

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-15/0476 vom 1. Juni 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

TUF-S

Anker zur rückseitigen Befestigung von Fassadenplatten aus dekorativen Hochdruck-Schichtpressstoffplatten (HPL) gemäß EN 438-7:2005

SFS Group Schweiz AG Rosenbergsaustrasse 10 CH - 9435 Heerbrugg SCHWEIZ

Werke der SFS Group Schweiz AG

17 Seiten, davon 4 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330030-00-0601, Edition 10/2018

ETA-15/0476 vom 4. Mai 2021

Europäische Technische Bewertung ETA-15/0476

Seite 2 von 17 | 1. Juni 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z39608.22 8.06.01-99/22

Europäische Technische Bewertung ETA-15/0476

Seite 3 von 17 | 1. Juni 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Der TUF-S-6xL ist ein Befestiger aus nichtrostendem Stahl für die Befestigung von HPL-Fassadenplatten gemäß EN 438-7:2005 mit Metallunterkonstruktion. Der Befestiger besteht aus einem Dorn aus verzinktem Kohlenstoffstahl und einer nichtrostende Stahlhülse. Der Befestiger wird in ein Bohrloch gesteckt und durch Ziehen des Dorns in die Fassadenplatte gesetzt. Das Ausziehen des Dorns weitet die Hülse aus und drückt das Gewinde in die Fassadenplatte ein.

Die Produktbeschreibung ist in Anhang A angegeben. Die in den Anhängen nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen der Ankerteile müssen den in der technischen Dokumentation dieser ETA festgelegten Angaben entsprechen.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Anker entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Ankers von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Widerstand gegen Plattenbruch oder Herausziehen unter Zugbeanspruchung	Siehe Anhang C 1 und C 2
Charakteristische Widerstand gegen Plattenbruch oder Herausziehen unter Querbeanspruchung	Siehe Anhang C 1 und C 2
Charakteristische Widerstand gegen Plattenbruch oder Herausziehen unter kombinierter Zug- und Querbeanspruchung	Siehe Anhang C 1 und C 2
Achs- und Randabstände	Siehe Anhang C1
Dauerhaftigkeit	Korrosionsbeständigkeitsklasse (CRC) III gemäß EN 1993-1-4:2015
Charakteristische Widerstand gegen Stahlversagen unter Zug- und Querbeanspruchung	Siehe Anhang C 2

