

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0728 of 9 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

HALFEN Anchor Channel HZA-PS

Anchor channel

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat manufacturing plants

25 pages including 3 annexes which form an integral part of this assessment

EAD 330008-04-0601, Edition 06/2022

ETA-17/0728 issued on 23 February 2022

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-17/0728 English translation prepared by DIBt

Page 2 of 25 | 9 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 9 December 2022

Specific Part

1 Technical description of the product

The HALFEN Anchor Channel HZA-PS is a system consisting of a C-shaped serrated channel profile of steel and at least two metal anchors non-detachably fixed on the channel back and HALFEN serrated channel bolts.

The anchor channel is embedded surface-flush in the concrete. HALFEN serrated channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N^0_{Rk,s,l}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	N _{Rk,s} see Annex C1
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A5 $M_{Rk,s,flex}$ see Annex C1
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C2
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C2
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A5 c_{min} ; h_{min} see Annex B3
- Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C2
- Resistance to blowout failure - bearing area of anchor head	A_h see Annex A4

European Technical Assessment

ETA-17/0728

Page 4 of 25 | 9 December 2022

English translation prepared by DIBt

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C4
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C4
- Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction)	$V^0_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C3
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C3
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C3
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C3
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C3
- Resistance to concrete pry-out failure	k_8 see Annex C3
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C3
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C4
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	No performance assessed
 Fatigue limit resistance to steel failure of the whole system (test method B) 	No performance assessed
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	No performance assessed
 Fatigue limit resistance to concrete related failure (test method B) 	No performance assessed

European Technical Assessment

ETA-17/0728

English translation prepared by DIBt

Page 5 of 25 | 9 December 2022

Essential characteristic	Performance
Characteristic resistance under seismic loading (seismic performance category C1)	
 Resistance to steel failure under seismic tension loading (seismic performance category C1) 	$N_{Rk,s,a,eq}$; $N_{Rk,s,c,eq}$; $N^0_{Rk,s,l,eq}$; $N_{Rk,s,eq}$; $M_{Rk,s,flex,eq}$ see Annex C5
 Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1) 	$V_{Rk,s,eq}$; $V_{Rk,s,l,y,eq}$; $V_{Rk,s,c,y,eq}$; $V_{Rk,s,a,y,eq}$ see Annex C6
 Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1) 	$V_{Rk,s,l,x,eq}$; $V_{Rk,s,a,x,eq}$; $V_{Rk,s,c,x,eq}$ see Annex C6
Characteristic resistance under static and quasi-static tension and/or shear loading	
- Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{N0} \; ; \; \delta_{N^{\infty}} \; see \; Annex \; C2 \\ \delta_{V,y,0} \; ; \; \delta_{V,y,\infty} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,\infty} \\ see \; Annex \; C4 \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C7 and C8

3.3 Aspects of durability

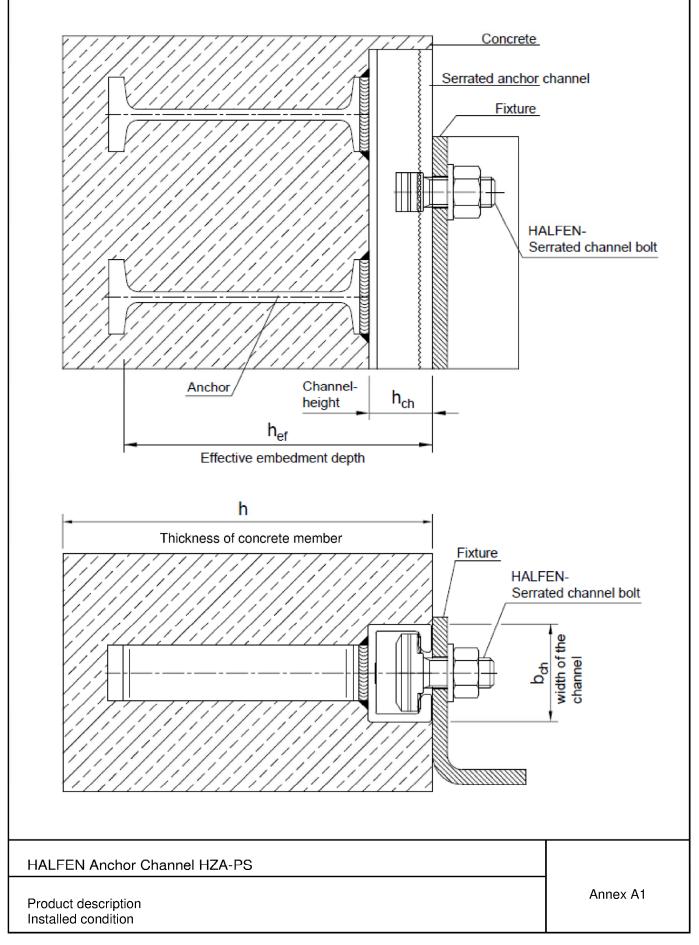
Essential characteristic	Performance	
Durability	See Annex B1	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 9 December 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller Page 6 of European Technical Assessment ETA-17/0728 of 9 December 2022

