

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0308 of 28 April 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TURBO SMART concrete screw

Mechanical fasteners for use in concrete

pgb - Polska Sp. z o.o. ul. Fryderyka Wilhelma Redena 3 41-807 ZABRZE POLEN

manufacturing plant 3

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-16/0308 issued on 11 December 2019

European Technical Assessment ETA-16/0308

Page 2 of 22 | 28 April 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0308

Page 3 of 22 | 28 April 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TURBO SMART concrete screw is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C7
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C3 to C5, C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C6

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-16/0308

Page 4 of 22 | 28 April 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

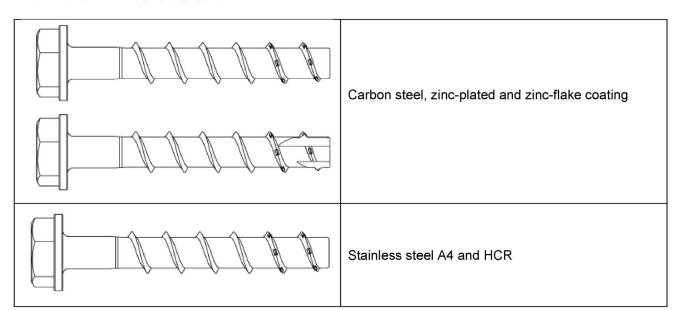
The system to be applied is: 1

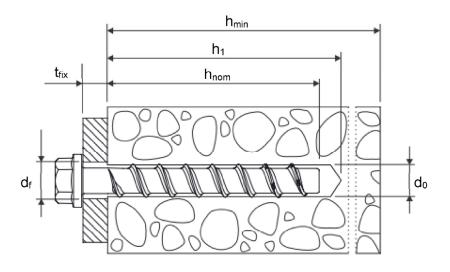
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 28 April 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock


Head of Section


beglaubigt:
Tempel

Product and installed condition

TURBO SMART concrete screw

 d_0 = nominal drill bit diameter h_{nom} = nominal anchorage depth h_1 = depth of the drill hole

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

TURBO SMART concrete screw

Product description

Installed condition

Annex A1

Z40354.22

TURBO SMART Product descri Versions		'ew	Annex A2
11	0	TURBO SMART S-BSI	Concrete screw with internal metric thread and hexagon drive
10		TURBO SMART S-BSA	Concrete screw with connection thread and hexagon socket drive
9	0	TURBO SMART S-BSS	Concrete screw with hexagon drive and connection thread
8		TURBO SMART S-BSB	Concrete screw with hexagonal head and connection thread
7	0	TURBO SMART S-BSE	Concrete screw with countersunk head and connection thread
6	30,00	TURBO SMART S-BSF	Concrete screw with large pan head
5		TURBO SMART S-BSP	Concrete screw with pan head
4	1544 87	TURBO SMART S-BSV	Concrete screw with countersunk head
3	3, 0	TURBO SMART S-BSH	Concrete screw version with hexagon head
2	(Sp. 0)	TURBO SMART S-BSM	Concrete screw version with hexagon head with pressed-on washer and T-drive
1	(5) 6)	TURBO SMART S-BSZ	Concrete screw version with hexagon head with pressed-on washer

Table A1: Materials

Part	Туре	Material	f _{yk}	f _{uk}	A 5
All	TURBO SMART	Steel EN 10263-4:2017, zinc-plated acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 (≥ 5µm)	500 NV 2	700 11/	1.007
types	TURBO SMART A4	1.4401, 1.4404, 1.4571, 1.4578	560 N/mm²	700 N/mm²	≤ 8%
	TURBO SMART HCR	1.4529			

 f_{yk} = nominal characteristic steel yield strength f_{uk} = nominal characteristic steel ultimate strength

A₅ = Rupture at elongation

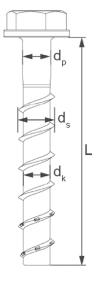
Table A1: Dimensions

Anchor size			6	6	8		10		12			14				
Name in all and a discount	al a .a.4la	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal embedment	aeptn	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d _k	[mm]	5,1 7,1				9,1 11,1				13,1					
Thread outer diameter	d _s	[mm]	7	7,5 10,6				12,6		14,6		5	16,6			
Shaft diameter	d _p	[mm]	5	,7		7,9		9,9			11,7			13,7		