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

Z39608.22 8.06.01-99/22

Europäische Technische Bewertung ETA-15/0476

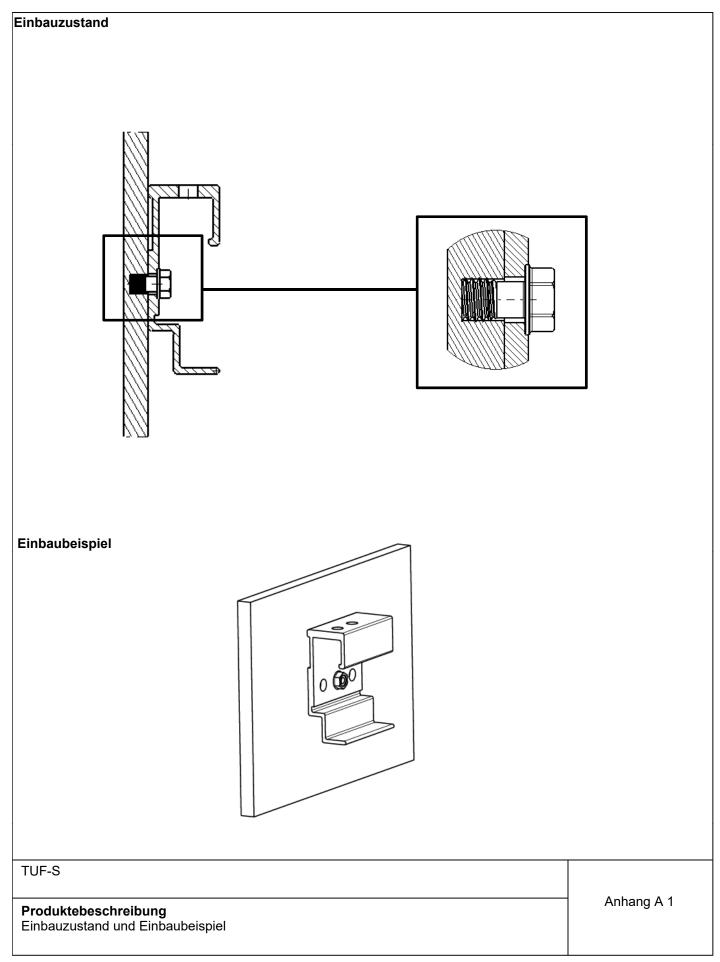
Seite 4 von 17 | 1. Juni 2022

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330030-00-0601 gilt folgende Rechtsgrundlage: [97/161/EG].

Folgendes System ist anzuwenden: 2+

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 1. Juni 2022 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Aksünger

Z39608.22 8.06.01-99/22

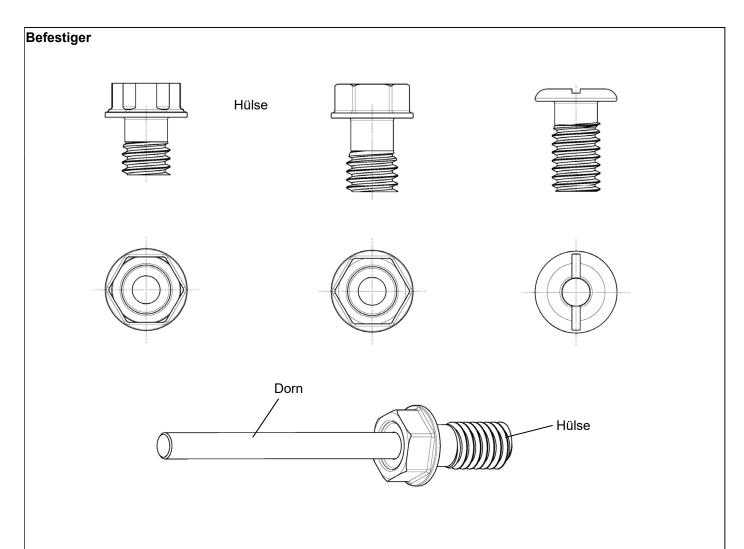


Tabelle 1

Befestigerteile	Material
Hülse	Nichtrostender Stahl A4
Dorn	Kohlenstoffstahl verzinkt

TUF-S	
Produktebeschreibung	Anhang A 2
Systemkomponenten	

Spezifikation des Verwendungszwecks

Beanspruchungen:

• Statische und quasi-statische Lasten

Verankerungsgrund

- Die HPL-Fassadenplatten müssen nach EN 438-6:2014 als "EDS" oder "EDF" klassifiziert sein
- Die Mindestanforderungen an die Fassadenplatten sind in der folgenden Tabelle dokumentiert

Tabelle 2: Mindestanforderungen an die Fassadenplatten

die	Plattendicke	h≥	[mm]	8
Werte für d latten	Biegefestigkeit 1)		NI/mama2	≥ 100
			N/mm ²	≥ 130
Charakteristische Werte für die Fassadenplatten	Biegemodul	$E_T^{3)}$	N/mm²	10000
		$E_L^{(3)}$	IN/IIIII1111111111111111111111111111111	14000
Charak	Maximale Wasseraufnahme gemäß EN 438-2:2016-06, Abschnitt 15 (Resistance to wet conditions)	δ_{w}	[%]	2,00

1) σ_{fm} gemäß EN ISO 178:2013-09 2) $\sigma_{fm,T}$: Biegefestigkeit in Querrichtung $\sigma_{fm,L}$: Biegefestigkeit in Längsrichtung 3) E_T : Biegemodul in Querrichtung E_L : Biegemodul in Längsrichtung

Anwendungsbedingung (Umgebungsbedingungen)