English translation prepared by DIBt

Page 7 of European Technical Assessment ETA-17/0728 of 9 December 2022

English translation prepared by DIBt

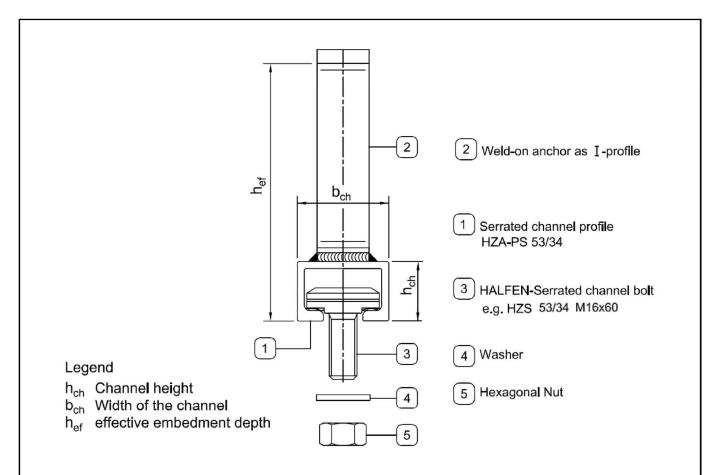
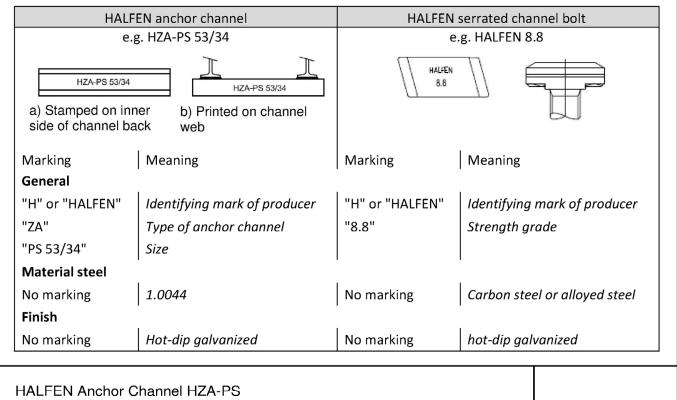
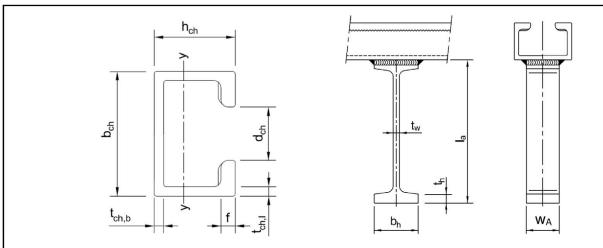



