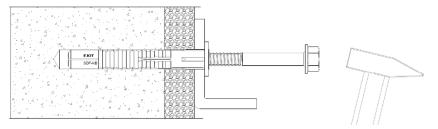
c = edge distance

a = spacing

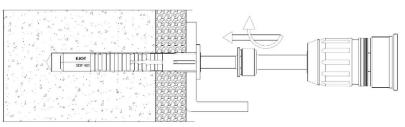
 s_1 = spacing (perpendicular to free edge) within an anchor group


 s_2 = spacing (parallel to free edge) within an anchor group

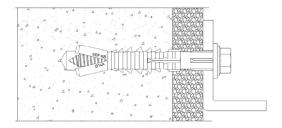
EJOT / SORMAT SDF-14A	
Intended use Member thickness, spacing and edge distance in autoclaved aerated concrete	Annex B 4



Installation instructions (the following pictures show fixing through metall growing part exemplary)


1. Drill the bore hole ø 14 mm using the drill method described in the corresponding Annex C

2. Clean the bore hole.
Insert assembly group of anchor (screw and sleeve) using a hammer, until the plastic sleeve is flush with surface of fixture



3. The screw is screwed –in until the head of the screw touches the plastic sleeve.

4. Correctly installed anchor

Electronic copy of the ETA by DIBt: ETA-15/0027

EJOT / SORMAT SDF-14A	
Intended use Installation instructions	Annex B 5

Table C1.1: Characteristic resistance of the screw

Failure of expansion element (spe	cial screw)	SDF-14A		
Material		Galvanized steel	Stainless steel	
Characteristic tension resistance	N _{Rk,s} [kN]	43,3	50,7	
Partial safety factor	γ Ms ¹⁾	1,5	1,87	
Characteristic shear resistance	V _{Rk,s} [kN]	21,7	25,3	
Characteristic bending resistance	M _{Rk,s} [Nm]	62,5	72,9	
Partial safety factor	γ Ms ¹⁾	1,25	1,56	

¹⁾ In absence of other national regulations

Table C1.2: Displacements 1)2) under tension and shear loading in concrete, solid- and hollow masonry

Anchor Type	Tension or shear load	Displacements under tension load			ements under lear load
SDF-14A	F = N = V [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{v0} [mm]	δ _{ν∞} [mm]
	3,4	0,71	0,84	2,42	3,63

¹⁾ Valid for all ranges of temperatures (b and c)

Table C1.3: Characteristic resistance for use in concrete

Pull-out failure		Characteristic resistance
Concrete ≥ C12/15		
Characteristic resistance	N _{Rk,p} ²⁾³⁾ [kN]	8,5
Partial safety factor	у Мс ¹⁾	1,8

¹⁾ In absence of other national regulations

Table C1.4: Values under fire exposure in concrete C20/25 to C50/60 in each load direction, no permanent centric tension load and without lever arm, fastening of facade systems (Fire resistance class R 90)

Characteristic tension resistance F _{Rk,fi,90} [kN]	≤ 0,8
Partial safety factor y _{M,fi} 1)	1,0

¹⁾ In absence of other national regulations

EJOT / SORMAT SDF-14A	
Performances Characteristic resistance, Displacements under tension and shear loading in concrete,	Annex C 1
masonry and autoclaved aerated concrete, values under fire exposure	

²⁾ Intermediate values by linear interpolation

²⁾ Valid for all ranges of temperatures (c and b)