Marking:

TURBO SMART (Zinc plated and Zinc flake)

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100


TURBO SMART A4

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: A4

TURBO SMART HCR

Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: HCR

TURBO SMART concrete screw

Product description

Materials, dimensions and markings

Annex A3

Intended use

Table B1: Anchorages subject to

TURBO SMART concrete screw 6			6 8			10		12		14					
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loads			All sizes and all embedment depths												
Fire exposure					-	All SIZE	s and	ı alı e	mbea	ment	aepın	S			
C1 category - seismic perform	mance	✓	✓	1	1)	✓	\	1)	✓	1)	✓	1)	✓
C2 category – seismic (A4 and HCR not suitable)		1) 1)			✓	1)	1)	✓	1)	✓	1)	✓	

No performance assessed

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III CRC V

High corrosion resistant steel according to Annex A3, screw with marking HCR:

TURBO SMART concrete screw

Intended use

Annex B1

Specification

Electronic copy of the ETA by DIBt: ETA-16/0308

Intended use

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, version February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3. Table B2.

Installation:

- Hammer drilling or hollow drilling; hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar SMART S-IRV, S-IRW or S-IRE.
- Adjustability according to Annex B6 for sizes 8-14, all embedment depths, but not for seismic loading
- Cleaning of borehole is not necessary, if using a hollow drill bit.

TURBO SMART concrete screw

Intended use
Specification

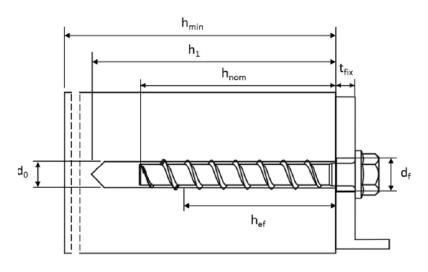

Annex B2

Table B2: Installation parameters	Table	B2:	Installation	parameters
-----------------------------------	-------	-----	--------------	------------

TURBO SMART concrete screw			6		8		10			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embeament depth		[mm]	40	55	45	55	65	55	75	85
Nominal drill hole diameter	d₀	[mm]	6	6		8			10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40 8,45			10,45				
Drill hole depth	h₀ ≥	[mm]	45	60	55	65	75	65	85	95
Clearance hole diameter	d _f ≤	[mm]	8	3	12			14		
Installation torque (version with connection thread)	T _{inst}	[Nm]	10 20 40				40			
Torque impact screw driver		[Nm]		Max. to	rque acco	ording to r	nanufactu	ırer's inst	ructions	
Torque impues solew univer		[]	16	30		300		400		

TURBO SMART concrete screw	TURBO SMART concrete screw size					14			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
		[mm]	65	85	100	75	100	115	
Nominal drill hole diameter	d ₀	[mm]		12			14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	12,50 14,50					14,50	
Drill hole depth	h₀ ≥	[mm]	75	95	110	85	110	125	
Clearance hole diameter	d _f ≤	[mm]		16			18		
Installation torque (version with connection thread)	T _{inst}	[Nm]	60 80						
Tanana inananta anan daina	[NIm]	N	Лах. torque	e according to	manufacture	r's instruct	ions		
Torque impact screw driver		[Nm]		650		650			

TURBO SMART concrete screw

Intended use

Installation parameters

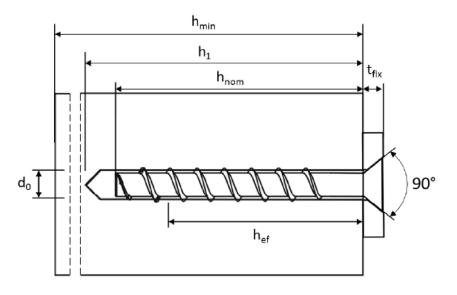
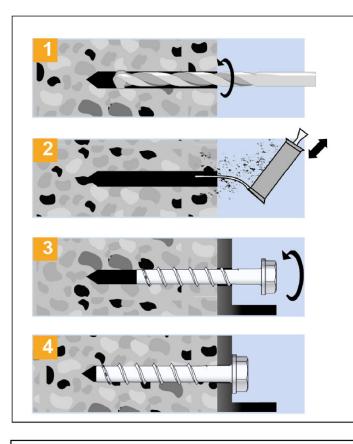