Gemäß EN 1993-4:2015 entsprechend der Korrosionsbeständigkeitsklasse (CRC) III

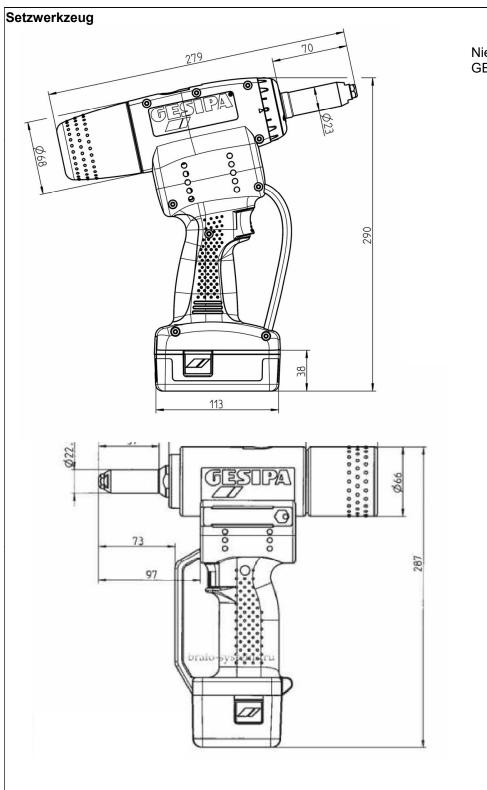
Bemessung:

• Die Bemessung der Fassadenplatten und deren Befestigung erfolgt gemäß Anhang D 1 und D 2.

TUF-S	
Verwendungszweck Spezifikation	Anhang B 1

Installation

- Jede Fassadenplatte wird zwängungsfrei mit mindestens vier rechteckig angeordneten Befestigungselementen befestigt.
- Die Unterkonstruktion wird so ausgeführt, dass die Fassadenplatten zwängungsfrei mit Hilfe von verschieblichen Befestigungspunkten und je einem Festpunkt befestigt werden können.
- Die Materialdicke der Agraffen oder der Tragschienen beträgt mindestens 2,0 mm und wird mindestens aus Aluminium mit $R_m \ge 215 \text{ N/mm}^2$ hergestellt.
- Die Bohrungen werden entweder im Herstellwerk oder auf der Baustelle ausgeführt mit Hilfe von speziellen, von SFS intec zur Verfügung gestellten, Bohrwerkzeugen ausgeführt. Die Bohrungen werden von geschultem Personal ausgeführt.
- Der Vorbohrdurchmesser der Fassadenplatten beträgt Ø 5,9 mm bis 6,0 mm.
- Die Bohrung erfolgt immer im 90°-Winkel zur Plattenoberfläche.
- Der minimale Randabstand der Bohrungen beträgt 40,0 mm.
- Die Agraffen oder Tragschienen werden mit Ø 6,5 mm bis 7,0 mm vorgebohrt.
- Mindestens 1 % der Bohrlöcher müssen hinsichtlich der Geometrie überprüft werden.
- Die Fassadenplatten, deren Befestigungen sowie die Unterkonstruktion, inklusive der Wandhalterungen und deren Befestigungen werden für die jeweilige Anwendung von einem verantwortlichen, im Bereich Fassadenkonstruktionen ausgebildeten Ingenieur, bemessen.
- Die Fassadenplatten werden von geschultem Personal, unter Berücksichtigung der Vorgaben des Herstellers, installiert.
- Überkopfmontage ist für Platten von Trespa International B.V und Fundermax GmbH möglich.


