

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0435 of 16 November 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti metal expansion anchor HST2 and HST2-R

Mechanichal fastener for use in concrete

Hilti AG BU Anchors Feldkircherstraße 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

29 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-15/0435 issued on 21 December 2017

European Technical Assessment ETA-15/0435

Page 2 of 29 | 16 November 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z88542.22 8.06.01-194/22

European Technical Assessment ETA-15/0435

Page 3 of 29 | 16 November 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti metal expansion anchor HST2 and HST2-R is an anchor made of galvanized steel (HST2) or stainless steel (HST2-R) which is placed into a drilled hole and anchored by torque controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B6 to B8, C1 to C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3
Displacements (static and quasi-static loading)	See Annex C4
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C5 to C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C9 to C10

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance			
Durability	See Annex B1			

Z88542.22 8.06.01-194/22

European Technical Assessment ETA-15/0435

Page 4 of 29 | 16 November 2022

English translation prepared by DIBt

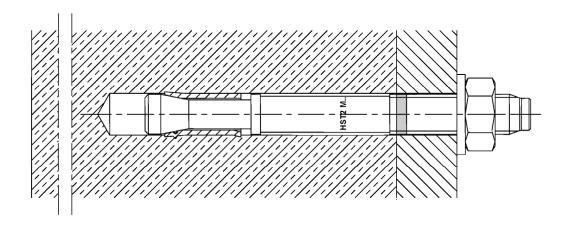
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

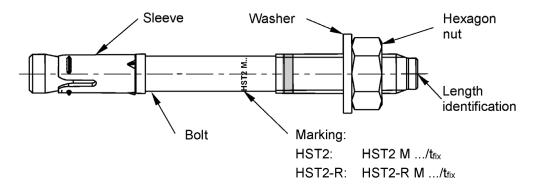
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 16 November 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Ziegler


Z88542.22 8.06.01-194/22

Installed condition for HST2 and HST2-R

Product description and marking for HST2 and HST2-R

Hilti metal expansion anchor HST2 and HST2-R	
Product description Installation condition, anchor types, marking and identification	Annex A1

Letter			Α	В	С	D	E	f	П
A a alice a lace atta	≥	[mm]	38,1	50,8	63,5	76,2	88,9	100,0	100,0
Anchor length	<	[mm]	50,8	63,5	76,2	88,9	101,6	100,0	100,0
Letter			F	G	Δ	Н	ı	J	K
Anaharlanath	≥	[mm]	101,6	114,3	125,0	127,0	139,7	152,4	165,
Anchor length	<	[mm]	114,3	127,0	125,0	139,7	152,4	165,1	177,
Letter			L	М	N	0	Р	Q	R
A 1 1 11	≥	[mm]	177,8	190,5	203,2	215,9	228,6	241,3	254,
Anchor length	<	[mm]	190,5	203,2	215,9	228,6	241,3	254,0	279,
Letter			r	s	т	U	V	W	X
Anchor length	≥	[mm]	260,0	279,4	304,8	330,2	355,6	381,0	406,
	<	[mm]	260,0	304,8	330,2	355,6	381,0	406,4	431,
Letter			Υ	Z	AA	BB	СС	DD	EE
A 1 1 11	≥	[mm]	431,8	457,2	482,6	508,0	533,4	558,8	584,
Anchor length	<	[mm]	457,2	482,6	508,0	533,4	558,8	584,2	609,
Letter			FF	GG	НН	II	JJ	KK	LL
	2	[mm]	609,6	635,0	660,4	685,8	711,2	736,6	762,
Anchor length	<	[mm]	635,0	660,4	685,8	711,2	736,6	762,0	787,
Letter			MM	NN	00	PP	QQ	RR	SS
	≥	[mm]	787,4	812,8	838,2	863,6	889,0	914,4	939,
Anchor length	<	[mm]	812,8	838,2	863,6	889,0	914,4	939,8	965,
Letter			TT	UU	VV				
A mala and a matte	2	[mm]	965,2	990,6	1016,0				
Anchor length	<	[mm]	990,6	1016,0	1041,4				