Annex B3

Table B3: Minimum thickness of member, minimum edge distance and minimum spacing

TURBO SMART concrete	screw s	ize	(6		8					
Name in all and a discount of a with		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	100		100		120	100	13	30	
Minimum edge distance	Cmin	[mm]	40		40	40 50			50		
Minimum spacing	Smin	[mm]	4	0	40	40 50			50		


TURBO SMART concrete	screw s	ize		12			14	
Naminal ambadment denth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth		[mm]	65 85		100	75	100	115
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170
Minimum edge distance	C _{min}	[mm]	50		70	50	70	
Minimum spacing	S _{min}	[mm]	5	50	70	50	-	70

TURBO SMART concrete screw	
Intended use Installation instructions	Annex B4

Installation instructions

1. Drilling:

Choose the correct drill diameter (d₀) and drilling depth (h₁). Create hammer drilled or hollow drilled borehole.

2. Cleaning of the drill hole:

Remove drill dust by vacuuming or blowing.

3. Installation:

Install the anchor by impact screwdriver or torque wrench.

4. Complete:

verify that the head is pressed to the fixture.

Remark: cleaning of borehole is not necessary when using an hollow drill bit

TURBO SMART concrete screw

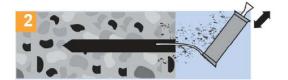
Intended use

Installation instructions

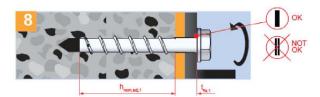
Annex B5

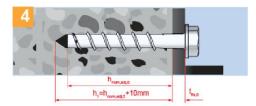
Z40354.22

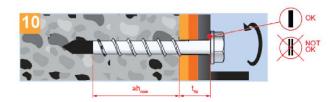
Electronic copy of the ETA by DIBt: ETA-16/0308


Electronic copy of the ETA by DIBt: ETA-16/0308

Installation instructions for adjustability





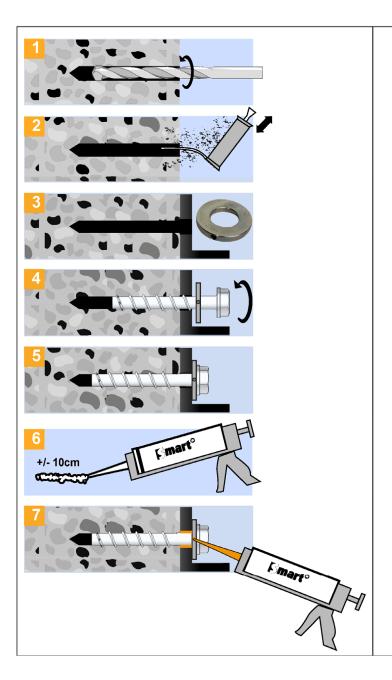


Installation instructions

TURBO SMART anchor may be adjusted maximum two times while the anchor may turn back at most 10 mm. The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be equal or larger than hnom.

TURBO SMART concrete screw


Intended use

Installation instructions for adjustability

Annex B6

Installation instructions - filling annular gap

1. Drilling:

Choose the correct drill diameter (d₀) and drilling depth (h₁). Create hammer drilled or hollow drilled borehole.

2. Cleaning of the drill hole:

Remove drill dust by vacuuming or blowing.

3. Filling washer:

After preparing the borehole (Annex B5, figure 1+2), position first the fixture and then the filling washer.

4. Installation:

Install the anchor by impact screwdriver or torque wrench.

- Installed condition without injected mortar in the filling washer
- Follow the instructions displayed on the chemical anchor cartridge and discard the mortar until the colour is constant.