Table A0: Marking of anchor channel and serrated channel bolt

Product description Marking and materials


		Intendeo	d use	
		1		
		Dry internal conditions		
ltem no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity.	
			For examples see use conditions in Annex B1	
		Mater	ials	
1	Serrated channel profile	Steel 1.0044(A) hot-dip galvanized ≥ 55 µm ⁴⁾	Steel 1.0044(A) hot-dip galvanized ≥ 55 μ m ⁴⁾	
2	Anchor	Steel 1.0038, 1.0045(A) hot-dip galvanized \geq 55 μ m ⁴⁾	Steel 1.0038, 1.0045(A) hot-dip galvanized ≥ 55 µm ⁴⁾	
3	HALFEN serrated channel bolts	Steel strength grade 8.8 EN ISO 898-1:2013 hot-dip galvanized ≥ 50 μm ^{1) 3)}	Steel strength grade 8.8 EN ISO 898-1:2013 hot-dip galvanized ≥ 50 μm ¹⁾	
4	Washer ⁵⁾ EN ISO 7089:2000 and EN ISO 7093-1:2000 production class A 200 HV	hot-dip galvanized $\geq 50 \ \mu m^{2/3}$ hot-dip galvanized ≥ 50 SteelSteelelectroplated $\geq 5 \ \mu m^{2}$ hot-dip galvanized ≥ 50		
5	Hexagonal nuts EN ISO 4032:2012	Steel strength grade 8 EN ISO 898-2:2012 electroplated ≥5 μm ²⁾	Steel strength grade 8 EN ISO 898-2:2012 hot-dip galvanized ≥ 50 μm ^{1) 3)}	
⁾ electi ⁾ hot-d ⁾ hot-d	ectroplated with special coating roplated acc. to EN ISO 4042:2 lip-galvanized acc. to EN ISO 1 lip-galvanized acc. to EN ISO 1 ncluded in scope of delivery	2018 0684:2004 + AC2009	-2:2019	

Product description Material and intended use

Page 9 of European Technical Assessment ETA-17/0728 of 9 December 2022

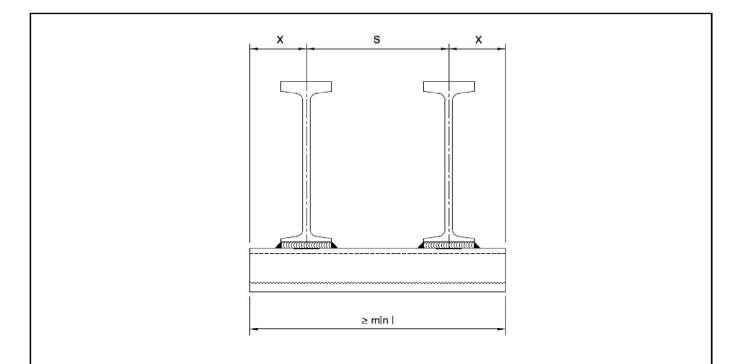
English translation prepared by DIBt

Table A2: Profile dimensions

Anchor channel	Dimensions						l _y
HZA-PS	b _{ch}	h _{ch}	t _{ch,b}	t _{ch,l}	d _{ch}	f	٩y
1124 1 5			[mm]]			[mm ⁴]
29/20	29,0	20,0	2,5	2,5	14,0	5 <i>,</i> 0	10.200
38/23	38,0	23,0	3,5	3,0	18,0	5,5	21.100
41/27	40,0	27,0	4,2	4,0	18,0	7,0	39.000
53/34	52,5	34,0	4,0	4,0	22,5	7,5	92.600
64/44	64,0	44,0	4,5	5,0	26,0	10,0	240.300

Table A3: Dimensions of anchor

Anchor channel	I-Anchor					
HZA-PS	min l _a	tw	b _h	t _h	WA	A _h
1125415		[mm ²]				
29/20	140	5,7	40	8	12 – 20	412
38/23	140	5,7	40	8	18 – 25	617
41/27	140	5,7	40	8	24 – 30	823
53/34	140	5,7	40	8	30 – 40	1029
64/44	140	5,7	40	8	40 – 50	1372


HALFEN Anchor Channel HZA-PS

Product description Profile dimensions and dimensions of anchor

Page 10 of European Technical Assessment ETA-17/0728 of 9 December 2022

English translation prepared by DIBt

Table A4: Anchor positioning

	Anchors	spacing	End spacing	Min. channel length		
Anchor channel HZA-PS	S _{min}	S _{min} S _{max} X		I _{min}		
IIZA-F3	[mm]					
29/20	80	200	35	150		
38/23	80	250	35	150		
41/27	80	250	35	150		
53/34	80	250	35	150		
64/44	80	300	35	150		