Hilti metal expansion anchor HST2 and HST2-R	
Product description Length identification	Annex A2

Table A2: Materials

Designation	Material						
HST2							
Expansion sleeve Stainless steel A2 according to EN 10088-1:2014							
Bolt Carbon steel, galvanized, coated (transparent), rupture elongation (l ₀ = 5d) > 8 %							
Washer	Carbon steel, galvanized						
Hexagon nut	Carbon steel, galvanized						
Filling set (Carbon s	teel)						
Sealing washer	Carbon steel, galvanized						
Spherical washer	Carbon steel, galvanized						
HST2-R (Stainless son Corrosion resistance	teel A4) class III according to EN 1993-1-4:2006+A1:2015						
Expansion sleeve	Stainless steel A4 according to EN 10088-1:2014						
Bolt	Stainless steel A4 or Duplex A4 according to EN 10088-1:2014, cone coated (transparent), rupture elongation (l_0 = 5d) > 8 %						
Washer	Stainless steel A4						
Hexagon nut	Stainless steel A4, coated						
	Filling Set (Stainless steel) Corrosion resistance class III according EN 1993-1-4:2006+A1:2015						
Sealing washer	Sealing washer Stainless steel A4 according to ASTM A 240/A 240M:2019						
Spherical washer Stainless steel A4 according to EN 10088-1:2014							

Hilti metal expansion anchor HST2 and HST2-R	
Product description Materials	Annex A3

Hybrid system with resin, hardener, cement and water Foil pack 330 ml and 500 ml

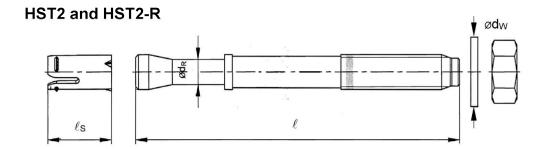
Static mixer Hilti HIT-RE-M

Dispensers

Hilti HDM 330

Table A3: curing time Hilti HIT-HY 200-A

Temperature of base material / environment		aterial / environment	Curing time t _{cure} Hilti HIT-HY 200-A
-10 °C	to	-5 °C	7 hours
-4 °C	to	0 °C	4 hours
1 °C	to	5 °C	2 hours
6 °C	to	10 °C	75 minutes
11 °C	to	20 °C	45 minutes
21 °C	to	30 °C	30 minutes
31 °C	to	40 °C	30 minutes


Hilti HDE 500

Hilti metal expansion anchor HST2 and HST2-R	
Product description Injection mortar	Annex A4

Table A4: Dimensions HST2 and HST2-R

HST2, HST2-R			M8	M10	M12	M16
Maximum length of anchor	$\ell_{\sf max}$	[mm]	260	280	295	350
Shaft diameter at the cone	d R	[mm]	5,5	7,2	8,5	11,6
Length of expansion sleeve	ℓs	[mm]	14,8	18,2	22,7	24,3
Diameter of washer	d _W ≥	[mm]	15,57	19,48	23,48	29,48

Filling Set to fill the annular gap between anchor and fixture

Table A5: Dimensions Filling Set

Filling Set used for HST2, HST2-R			M10	M12	M16
Diameter of sealing washer	d _{VS}	[mm]	42	44	52
Thickness of sealing washer	hvs	[mm]	5		6

Spherical washer

Sealing washer

dvs

Hilti metal expansion anchor HST2 and HST2-R	
Product description Dimensions	Annex A5

Specifications of intended use

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206-1: 2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013 + A1:2016.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes Annex A, Table A2 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055:2018-02.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Overhead applications are permitted.