7. Filling the annular gap:

Fill the annular gap with the injection mortar (minimum compression strength of 20 N/mm²)

Notes:

- For seismic loading the installation with filled and without filled annular gap is approved. Difference in performance can be found in Annex C3 C5.
- No consideration of curing time is necessary.

TURBO SMART concrete screw

Intended use

Installation instructions - Filling annular gap

Annex B7

Electronic copy of the ETA by DIBt: ETA-16/0308

Table C1: Cha	aracteristic val	ues for	static a	and au	asi-stat	ic loadi	na siza	25 6 8 2	and 10												
	T concrete screw		Statio .	-	3 51-5181	ic ioda.	8	-5 O, O C	and io	10											
TURBU SIVIAR		size			<u> </u>		8			10											
Nominal embe	dment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}										
			[mm]	40	55	45	55	65	55	75	85										
Steel failure for	r tension and she	ar loadin	g																		
Characteristic t	tension load	$N_{Rk,s}$	[kN]	14	1,0		27,0			45,0											
Partial factor te	ension load	Y Ms,N	[-]		1,5																
Characteristic	shear load	$V_{Rk,s}$	[kN]	7	,0	13	3,5	17,0	22,5	34	ł,0										
Partial factor sl	hear load	Y Ms,∨	[-]				1,	25													
Ductility factor		k 7	[-]				0	,8													
Characteristic I	bending load	M^0 Rk,s	[Nm]	10),9		26,0			56,0											
Pull-out failure																					
Character-	cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾										
istic tension load C20/25	uncracked	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0										
-	C20/25				ı		1,	12													
Increasing	C30/37	1 ,,,					1,	22													
factor for N _{Rk,p}	C40/50	Ψ _c	[-]				1,	41													
	C50/60						1,	58													
Concrete failur	e: Splitting failure	, concret	te cone t	failure ai	nd pry-oi	ut failure															
Effective embe	, ,	h _{ef}	[mm]	31	44	35	43	52	43	60	68										
	cracked	$k_1 = k_{cr}$	[-]	7,7																	
k-factor	uncracked	$k_1 = k_{ucr}$	[-]				11	,0													
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}													
cone failure	edge distance	C _{cr,N}	[mm]				1,5	x h _{ef}													
	resistance	N ⁰ Rk,sp	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,0										
Splitting failure	spacing	S cr,Sp	[mm]	120	160	120	140	150	140	180	210										
	edge distance	C cr,Sp	[mm]	60	80	60	70	75	70	90	105										
Factor for pry-c	out failure	k 8	[-]			1	,0			2,	,0										
Installation fact	tor	γinst	[-]				1	,0													
Concrete edge	failure																				
Effective length		I _f = h _{ef}	[mm]	31	44	35	43	52	43	60	68										
Nominal outer	diameter screw	d _{nom}	[mm]	(3		8			10											
1) N ⁰ _{Rk,c} according	to EN 1992-4:2018	•																			
TURB	O SMART cor	ncrete	screw																		
Dorfo	rmancoe								Annex C1												
		C - C -					0 0 40		[Performances Characteristic values for static and quasi static leading, sizes 6.9.10										