HALFEN Anchor Channel HZA-PS

Product description Anchor positioning and channel length

Page 11 of European Technical Assessment ETA-17/0728 of 9 December 2022

English translation prepared by DIBt

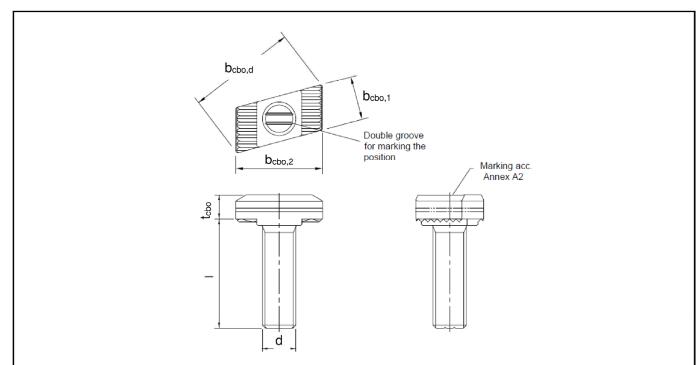


Table A5: Dimensions of HALFEN serrated channel bolt

A	Countral I		Dimensions					
Anchor channel	Serrated channel	Thread	Width	Diagonal	Length	Thickness		
HZA-PS	bolt HZS	diameter	b _{cbo,1}	b _{cbo,d}	b _{cbo2}	t _{cbo}		
			[mm]	[mm]	[mm]	[mm]		
29/20	29/20	M12	13,4	27,1	20,9	6,5		
38/23 +	38/23	M12	17,0	37,0	28,8	8,0		
41/27		M16	17,0	37,0	28,8	9,5		
E2/24	53/34	M16	21,0	51,6	41,6	11,5		
55/54	53/34 53/34	M20	21,0	51,6	41,6	13,0		
	61/11	M20	24,7	63,1	51,0	14,0		
04/44	64/44 64/44	M24	24,7	63,1	51,0	16,0		

Table A6: Strength grade

	Steel 1)
Strength grade	8.8
f _{uk} [N/mm²]	800
f _{yk} [N/mm²]	640
Finish	Hot-dip galvanized

¹⁾ Materials according Annex A2, Tab. A0 and Annex A3, Tab. A1

HALFEN Anchor Channel HZA-PS

Product description HALFEN serrated channel bolt, dimensions, strength grade

Specifications for intended use

Serrated anchor channels and serrated channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel
- Seismic tension, seismic shear perpendicular to the longitudinal axis of the channel and seismic shear in the direction of the longitudinal axis of the channel (seismic performance category C1)
- Fire exposure for concrete class C20/25 to C50/60

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (serrated anchor channels and serrated channel bolts according to Annex A3, Table A1, column 1-2)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (serrated anchor channels and serrated channel bolts according to Annex A3, Table A1, column 2)

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and serrated channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as seismic loading (seismic performance category C1) and fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", May 2021 or EN 1992-4:2018.
- The characteristic resistances are calculated with the minimum effective embedment depth.

HALFEN Anchor Channel HZA-PS

Intended use Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A5, Table A4 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1).
- Installation in accordance with the installation instruction given in Annexes B5 and B6.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the anchor channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the serrated channel bolt (double groove according to Annex A6) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