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use	Annex B1
Specifications	

Table B1: Drilling technique

HST2, HST2-R		М8	M10	M12	M16
Hammer drilling (HD)		✓	✓	✓	✓
Diamond coring (DD) with DD EC-1 coring tool and DD-C TS/TL core bits or DD-C T2/T4 core bits DD 30-W coring tool and C+ SPX-T (abrasive) core bits	(✓	✓	✓	✓
Hammer drilling with Hilti hollow drill bit EE-CD/YD drilling system (HDB)		-	-	✓	✓

Table B2: Drill hole cleaning

Manual cleaning (MC): Hilti hand pump for blowing out drill holes	
Compressed air cleaning (CAC): Air nozzle with an orifice opening of 3,5 mm in diameter	
Automated cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner	

Table B3: Methods for application of torque moment

HST2, HST2-R	M8	M10	M12	M16
Torque wrench	✓	✓	✓	✓
Machine torqueing with Hilti SIW 6AT-A22 impact wrench and SI-AT-A22 ¹⁾ adaptive torque module	✓	✓	✓	-

¹⁾ Equivalent combination of Hilti SIW + SI-AT tool, compatible to this anchor type, may be used

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use	Annex B2
Specifications	

Table B4: Overview use and performance categories

Anchorages subject to:	HST2, HST2-R
Static and quasi static loading	M8 to M16 Table : C1 - C3
Seismic performance category C1/C2	M10 to M16 (HST2 only) Table : C4 - C9
Static and quasi static loading under fire exposure	M8 to M16 Table : C10 - C11

Hilti metal expansion anchor HST2 and HST2-R

Intended Use
Specifications

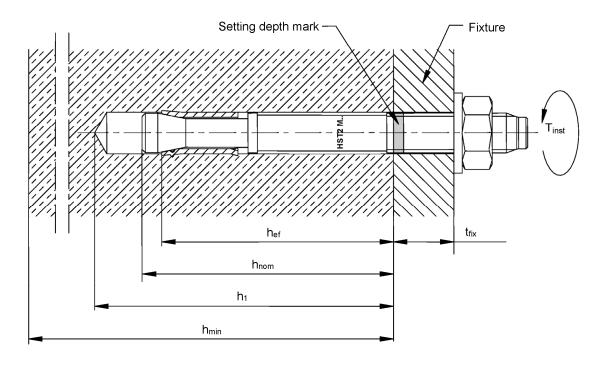

Annex B3

Table B5: Installation parameters for HST2 and HST2-R

HST2, HST2-R			М8	M10	M12	M16
Nominal diameter of drill bit	d₀	[mm]	8	10	12	16
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,50	16,50
Drill hole depth ¹⁾	h₁ ≥	[mm]	60	74	88	103
Effective embedment depth	h _{ef}	[mm]	47	60	70	82
Nominal embedment depth	h_{nom}	[mm]	55	69	80	95
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18
Installation torque moment	T _{inst}	[Nm]	20	45	60	110
Maximum thickness of fixture	t _{fix,max}	[mm]	195	200	200	235
Width across flats	SW	[mm]	13	17	19	24

 $^{^{1)}}$ In case of diamond drilling + 5 mm for M8 to M10 and + 2 mm for M12 to M16

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use	Annex B4
Installation parameters	

HST2 with Filling Set to fill the annular gap between anchor and fixture Setting depth mark Fixture Injection mortar HIT-HY 200-A

 h_{\min}

Hilti metal expansion anchor HST2 and HST2-R

Intended Use
Installation parameters

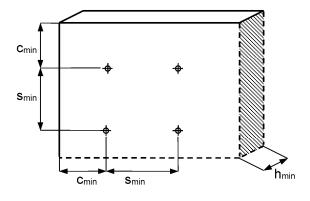

Annex B5

Table B6: Minimum spacing and edge distance for HST2 and HST2-R

			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,1}	[mm]	100	120	140	160
Cracked concrete						
HST2						
Minimum angaing 1)	Smin	[mm]	40	55	60	70
Minimum spacing 1)	for c ≥	[mm]	50	70	75	100
Minimum adaa diatanaa 1)	C _{min}	[mm]	45	55	55	70
Minimum edge distance 1)	for s ≥	[mm]	50	90	120	150
HST2-R						
Minimum annaine 1)	Smin	[mm]	40	55	60	70
Minimum spacing 1)	for c ≥	[mm]	50	65	75	100
Minimum edge distance 1)	C _{min}	[mm]	45	50	55	60
	for s ≥	[mm]	50	90	110	160