TUF-S	
Verwendungszweck Anforderungen an die HPL-Fassadenplatten	Anhang B 2

745722.22 8.06.01-99/22

Nietwerkzeug GESIPA PowerBird Pro

> Nietwerkzeug GESIPA PowerBird

TUF-S

Verwendungszweck Setzwerkzeug Anhang B 4

Definition der Rand- und Achsabstände

Legende:

a_{rx,y} = Randabstand - Abstand der Anker zum Plattenrand

a_{x,y} = Abstand zwischen benachbarten Ankern order zwischen äußeren Ankern von Ankergruppen

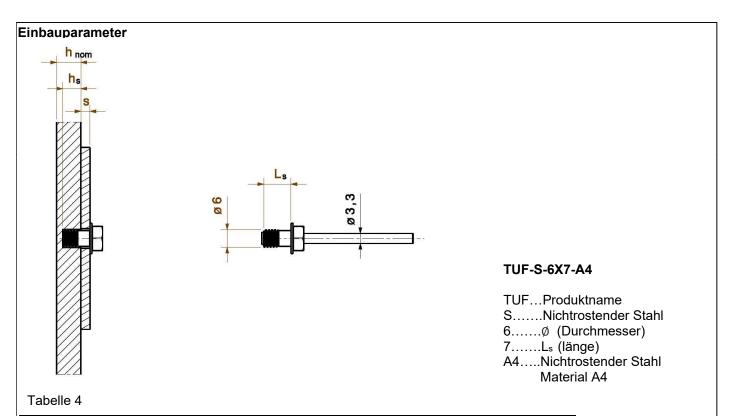
a_D = Abstand der Anker in einer Ankergruppe

L_x = größere Länge der Fassadenplatte

Ly = kleinere Länge der Fassadenplatte

++ = horizontaler Gleitpunkt (freies Lager)

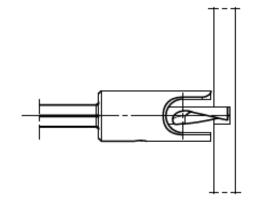
= horizontaler und vertikaler Gleitpunkt (freies Lager)


TUF-S

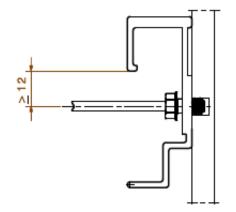
Verwendungszweck

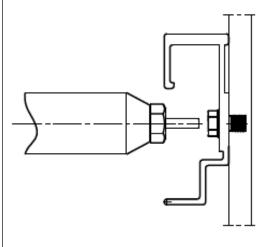
Definition der Rand- und Achsabstände

Anhang B 5



nominelle Plattendicke	Agraffendicke	Verankerungstiefe	TUF-S
8,0 mm	2,0 mm	5,0 mm	TUF-S-6x7-A4
		5,5 mm	TUF-S-6x7.5-A4
		6,0 mm	TUF-S-6x8-A4
	2,5 mm	5,0 mm	TUF-S-6x7.5-A4
		5,5 mm	TUF-S-6x8-A4
		6,0 mm	TUF-S-6x8.5-A4
	3,0 mm	5,0 mm	TUF-S-6x8-A4
		5,5 mm	TUF-S-6x8.5-A4
	3,5 mm	5,0 mm	TUF-S-6x8.5-A4
		5,5 mm	TUF-S-6x9-A4
	5,0 mm	5,0 mm	TUF-S-6x10-A4
		6,0 mm	TUF-S-6x11-A4
10,0 mm	3,0 mm	6,0 mm	TUF-S-6x9-A4
		7,0 mm	TUF-S-6x10-A4
		8,0 mm	TUF-S-6x11-A4
	3,5 mm	6,5 mm	TUF-S-6x10-A4
		7,5 mm	TUF-S-6x11-A4
	5,0 mm	7,0 mm	TUF-S-6x12-A4
		8,0 mm	TUF-S-6x13-A4
12,0 mm – 13,0 mm	3,0 mm	8,0 mm	TUF-S-6x11-A4
	3,5 mm	8,5 mm	TUF-S-6x12-A4
	5,0 mm	8,0 mm	TUF-S-6x13-A4


TUF-S	A 1 B 0
Verwendungszweck Einbauparameter	Anhang B 6


Montageanleitung

Sacklochbohrung in die Platte erstellen. Mit einem Ø 6mm HSS Bohrer, mittels Tiefenanschlag, oder auf der CNC-Maschine.