HALFEN Anchor Channel HZA-PS

Intended use Specifications

Page 14 of European Technical Assessment ETA-17/0728 of 9 December 2022

English translation prepared by DIBt

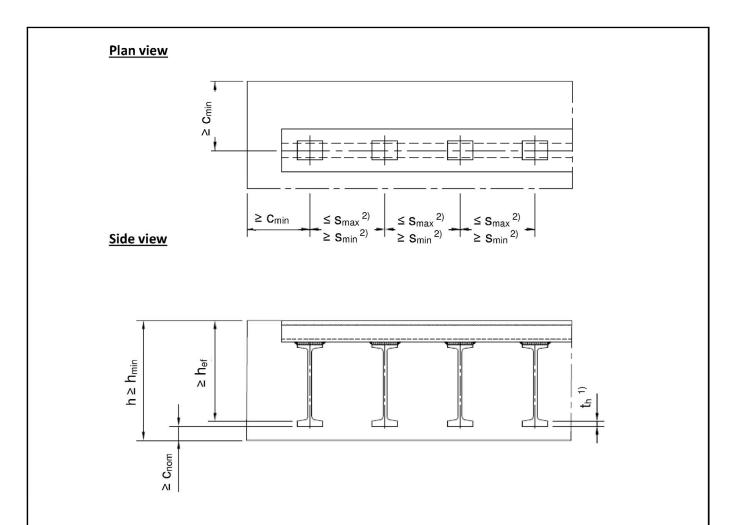


Table B1: Effective embedment depth, edge distance and thickness of concrete member

Anchor channel		HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Minimum effective embedment depth		$h_{\text{ef,min}}$	152	155	159	166	176
Minimum edge distance	[mm]	C _{min}	50	75	75	100	125
Minimum thickness of III			h	_{ef} + t _h + c _{nom}	3)		
concrete member		h_{min}	170	173	177	190	200

¹⁾ t_h = Anchor head thickness

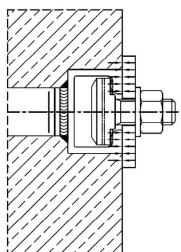
²⁾ s_{min}, s_{max} acc. to Annex A5, Tab. A4

³⁾ c_{nom} acc. to EN 1992-1-1 :2004 + AC 2010

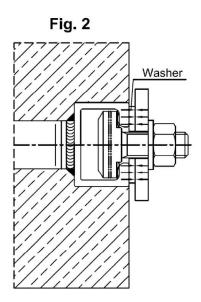
HALFEN Anchor Channel HZA-PS

Intended use Installation parameters of anchor channels

Page 15 of European Technical Assessment ETA-17/0728 of 9 December 2022


English translation prepared by DIBt

General


The fixture is in contact with the channel profile and the concrete surface. The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Steel – Steel contact

The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel parts (e.g. washer). The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Table B2: Minimum spacing and	installation torque of HALFEN serrated channel bo	lt
-------------------------------	---	----

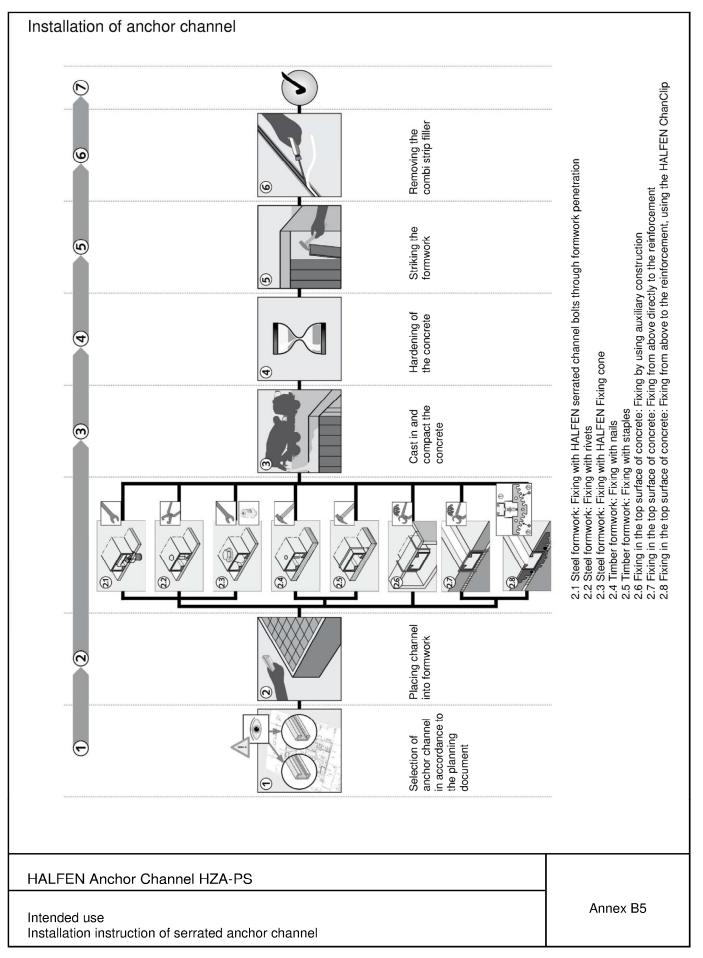
6	HALFEN	Min. spacing	Installation torque T _{inst} ³⁾				
Serrated anchor	serrated	S _{min,cbo} of the	General ¹⁾	Steel – Steel contact ²⁾			
channel	channel	serrated channel	T _{inst,g}	T _{inst,s}			
HZA-PS	bolts d	bolts	Steel 8.8	Steel 8.8			
HZA-FŞ	[mm] [mm]		[Nm]	[Nm]			
29/20	12	60	40	75			
20/22	12	60	65	75			
38/23	16	80	90	185			
41/27	12	60	75	75			
41/27	16	80	135	185			
F3/34	16	80	185	185			
53/34	20	100	235	360			
CALAA	20	100	300	360			
64/44	24	120	360	625			