¹⁾ Linear interpolation for smin and cmin allowed

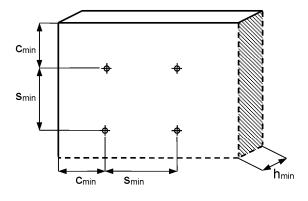

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use Minimum spacing and minimum edge distance	Annex B6

Table B6 continued

			М8	M10	M12	M16
Minimum thickness of concrete member	h _{min,1}	[mm]	100	120	140	160
Uncracked concrete						
HST2						
Minimum angaing 1)	Smin	[mm]	60	55	60	70
Minimum spacing 1)	for c ≥	[mm]	50	80	85	110
Minimum odgo distance 1)	C _{min}	[mm]	50	55	55	85
Minimum edge distance 1)	for s ≥	[mm]	60	115	145	150
HST2-R						
Minimum angaing 1)	S _{min}	[mm]	60	55	60	70
Minimum spacing 1)	for c ≥	[mm]	60	70	80	110
Minimum edge distance 1)	C _{min}	[mm]	60	50	55	70
	for s ≥	[mm]	60	115	145	160

¹⁾ Linear interpolation for smin and cmin allowed

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use Minimum spacing and minimum edge distance	Annex B7
William Spacing and milliam dage distance	

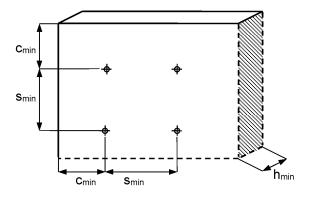
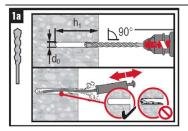
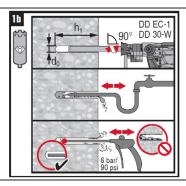


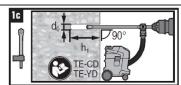
Table B6 continued

			M8	M10	M12	M16
Minimum thickness of concrete member	h _{min,2}	[mm]	80	100	120	140
Cracked concrete		•				
HST2 and HST2-R						
Minimum angaing	Smin	[mm]	50	55	60	80
Minimum spacing	for c ≥	[mm]	60	110	100	140
N. C.	C _{min}	[mm]	55	70	70	80
Minimum edge distance	for s ≥	[mm]	60	100	130	180
Uncracked concrete		•				•
HST2 and HST2-R						
Minimum	Smin	[mm]	60	55	60	80
Minimum spacing	for c ≥	[mm]	75	115	100	140
Minimum edge distance	Cmin	[mm]	70	70	70	80
	for s ≥	[mm]	80	110	130	180

 $^{^{1)}\,\}text{Linear}$ interpolation for s_{min} and c_{min} allowed

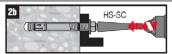

Hilti metal expansion anchor HST2 and HST2-R	
Intended Use Minimum spacing and minimum edge distance	Annex B8
Minimum spacing and minimum edge distance	

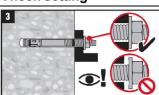



Installation instruction

Hole drilling and cleaning

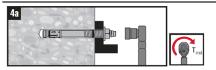
- a) Hammer drilling (HD):M8 to M16
- b) Diamond coring (DD): M8 to M16
- c) Hammer drilling with Hilti hollow drill bit (HDB): M12 to M16