Positionierung der vorgebohrten Agraffe über den in der Platte befindlichen Löcher und einstecken des TUF-S Befestiger

Setzen mittels Nietsetzgerät.
Wichtig: Druck beim Setzvorgang ausüben.
Den Dorn komplett mit dem Nietsetzwerkzeug abziehen.
(GESIPA PowerBird, PowerBird Pro, mittels Mundstück 17/36 or 17/40)

TUF-S

Verwendungszweck Installationsanleitung Anhang B 7

Charakteristische Kennwerte für den Anker

Tabelle 5: Charakteristische Werte für den Anker mit Einzelagraffe

Einzelagraffe											
ıker	Setztiefe 2)			[mm]	5,0	5,5	6,0	6,5	7,0	7,5	8,0
en Ar	Charakteristi-	zentr. Zug 1)	N _{Rk}	[kN]	1,12	1,26	1,40	1,65	1,90	1,97	2,04
für d	scher Widerstand	Querzug	V _{Rk}	[kN]	2,78	2,89	2,99	3,28	3,57	3,79	4,00
Verte	Teilsicherheitsbeiwert		γ _M ³⁾	[-]	1,8						
che V	Randabstand		ar	[mm]] ≥ 40						
ristisc	Achsabstand		а	[mm]] ≥ 100						
Charakteristische Werte für den Anker	Wert für trilinear kombinierter Zu Querbeanspruc	g- und	х	[-]	1,0						

Tabelle 6: Charakteristische Werte für Anker mit Doppelagraffe (20,0 mm ≤ a_D < 40,0 mm)

Doppelagraffe mit 20,0 mm ≤ a _D < 40,0 mm											
· 	Setztiefe 2)			[mm]	5,0	5,5	6,0	6,5	7,0	7,5	8,0
r zwe	Charakteristi-	zentr. Zug ¹⁾	N _{Rk}	[kN]	1,93	2,03	2,11	2,41	2,71	2,71	2,71
rte fü	scher Widerstand	Querzug	V _{Rk}	[kN]	4,85	4,85	4,85	5,83	6,80	6,80	6,80
sche We Anker	Teilsicherheitsbeiwert		γ _M ³⁾	[-]	1,8						
stisch	Randabstand		ar	[mm]] ≥ 40						
akteris	Achsabstand		а	[mm]] ≥ 100						
Charakteristische Werte für zwei Anker	Wert für trilinear kombinierter Zu Querbeanspruc	g- und	Х	[-]	1,0						

- 1) Werte gelten für Biegewinkel der Fassadenplatte von ß ≤ 1,0° (Definition von ß siehe Anhang D 1)
- 2) Eine minimale verbleibende Plattendicke (Plattendicke Setztiefe) von 2,0 mm ist erforderlich. Charakteristische Widerstände für Zwischenwerte der Setztiefe dürfen durch lineare Interpolation ermittelt werden.
- 3) Falls keine nationalen Regelungen vorhanden sind.

TUF-S	
Leistungen Charakteristische Kennwerte für den Anker	Anhang C 1

Tabelle 7: Charakteristische Werte für Anker mit Doppelagraffe (40,0 mm ≤ a_D < 100,0 mm)

Doppelagraffe mit 40,0 mm ≤ a _D < 100,0 mm											
Charakteristische Werte für zwei Anker	Setztiefe ²⁾			[mm]	5,0	5,5	6,0	6,5	7,0	7,5	8,0
	Charakteristi- scher Widerstand	zentr. Zug ¹⁾	N _{Rk}	[kN]	2,07	2,26	2,44	3,17	3,89	3,89	3,89
		Querzug	V _{Rk}	[kN]	4,85	4,85	4,85	5,83	6,80	6,80	6,80
	Teilsicherheitsbeiwert		γм ³⁾	[-]	1,8						
	Randabstand		a _r	[mm]	≥ 40						
	Achsabstand		а	[mm]	≥ 100						
	Wert für trilineare Funktion bei kombinierter Zug- und Querbeanspruchung		х	[-]	1,0						

- 1) Werte gelten für Biegewinkel der Fassadenplatte von ß ≤ 1,0° (Definition von ß siehe Anhang D 1)
- 2) Eine minimale verbleibende Plattendicke (Plattendicke Setztiefe) von 2,0 mm ist erforderlich. Charakteristische Widerstände für Zwischenwerte der Setztiefe dürfen durch lineare Interpolation ermittelt werden.
- 3) Falls keine nationalen Regelungen vorhanden sind.