Z40354.22 8.06.01-40/22

Characteristic values for static and quasi-static loading, sizes 6,8,10

Performances

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

TURBO SMAF	T concrete screw size	•			12			14			
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}		
Nominal embe	dment depth		[mm]	65	85	100	75	100	115		
Steel failure fo	r tension and shear lo	ading									
Characteristic	tension load	N _{Rk,s}	[kN]		67,0			94,0			
Partial factor to	ension load	Y Ms,N	[-]	1,5							
Characteristic	shear load	V _{Rk,s}	[kN]	33,5	42	2,0		56,0			
Partial factor s	hear load	Y Ms,∀	[-]	1,25							
Ductility factor		k ₇	[-]			0,	8				
Characteristic	bending load	M ⁰ Rk,s	[Nm]		113,0			185,0			
Pull-out failure											
Characteristic	cracked	N _{Rk,p}	[kN]	12,0							
tension load C20/25	uncracked	N _{Rk,p}	[kN]	16,0			$\geq N^0_{Rk,c^{1)}}$				
020/23	C20/25					1, ⁻	 12				
Increasing	C30/37					1,					
factor for N _{Rk,p}	C40/50	$ \Psi_{c}$	[-]			1,4					
	C50/60					1,					
Concrete failu	e: Splitting failure, cor	ocrete cone	failure s	and nrv-ou	ıt failure						
Effective embe	, ,	hef	[mm]	50	67	80	58	79	92		
	cracked	k ₁ = k _{cr}	[-]			7,					
k-factor	uncracked	$k_1 = k_{ucr}$	[-]			11					
Concrete	spacing	S _{cr,N}	[mm]			3 x					
cone failure	edge distance	C _{cr,N}	[mm]				x h _{ef}				
	resistance	N ⁰ Rk,sp	[kN]	12,0	18,5	24,5	15,0	24,0	30,0		
Splitting failure	spacing	S cr,Sp	[mm]	150	210	240	180	240	280		
	edge distance	C cr,Sp	[mm]	75	105	120	90	120	140		
Factor for pry-	out failure	k 8	[-]	1,0	2.	,0	1,0	2	,0		
Installation fac	tor	Y inst	[-]			1,	0				
	failure										
Concrete edge	. :	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92		
Concrete edge	in concrete										

Z40354.22 8.06.01-40/22

Characteristic values for static and quasi-static loading, sizes 12 and 14

Annex C2

Table C3: Seismic category C1 – Characteristic load values (types S-BSZ, S-BSM, S-BSH, S-BSV,
S-BSA, S-BSS, S-BSE ¹⁾ , S-BSB ¹⁾ , S-BSP, S-BSF, S-BSI ¹⁾)

TURBO SMART concrete screw size			(3	8	1	0	12	14	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}	
· ·		[mm]	40	55	65	55	85	100	115	
Steel failure for tension and shear load										
Characteristic load	N _{Rk,s,C1}	[kN]	N] 14,0 27,0 45,0 67,0 94,0							
Partial factor	Ϋ́Ms	[-]				1,5				
Characteristic load	V _{Rk,s,C1}	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4	
Partial factor	γMs	[-]				1,25	5			
With filling of the annular gap ²⁾	α_{gap}	[-]				1,0				
Without filling of the annular gap 3)	$\alpha_{\sf gap}$	[-]	0,5							
Pull-out failure										
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ Rk,c	1)	
Concrete cone failure										
Effective embedment depth	h _{ef}	[mm]	31	44	52	43	68	80	92	
Edge distance	C _{cr,N}	[mm]				1,5 x	h _{ef}			
Spacing	S _{cr,N}	[mm]				3 x h	ef			
Installation safety factor	γinst	[-]				1,0				
Concrete pry-out failure										
Factor for pry-out failure	k ₈	[-]		1	,0			2,0		
Concrete edge failure										
Effective length in concrete	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92	
Nominal outer diameter of screw	d _{nom}	[mm]	6	6	8	10	10	12	14	

¹⁾ Only tension load

TURBO SMART concrete screw

Performances

Seismic category C1 – Characteristic load values

Annex C3

With filling of the annular gap according to annex B7, figure 5
 Without filling of the annular gap according to annex B5
 N⁰_{Rk,c} according to EN 1992-4:2018

Table C4: Seismic category C2 ¹⁾ – Characteristic load values with filled annular gap according to annex B7, figure 7 (types S-BSZ, S-BSM, S-BSH, S-BSA, S-BSS, S-BSP, S-BSF)

according to annex B7, figure 7 (types S-BS	Z, S-B	SM, S-BSH,	S-BSA, S-B	SS, S-BSP,	S-BSF)
TURBO SMART concrete screw size			8	10	12	14
Name in all analysis also and also also		h _{nom}		h _n	om3	
Nominal embedment depth		[mm]	65	85	100	115
Steel failure for tension						
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	94,0		
Partial factor tension load	γ Ms	[-]		1	,5	
With filling of the annular gap		1	,0			
Pull-out failure						
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5
Steel failure for shear load						
Characteristic load	V _{Rk,s,C2}	[kN]	9,9	18,5	31,6	40,7
Partial factor shear load	γ Ms	[-]		1,	25	
With filling of the annular gap	$lpha_{ ext{gap}}$	[-]		1	,0	
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	52	68	80	92
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}	
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}	
Installation safety factor	Y inst	[-]		1	,0	
Concrete pry-out failure						
Factor for pry-out failure	k 8	[-]		2	,0	
Concrete edge failure						
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14