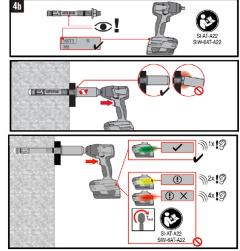




Anchor setting

- a) Hammer setting: M8 to M16
- 2a
- b) Machine setting (setting tool): M8 to M16




Check setting

Anchor torqueing

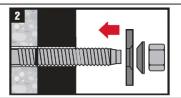
- a) Torque wrench: M8 to M16
- b) Machine torqueing: M8 to M12

Hilti metal expansion anchor HST2 and HST2-R

Intended Use

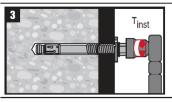

Installation instructions

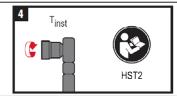
Annex B9

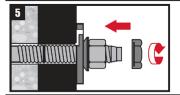


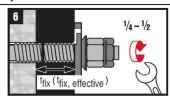
Installation instruction HST2 with Filling Set

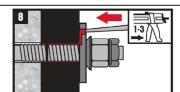
Installation of sealing washer

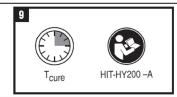





Anchor torqueing


a) Torque wrench: M8 to M20


Installation of counter nut (optional)



Injection of mortar

Hilti metal expansion anchor HST2 and HST2-R

Intended Use

Installation instructions

Annex B10

Electronic copy of the ETA by DIBt: ETA-15/0435

Table C1: Characteristic tension resistance for HST2 and HST2-R in cracked and uncracked concrete

			M8	M10	M12	M16	
Steel failure							
HST2							
Characteristic resistance	N _{Rk,s}	[kN]	17,8	31,4	44,8	78,2	
Partial safety factor	γ _{Ms} 1)	[-]		1,	40		
HST2-R							
Characteristic resistance	N _{Rk,s}	[kN]	17,6	30,5	43,1	78,2	
Partial safety factor	γ _{Ms} 1)	[-]		1,	40	•	
Pullout failure							
HST2							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5,0	9,0	12,0	20,0	
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0	
Installation safety factor	γinst	[-]		1,	00		
HST2-R							
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5,0	9,0	12,0	25,0	
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	9,0	16,0	20,0	35,0	
Installation safety factor	γinst	[-]		1,	00		
HST2 and HST2-R		•					
	ψο	C20/25	5 1,00				
Increasing factor for N _{Rk,p} for	ψο	C30/37		1,	22		
cracked and uncracked concrete	ψο	C40/50		1,	41		
	ψο	C50/60		1,	55		

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under tension loading in cracked and uncracked concrete	Annex C1

Table C1 continued

			M8	M10	M12	M16			
Concrete cone and splitting failure									
HST2 and HST2-R									
Effective embedment depth	h _{ef}	[mm]	47	60	70	82			
Installation safety factor	γinst	[-]	1,00						
Factor for cracked concrete	$\mathbf{k}_1 = \mathbf{k}_{cr,N}$	[-]	7,7						
Factor for uncracked concrete	$\mathbf{k}_1 = \mathbf{k}_{\text{ucr},N}$	[-]		11	1,0				
Characteristic resistance	N^0 Rk,sp	[kN]	Min (N _{Rk,p} ; N ⁰ _{Rk,c}) 1)						
Spacing	Scr,N Scr,sp	[mm]	3 h _{ef}						
Edge distance	C _{cr,N} C _{cr,sp}	[mm]		1,5	h _{ef}				

¹⁾ N⁰Rk,c according to EN 1992-4

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under tension loading in cracked and uncracked concrete	Annex C2

Table C2: Characteristic shear resistance for HST2 and HST2-R in cracked and uncracked concrete