Tabelle 8: Charakteristische Werte für Stahlversagen

Größe			TUF-S-6xL
Charakteristischer Widerstand bei Zugbeanspruchung	$N_{Rk,s}$	[kN]	7,19
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}}^{3)}$	[-]	2,5
Charakteristischer Widerstand bei Querbeanspruchung	$V_{Rk,s}$	[kN]	5,23
Teilsicherheitsbeiwert	$\gamma_{\text{Ms}}^{3)}$	[-]	2,5

3) Falls keine nationalen Regelungen vorhanden sind.

TUF-S	
Leistungen Charakteristische Kennwerte für den Anker und Stahlversagen	Anhang C 2

Bemessungsgrundlagen

Einwirkung:

Die Bemessungswerte der Einwirkungen errechnen sich auf Basis von EN 1990:2010 unter Berücksichtigung aller auftretenden Lasten. Die Lastkombinationen sind entsprechend EN 1990:2010 zu bilden. Für die Belastungen sind die Angaben aus EN 1991-1-1:2010 bis EN 1991-1-7:2010 zu Grunde zu legen.

Entsprechende nationale Vorschriften sind zu berücksichtigen. Die ungünstigste Kombination ist maßgebend. Gegebenenfalls sind mehrere Kombinationen getrennt für Anker- und Plattenbemessung zu untersuchen.

Die typischen Grundkombinationen für Fassadenplatten berücksichtigt die Einwirkung von Eigengewicht $F_{Ek,G}$ (ständige Lasten) und Wind $F_{Ek,w}$ (veränderliche Lasten)

Nach EN 1990:2010 ergeben sich somit folgende Grundkombinationen für eine senkrecht angeordnete Fassadenplatte abhängig von der Lastrichtung:

Grundkombination für Lasten parallel zur Platte: $F_{\text{EdII}} = F_{\text{Ek,G}} \cdot \gamma_{G}$

Grundkombination für Lasten senkrecht zur Platte: $F_{Ed\perp} = F_{Ek,w} \cdot \gamma_Q$

mit
$$\gamma_G = 1,35$$
; $\gamma_Q = 1,50$

Widerstand:

$$\overline{N_{Rd}} = \frac{N_{Rk}}{Y_{M}} \cdot \alpha_{F0} \cdot \alpha_{bend} \cdot \alpha_{wet} \cdot \alpha_{oh}$$

$$V_{Rd} = \frac{V_{Rk}}{V_M} \bullet \alpha_{F0} \bullet \alpha_{wet}$$

$$\sigma_{Rd} = \frac{\sigma_{Rk}}{\gamma_{M}}$$

mit:

 N_{Rk} = charakteristische Zugtragfähigkeit aus Anhang C 1, Tabelle 5 – 7

V_{Rk} = charakteristische Querzugtragfähigkeit aus Anhang C 1, Tabelle 5 – 7

σ_{Rk} = charakteristische Biegefestigkeit gemäß EN 438:2005

 α_{F0} = Wenn die Fassadenplatten nicht die Mindestanforderungen gemäß Anhang B 1, Tabelle 2 erfüllen, sind die charakteristischen Tragfähigkeitswerte zusätzlich mit dem folgenden Faktor α_{F0} zu multiplizieren.

$$\alpha_{F0} = \min \left\{ \frac{\sigma_{f,L,min}}{130 \text{ N/mm}^2}; \frac{E_{L,min}}{14000 \text{ N/mm}^2}; \frac{\sigma_{f,T,min}}{100 \text{ N/mm}^2}; \frac{E_{T,min}}{10000 \text{ N/mm}^2}; 1 \right\}$$