¹⁾ A4 and HCR not suitable

TURBO SMART concrete screw

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

Table C5: Seismic category C2 ¹⁾ – Characteristic load values <u>without filled annular gap according</u> to annex B7, figure 5 (types S-BSZ, S-BSM, S-BSH, S-BSA, S-BSS, S-BSP, S-BSF, S-BSV)

o annex B7, figure 5 (types S-BSZ,	S-BSM,	S-BSH	, S-BSA,	S-BSS, S-BSP	, S-BSF, S-E	BSV)	
TURBO SMART concrete screw size			8	10	12	14	
Naminal ambadment denth		h _{nom}		h _{no}	om3		
Nominal embedment depth		[mm]	65	85	100	115	
Steel failure for tension (version types	S-BSZ,	S-BSM,	S-BSH, S	-BSA, S-BSS,	S-BSP, S-B	SF)	
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0	
Partial factor tension load	γ Ms	[-]		1,	,5		
Pull-out failure (version types S-BSZ,	S-BSM,	S-BSH	, S-BSA, S	S-BSS, S-BSP,	S-BSF)		
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5	
Steel failure for shear load (version type	es S-BS	Z, S-BS	SM, S-BSF	I, S-BSA, S-BS	SS, S-BSP, S	S-BSF)	
Characteristic load	V _{Rk,s,C2}	[kN]	10,3	21,9	24,4	23,3	
Partial factor shear load	γ Ms	[-]		1,3	25		
Without filling of the annular gap	$\alpha_{\sf gap}$	[-]		0.	,5		
Steel failure for tension (version type \$	S-BSV)						
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0	_		
Partial factor tension load	Y Ms	[-]	no performance asse				
Pull-out failure (version type S-BSV)							
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	no performar	nce assessed	
Steel failure for shear load (version type	e S-BSV)					
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7			
Partial factor shear load	γ Ms	[-]		1,25	no performar	nce assessed	
Without filling of the annular gap	$\alpha_{\sf gap}$	[-]		0,5			
Concrete cone failure							
Effective embedment depth	h _{ef}	[mm]	52	68	80	92	
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}		
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}		
Installation safety factor	γinst	[-]		1,	,0		
Concrete pry-out failure							
Factor for pry-out failure	k ₈	[-]		2	,0		
Concrete edge failure							
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92	
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14	

1) A4 and HCR not suitable

TURBO SMART concrete screw

Performances

Seismic category C2 - Characteristic load values without filled annular gap

Annex C5

TURBO SMART	concrete screv	w size	(3		8			10			12			14	
Nominal embedr	ment denth	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
		[mm]	40	55	45	55	65	55	55 75 85		65	85	100	75	100	11
Steel failure for t	ension and she	ear load (F _{Rk,s,f}	$_{i} = N_{f}$	$R_{k,s,fi} = V_{Rk,s,fi}$											
R30	F _{Rk,s,fi30}	[kN]	0,9			2,4			4,4			7,3		10,3		
R60	F _{Rk,s,fi60}	[kN]	0	,8		1,7			3,3			5,8			8,2	
R90	F _{Rk,s,fi90}	[kN]	0	,6		1,1			2,3			4,2			5,9	
R120	F _{Rk,s,fi120}	[kN]	0	,4		0,7			1,7			3,4			4,8	
R30	M ⁰ Rk,s,fi30	[Nm]	0	,7		2,4			5,9			12,3			20,4	
R60	M ⁰ Rk,s,fi60	[Nm]	0	,6		1,8			4,5			9,7			15,9	
R90	M ⁰ Rk,s,fi90	[Nm]	0,5 1,2 3,0 7,0				11,6									
R120	M ⁰ Rk,s,fi120	[Nm]	0	,3		0,9			2,3			5,7			9,4	
Pull-out failure																
R30-R90	$N_{Rk,p,fi}$	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
R120	$N_{Rk,p,fi}$	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete cone fa	ailure															
R30-R90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Edge distance																
R30 bis R120	C _{cr,fi}	[mm]							2	2 x h _{ef}						
n case of fire at	ack from more	than one	side	, the	minir	num	edge	dista	nce	shall	be ≥3	300m	m.			
Spacing																
R30 bis R120	S cr,fi	[mm]	m] 4 x h _{ef}													
Pry-out failure																
R30 bis R120	k ₈	[-]	1,0 2,0 1,0 2,0 1,0 2,0													