			M8	M10	M12	M16
Steel failure		I				l
HST2						
Characteristic resistance	V^0 Rk,s	[kN]	11,4	21,6	31,4	55,3
Partial safety factor	γMs ¹⁾	[-]		1,:	25	
Ductility factor	k ₇	[-]		1	,0	
HST2-R		•				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	15,7	25,3	36,7	63,6
Partial safety factor	γMs ¹⁾	[-]		1,:	25	
Ductility factor	k ₇	[-]		1	,0	
Steel failure with lever arm		•				
HST2						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	25	55	93	240
Partial safety factor	γ _{Ms} 1)	[-]		1,:	25	
HST2-R		•				
Characteristic resistance	M ⁰ Rk,s	[Nm]	27	53	93	216
Partial safety factor	γ _{Ms} 1)	[-]	1,25			
Concrete pryout failure		•				
HST2 and HST2-R						
Installation safety factor	γinst	[-]		1,	00	
Pryout factor	k ₈	[-]	2,0	2,0	2,2	2,5
Concrete edge failure						
HST2 and HST2-R						
Effective length of anchor in shear loading	l _f	[mm]	47	60	70	82
Diameter of anchor	d_{nom}	[mm]	8	10	12	16
Installation safety factor	γinst	[-]		1,	00	

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under shear loading in cracked and uncracked concrete	Annex C3

Table C3: Displacements under tension and shear loads for HST2 and HST2-R for static and quasi static loading

			M8	M10	M12	M16
Displacements under tension load	ling					•
HST2						
Tension load in cracked concrete	N	[kN]	2,0	4,3	5,7	9,5
Corresponding displacement	δηο	[mm]	1,3	0,2	0,1	0,5
Johnsponding displacement	δ _{N∞}	[mm]	1,2	1,0	1,2	1,2
Tension load in uncracked concrete	N	[kN]	3,6	7,6	9,5	16,7
Componentian displacement	δηο	[mm]	0,2	0,1	0,1	0,4
Corresponding displacement	δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
HST2-R		•		•		
Tension load in cracked concrete	N	[kN]	2,4	4,3	5,7	11,9
Corresponding displacement	δηο	[mm]	0,6	0,2	0,8	1,0
	δ _{N∞}	[mm]	1,5	1,2	1,4	1,2
Tension load in uncracked concrete	N	[kN]	4,3	7,6	9,5	16,7
Composition displacement	δηο	[mm]	0,1	0,1	0,1	0,1
Corresponding displacement	δ _{N∞}	[mm]	1,5	1,2	1,4	1,2
Displacements under shear loadir	ng	•		1	1	•
HST2						
Shear load in cracked and un- cracked concrete	V	[kN]	6,5	12,3	17,9	31,6
Corresponding displacement	δνο	[mm]	2,0	2,3	3,3	4,0
Corresponding displacement	δν∞	[mm]	3,1	3,4	4,9	6,0
HST2-R		•		•	•	•
Shear load in cracked and un- cracked concrete	V	[kN]	9,0	14,5	21,0	36,3
Corresponding displacement	δ_{V0}	[mm]	1,9	4,3	6,0	2,9
Corresponding displacement	δ∨∞	[mm]	2,9	6,4	9,1	4,4

Hilti metal expansion anchor HST2 and HST2-R	
Performances Displacements under tension and shear loading	Annex C4

Table C4: Characteristic tension resistance for seismic loading for HST2, performance category C1

			M8	M10	M12	M16
Steel failure		·				•
HST2						
Characteristic resistance	$N_{Rk,s,C1}$	[kN]	3)	31,4	44,8	78,2
Partial safety factor	γMs,C1 ¹⁾	[-]	3)		1,40	
Pullout failure						
HST2						
Characteristic resistance	$N_{Rk,p,C1}$	[kN]	3)	8,0	10,7	18,0
Installation safety factor	γinst	[-]	3)		1,00	
Concrete cone failure 2)						
HST2						
Installation safety factor	γinst	[-]	3)		1,00	
Splitting failure 2)		•				
HST2						
Installation safety factor	γinst	[-]	3)		1,00	