 α_{bend} = Abminderungsfaktor für die Biegung der Platte

Definition des Biegewinkels der Fassadenplatten

$$\mathcal{L} = \arctan\left(\frac{u_{\text{max}}}{L/2}\right)$$

$$\beta \le 1.0^{\circ}$$
 => $\alpha_{bend} = 1.0$
1.0° < $\beta \le 1.5^{\circ}$ => $\alpha_{bend} = 0.89$

$$1.5^{\circ} < \beta \le 2.0^{\circ} \implies \alpha_{\text{bend}} = 0.80$$

 α_{wet} = Wenn die Fassadenplatten die Mindestanforderungen bezüglich der maximalen Wasseraufnahme von δ_{w} = 2,0 % gemäß Tabelle 2 nicht erfüllen, sind die charakteristischen Werte der Tragfähigkeit zusätzlich mit dem Faktor α_{wet} = 0,78 zu multiplizieren.

αοh = Bei Überkopfbefestigung ist die charakteristische Zugtragfähigkeit um 0,9 zu reduzieren

$$\gamma_{\rm M} = 1.8$$

TUF-S

Informativ
Bemessungsverfahren

Anhang D 1

Nachweis:

Die Berechnung ist linear elastisch zu führen. Für den jeweiligen Anwendungsfall ist die Steifigkeit der Unterkonstruktion zu berücksichtigen.

Für die ermittelten Ankerkräfte sind nachzuweisen, dass die folgenden Gleichungen eingehalten sind:

Gleichung 1: $\frac{N_{Ed}}{N_{I}} \le 1$

N_{Rd}

Gleichung 2: $\frac{V_{Ed}}{V_{Dd}} \le 1$

Gleichung 3: $\frac{V_{Ed}}{V_{Rd}} + \frac{N_{Ed}}{N_{Rd}} \le X$

mit:

N_{Ed} = Bemessungswert der vorhandenen Ankerzugkraft

V_{Ed} = Bemessungswert der vorhandenen Ankerquerkraft

N_{Rd} = Bemessungswert der Tragfähigkeit für zentrischen Zug

V_{Rd} = Bemessungswert der Tragfähigkeit für Querzug

X = siehe Anhang C1

Für die ermittelten Biegezugspannungen der Fassade ist nachzuweisen, dass folgende Gleichung eingehalten ist

Gleichung 4: $\frac{\sigma_{Ed}}{\sigma_{Dd}} \le 1$

mit:

 σ_{Ed} = Bemessungswert der vorhandenen Biegezugspannung in der Fassadenplatte

 σ_{Rd} = Bemessungswert der Biegezugfestigkeit

Nachweis gegen Stahlversagen

$$\frac{N_{Ed}}{N_{Pd,s}} \le 1,0$$

$$\frac{V_{Ed}}{V_{Dd}} \le 1$$

$$\left(\frac{N_{Ed}}{N_{Rd,s}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,s}}\right)^2 \le 1,0$$

N_{Ed}: Bemessungswert der einwirkenden Zugkraft

N_{Rd,s:} Bemessungswert der Stahltragfähigkeit des Befestigers bei einwirkender Zugkraft

 $N_{Rd,s} = N_{Rk,s} / \gamma_{Ms}$

N_{Rk,s} : Charakteristischer Wert der Stahltragfähigkeit des Befestigers bei einwirkender Zugkraft

V_{Ed}: Bemessungswert der einwirkenden Querkraft

V_{Rd,s}: Bemessungswert der Stahltragfähigkeit des Befestigers bei einwirkender Querkraft

 $V_{Rd,s} = V_{Rk,s} / \gamma_{Ms}$

V_{Rk,s} : Charakteristischer Wert der Stahltragfähigkeit des Befestigers bei einwirkender Querkraft

TUF-S	
Informativ Bemessungsverfahren	Anhang D 2