TURBO SMART concrete screw	
Performances Fire exposure – characteristic values of resistance	Annex C6

Electronic copy of the ETA by DIBt: ETA-16/0308

English translation prepared by DIBt

ſable C7: Di	isplacements u	nder si	tatic an	d quasi	-static	tensic	n loa	d				
TURBO SMA	RT concrete scre	w size		6	3	8				10		
N-main al amah	- desperate dende		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nor}	_{m2} h	nom3	h _{nom1}	h _{nom2}	h _{nom3}
Nominal emb	edment depth		[mm]	40	55	45	55	5	65	55	75	85
Our also d	tension load	N	[kN]	0,95	1,9	2,4	4,3	3	5,7	4,3	7,9	9,6
Cracked concrete	diaplecement	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	7	0,8	0,6	0,5	0,9
Concrete	displacement	δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0	0,9	0,4	1,2	1,2
,	tension load	N	[kN]	1,9	4,3	3,6	5,7	7	7,6	5,7	9,5	11,9
Jncracked concrete	displacement	δνο	[mm]	0,4	0,6	0,7	0,9	9	0,5	0,7	1,1	1,0
Concrete	displacement	δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	0	0,9	0,4	1,2	1,2
TURBO SMA	RT concrete scre	w size			12					14		
Nissasinal anah	- desput double		h _{nom}	h _{nom1}	h _{nom2}	h	h _{nom3}		m1	h _{nom2}		h _{nom3}
Nominal emb	edment depth		[mm]	65	85		100	7	5	100		115
Outsilved	tension load	N	[kN]	5,7	9,4	1	12,3	7,	6	12,0	15,1	
Cracked concrete	displacement	δ_{N0}	[mm]	0,9	0,5		1,0	0,5		0,8		0,7
Concrete	displacement	δ _{N∞}	[mm]	1,0	1,2		1,2	0,	9	1,2		1,0
	tension load	N	[kN]	7,6	13,2		17,2	10	,6	16,9		21,2
Uncracked concrete	displacement	δ_{N0}	[mm]	1,0	1,1		1,2	0,	9	1,2		0,8
Concrete	displacement	δ _{N∞}	[mm]	1,0	1,2		1,2	0,	9	1,2		1,0

Table C8: Displacements under static and quasi-static shear load

TURBO SMA	TURBO SMART concrete screw size						8		10		
Naminal amb	Nominal embedment depth				h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal emb	eament depth		[mm]	40	55	45	55	65	55	75	85
Cracked	shear load	V	[kN]	3,3		8,6			16,2		
and		δ∨0	[mm]	1,	55	2,7			2,7		
uncracked concrete	displacement	δ∨∞	[mm]				4,1		4,3		

TURBO SMA	RT concrete scre	w size			12		14			
Naminal amb	admont donth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}		
Nominal emb	edment depth		[mm]	65 85 100			75	115		
Cracked	shear load	٧	[kN]		20,0		30,5			
and		δ∨0	[mm]		4,0		3,1			
uncracked concrete	displacement	δ√∞	[mm]					4,7		

TURBO SMART concrete screw	
Performances Displacements under static and quasi-static loads	Annex C7