B) Hammer drilling

Table C2.1: Characteristic resistance FRk in solid- and hollow masonry

Base material	Minimum size (LxWxH) [mm]	Drilling method	Minimum compressive strength	C _{min} [mm]	F _{Rk} ³⁾ [kN]
	So	lid masonry	[N/mm²]	1	
Clay brick Mz			20		5,5 (6,0) ⁴⁾
2DF 20-1.8 (EN 771-1:2011+ A1:2015)	240x115x113	H ¹⁾	10	120	4,0
			20	 	6,0
Calcium silicate solid brick KS	040 445 440	1.11\	10	250	4,0
2DF 20-2.0	240x115x113	H ¹⁾	20	400	2,0
(EN 771-2:2011+ A1:2015)			10	120	1,5
Calcium silicate solid brick	240×240×220	H ¹⁾	20	105	7,0
KS 8DF 20-1.8 (EN 771-2:2011+ A1:2015)	249x240x238	H''	10	125	5,0
			8		3,0 (4,0)4)
Solid brick V 3DF 8-1.2	240x175x113	3 H ¹⁾	6	120	2,0 (3,0)4)
(EN 771-3:2011+ A1:2015)		11	4	4	1,5 <i>(2,0)</i> ⁴⁾
,			2		0,75 <i>(0,9)</i> ⁴⁾
	Hollow or	perforated n	nasonry	_	
Vertically perforated clay brick – Hlz 2DF 28-1.2			28		2,0 (2,5)4)
(EN 771-1:2011+ A1:2015)	240x115x113	R ¹⁾	20	120	1,5 <i>(1,5)⁴⁾</i>
(picture 1)			10		0,75 (0,9)4)
Hollow calc. silicate brick KSL 8DF 16-1.4 (picture 2)	0.40, 000, 000	1 \	20	400	2,5
(EN 771-2:2011+ A1:2015)	249x239x238	H ¹⁾	10	100	1,2
Hollow brick leightweight concrete – Hbl 12DF 4-1.2			6		2,5
(EN 771-3:2011+ A1:2015)	490x175x239	R ¹⁾	4	100	1,5
(picture 3)			2		0,75
Partial safety factor 1/Mm 2)					2,5
Picture 1	Pi	cture 2		Picture	3
240 25 25 25 25 25 25 25 25 25 25 25 25 25	249 07				

- 1) **H** = Hammerdrilling **R** = Rotary Drilling
- 2) In absence of other national regulations
- 3) Temperature range b and c
- Valid only for temperature range c

EJOT / SORMAT SDF-14A	
Performances Characteristic resistance in solid and hollow masonry	Annex C 2

Table C3.1: Displacements under tension and shear loading in autoclaved aerated concrete

SDF-14A	Tension or shear load	Displacements under tension load ²⁾		Displacem shear	ents under load ²⁾
Autoclaved aerated concrete EN 771-4:2011+A1:2015	F = N = V [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{v0} [mm]	δν∞ [mm]
f _{ck} ≥ 2 N/mm²	0,43	0,35	0,70	0,86	1,29
f _{ck} ≥ 3 N/mm²	0,78	0,40	0,81	1,45	2,17
f _{ck} ≥ 4 N/mm²	1,02	0,46	0,93	2,04	3,06
fck ≥ 5 N/mm²	1,31	0,52	1,04	2,63	3,94
f _{ck} ≥ 6 N/mm²	1,61	0,58	1,16	3,22	4,83

¹⁾ Valid for all ranges of temperatures

Table C3.2: Characteristic resistance F_{Rk}²⁾ in autoclaved aerated concrete

Uncracked aerated concrete (aerated concrete blocks) in accordance with EN 771-4:2011 +A1:2015	Minimum compressive strength fck [N/mm²]	F _{Rk} ¹⁾ [kN]	F _{Rk} ¹⁾ [kN]
		Temperature range c (30°C – 50°C)	Temperature range b (50°C – 80°C)
	2	1,2	0,9
	3	2,0	1,5
	4	2,5	2,5
	5	3,5	3,0
	6	4,5	3,5
Partial safety factor	∕MAAC ³⁾	2,0	

EJOT / SORMAT SDF-14A	
Performances Characteristic resistance and displacements in autoclaved aerated concrete	Annex C 3

²⁾ Intermediate values by linear interpolation

Drilling method hammer drilling
 Characteristic resistance for tension, shear or combined tension and shear loading.

³⁾ In absence of other national regulations