¹⁾ In absence of other national regulations

Annex C5

 $^{^{2)}}$ For concrete cone failure and splitting failure see EN 1992-4:2018

³⁾ No performance assessed

Table C5: Characteristic shear resistance for seismic loading for HST2, performance category C1

			M8	M10	M12	M16
Steel failure		•				•
HST2						
Partial safety factor	γMs,C1 ¹⁾	[-]	3)		1,25	
Installation with Hilti filling set						
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	3)	16,0	27,0	41,3
Reduction factor according to EN 1992-4:2018	$lpha_{\sf gap}$	[-]	3)		1,0	
Installation without Hilti filling set						
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	3)	16,0	27,0	41,3
Reduction factor according to EN 1992-4:2018	$lpha_{\sf gap}$	[-]	3)		0,5	
Concrete pryout failure 2)						
HST2						
Installation safety factor	γinst	[-]	3)		1,00	
Concrete edge failure 2)						
HST2						
Installation safety factor	γinst	[-]	3)		1,00	

¹⁾ In absence of other national regulations

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic shear resistance for performance category C1	Annex C6

²⁾ For concrete pryout failure and concrete edge failure see EN 1992-4:2018

 $^{^{}m 3)}$ No performance assessed

Table C6: Characteristic tension resistance for seismic loading for HST2, performance category C2

			M8	M10	M12	M16
Steel failure		•				
HST2						
Characteristic resistance	N _{Rk,s,C2}	[kN]	3)	31,4	44,8	78,2
Partial safety factor	γMs,C2 ¹⁾	[-]	3)		1,40	
Pullout failure						
HST2						
Characteristic resistance	N _{Rk,p,C2}	[kN]	3)	3,3	10,0	12,8
Installation safety factor	γinst	[-]	3)		1,00	
Concrete cone failure ²⁾		•				
HST2						
Installation safety factor	γinst	[-]	3)		1,00	
Splitting failure 2)		•				
HST2						
Installation safety factor	γinst	[-]	3)		1,00	

¹⁾ In absence of other national regulations

Table C7: Displacements under tension loads for seismic loading for HST2, performance category C2

			M8	M10	M12	M16
Displacements under tension	n loading					
HST2						
Displacement DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	3)	1,4	6,7	4,0
Displacement ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	3)	8,6	15,9	13,3

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic tension resistance and displacements for performance category C2	Annex C7

²⁾ For concrete cone failure and splitting failure see EN 1992-4:2018

³⁾ No performance assessed

Table C8: Characteristic shear resistance for seismic loading for HST2, performance category C2

			М8	M10	M12	M16
Steel failure		•				•
HST2						
Partial safety factor	γMs,C2 ¹⁾	[-]	3)		1,25	
Installation with Hilti filling set						
Characteristic resistance	V _{Rk,s,C2}	[kN]	3)	16,0	24,2	41,3
Reduction factor according to EN 1992-4:2018	$lpha_{\sf gap}$	[-]	3)		1,0	
Installation without Hilti filling set						
Characteristic resistance	$V_{Rk,s,C2}$	[kN]	3)	16,0	24,2	41,3
Reduction factor according to EN 1992-4:2018	$lpha_{\sf gap}$	[-]	3)		0,5	
Concrete pryout failure 2)		·		•		
HST2						
Installation safety factor	γinst	[-]	3)		1,00	
Concrete edge failure 2)						
HST2						
Installation safety factor	γinst	[-]	3)		1,00	

¹⁾ In absence of other national regulations

Table C9: Displacements under shear loads for seismic loading for HST2, performance category C2

			М8	M10	M12	M16
Displacements under tensio	n loading					
HST2						
Displacement DLS	δ V,C2(DLS)	[mm]	3)	4,7	4,8	5,7
Displacement ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	3)	7,7	7,9	8,9

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic shear resistance and displacements for performance category C2	Annex C8

²⁾ For concrete pryout failure and concrete edge failure see EN 1992-4:2018

³⁾ No performance assessed

Table C10: Characteristic tension resistance under fire exposure for HST2 and HST2-R in cracked and uncracked concrete