English translation prepared by DIBt

TURBO SMART concrete screw	size		8	10	12	14
Nominal embedment depth		h _{nom}	h _{nom3}			
		[mm]	65	85	100	115
Displacements under tension loa	ds (hexagon he	ad type)				
Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	δn,eq(ULS)	[mm]	1,74	1,36	2,36	4,39
Displacements under shear loads	s (hexagon head	d type wit	h hole clearar	nce)		
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta_{V,eq(ULS)}$	[mm]	5,19	6,72	5,37	9,27
TURBO SMART concrete screw size Nominal embedment depth		h _{nom}	8 10 12 14 h _{nom3}		14	
		[mm]	65	85	100	115
Displacements under tension loa	ds (hexagon he	1 1	65	85	100	115
Displacements under tension loa	ds (hexagon he δ _{N,eq(DLS)}	1 1	0,66	0,32	0,57	1,16
·	T	ad type)				
Displacement DLS	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$	ad type) [mm]	0,66 1,74	0,32	0,57	1,16
Displacement DLS Displacement ULS	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$	ad type) [mm]	0,66 1,74	0,32	0,57	1,16
Displacement DLS Displacement ULS Displacements under tension loa		ad type) [mm] [mm] k head ty	0,66 1,74 pe)	0,32 1,36	0,57	1,16
Displacement DLS Displacement ULS Displacements under tension loa Displacement DLS	$\begin{array}{c} \delta_{N,eq(DLS)} \\ \delta_{N,eq(ULS)} \\ \\ \text{ds (countersun} \\ \\ \delta_{N,eq(DLS)} \\ \\ \delta_{N,eq(ULS)} \\ \end{array}$	ad type) [mm] [mm] k head ty [mm] [mm]	0,66 1,74 pe) 0,66 1,74	0,32 1,36 0,32 1,36	0,57	1,16
Displacement DLS Displacement ULS Displacements under tension loa Displacement DLS Displacement ULS	$\begin{array}{c} \delta_{N,eq(DLS)} \\ \delta_{N,eq(ULS)} \\ \\ \text{ds (countersun} \\ \\ \delta_{N,eq(DLS)} \\ \\ \delta_{N,eq(ULS)} \\ \end{array}$	ad type) [mm] [mm] k head ty [mm] [mm]	0,66 1,74 pe) 0,66 1,74	0,32 1,36 0,32 1,36	0,57	1,16
Displacement DLS Displacement ULS Displacements under tension loa Displacement DLS Displacement ULS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{ds (countersun} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{s (hexagon head} \end{array}$	ad type) [mm] [mm] k head ty [mm] [mm]	0,66 1,74 pe) 0,66 1,74 h hole clearar	0,32 1,36 0,32 1,36	0,57 2,36	1,16 4,39
Displacement DLS Displacement ULS Displacements under tension loa Displacement DLS Displacement ULS Displacements under shear loads Displacement DLS	δ _{N,eq(DLS)} δ _{N,eq(DLS)} δ _{N,eq(DLS)} δ _{N,eq(DLS)} δ _{N,eq(ULS)} δ _{N,eq(ULS)} δ (hexagon head δ _{V,eq(DLS)})	ad type) [mm] [mm] k head ty [mm] [mm] d type wit [mm]	0,66 1,74 pe) 0,66 1,74 h hole clearar 4,21 7,13	0,32 1,36 0,32 1,36 nce) 4,71 8,83	0,57 2,36 4,42	1,16 4,39
Displacement DLS Displacement ULS Displacements under tension load Displacement DLS Displacement ULS Displacements under shear loads Displacement DLS Displacement DLS Displacement ULS	δ _{N,eq(DLS)} δ _{N,eq(DLS)} δ _{N,eq(DLS)} δ _{N,eq(DLS)} δ _{N,eq(ULS)} δ _{N,eq(ULS)} δ (hexagon head δ _{V,eq(DLS)})	ad type) [mm] [mm] k head ty [mm] [mm] d type wit [mm]	0,66 1,74 pe) 0,66 1,74 h hole clearar 4,21 7,13	0,32 1,36 0,32 1,36 nce) 4,71 8,83	0,57 2,36 4,42	1,16 4,39

1)) A4	and	HCR	not	suitable
----	------	-----	-----	-----	----------

IUKBO 2	WARI	concrete	screw

Performances

Displacements under seismic loads

Annex C8