				M8	M10	M12	M16
Steel failure			•				
HST2 and HST2-R							
	R30	$N_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
Characteristic resistance	R60	$N_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
Characteristic resistance	R90	$N_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Pullout failure							
HST2 and HST2-R							
	R30	$N_{Rk,p,fi}$	[kN]			3,0	5,0
Characteristic resistance in concrete ≥ C20/25	R60	$N_{Rk,p,fi}$	[kN]	1,3	2,3		
	R90	$N_{Rk,p,fi}$	[kN]				
	R120	$N_{Rk,p,fi}$	[kN]	1,0	1,8	2,4	4,0
Concrete cone failure							
HST2 and HST2-R							
	R30	N^0 Rk,c,fi	[kN]				
Characteristic resistance	R60	$N^0_{Rk,c,fi}$	[kN]	2,7	5,0	7,4	11,0
in concrete ≥ C20/25	R90	N ⁰ Rk,c,fi	[kN]				
	R120	N ⁰ Rk,c,fi	[kN]	2,2	4,0	5,9	8,8
Cassina		Scr,N	[mm]		4 h	1 ef	
Spacing		Smin	[mm]	50	55	60	80
		C _{cr,N}	[mm]		2 h	1 ef	
Edge distance		C _{min}	[mm]	Fire attack from one side: 2 h _{ef} Fire attack from more than one side: ≥ 300			

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

Hilti metal expansion anchor HST2 and HST2-R	
Performances Characteristic values of resistance under tension loading under fire exposure in cracked and uncracked concrete	Annex C9

Table C11: Characteristic shear resistance under fire exposure for HST2 and HST2-R in cracked and uncracked concrete

				M8	M10	M12	M16
Steel failure without leve	r arm						•
HST2 and HST2-R							
Characteristic resistance	R30	$V_{Rk,s,fi}$	[kN]	0,9	2,5	5,0	9,0
	R60	$V_{Rk,s,fi}$	[kN]	0,7	1,5	3,5	6,0
	R90	$V_{Rk,s,fi}$	[kN]	0,6	1,0	2,0	3,5
	R120	$V_{Rk,s,fi}$	[kN]	0,5	0,7	1,0	2,0
Steel failure with lever a	rm		•				
HST2 and HST2-R							
	R30	M ⁰ Rk,s,fi	[Nm]	1,0	3,3	8,1	20,6
Ob t	R60	M^0 _{Rk,s,fi}	[Nm]	0,8	2,4	5,7	14,4
Characteristic resistance	R90	M ⁰ Rk,s,fi	[Nm]	0,7	1,6	3,2	8,2
	R120	M ⁰ Rk,s,fi	[Nm]	0,6	1,2	2,0	5,1
Concrete pryout failure							•
HST2 and HST2-R							
Pryout factor		k ₈	[-]	2,00	2,00	2,20	2,50
	R30	V^0 Rk,cp,fi	[kN]				
Characteristic resistance	R60	V ⁰ Rk,cp,fi	[kN]	5,4	10,0	16,0	27,2
in concrete ≥ C20/25	R90	V^0 Rk,cp,fi	[kN]				
	R120	V^0 Rk,cp,fi	[kN]	4,4	8,0	12,9	21,7

Concrete edge failure

HST2 and HST2-R

The initial value $V^0_{Rk,c,fi}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by: $V^0_{Rk,c,fi} = 0,25 \times V^0_{Rk,c}$ ($\leq R90$) $V^0_{Rk,c,fi} = 0,20 \times V^0_{Rk,c}$ (R120) with $V^0_{Rk,c}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

Hilti metal expansion anchor HST2 and HST2-R	
Third metal expansion anchor 11312 and 11312-N	
Performances	Annex C10
Characteristic values of resistance under shear loading under fire exposure in cracked and uncracked concrete	