¹⁾ According to figure 1

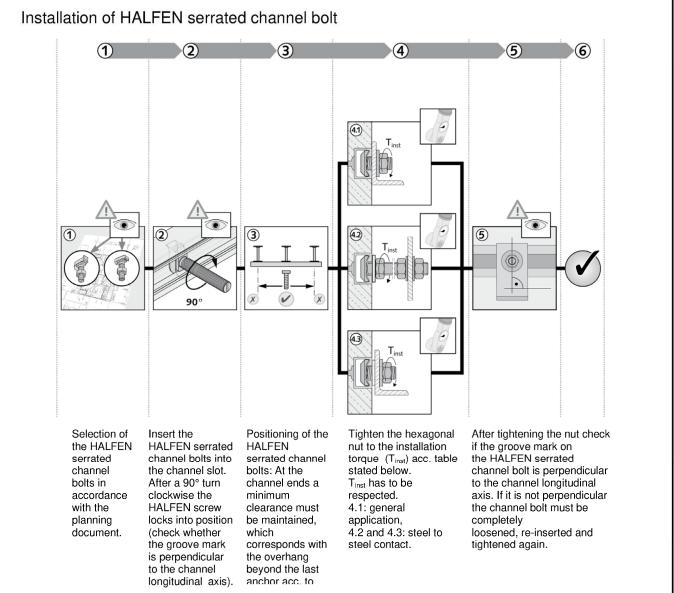
²⁾ According to figure 2

³⁾ *T_{inst} must not be exceeded.*

HALFEN Anchor Channel HZA-PS


Intended use

Installation parameters of HALFEN serrated channel bolt


Page 16 of European Technical Assessment ETA-17/0728 of 9 December 2022

English translation prepared by DIBt

Table B3: Installation Torque

Pos. of fixture	Mat	erial	Anchor channel		T _{inst} [Nm] ¹⁾				
acc. to annex B3	strengt	h grade	HZA-PS	M12	M16	M20	M24		
			29/20	40	_ 2)	_ 2)	_ 2)		
			38/23	65	90	_ 2)	- 2)		
General			41/27	75	135	_ 2)	_ 2)		
Steel	8.8	53/34	_ 2)	185	235	_ 2)			
			64/44	_ 2)	_ 2)	300	360		
Steel – Steel contact			all	75	185	360	625		
¹⁾ T _{inst} must not be ex	ceeded	²⁾ Produ	uct not available						
IALFEN Anchor C									
ntended use	Ar	nnex B6							

Installation instruction of HALFEN serrated channel bolt

Table C1: Characteristic resistances under tension load – steel failure serrated anchor channel										
Anchor channel			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44			
Steel failure: Anchor										
Characteristic resistance	N _{Rk,s,a}	[kN]	24,6	36,9	64,3	80,3	100,0			
Partial factor	₿Ms	1) ,a	1,8 1,59							
Steel failure: Connection between anchor and channel										
Characteristic resistance	N _{Rk,s,c}	[kN]	71,7	76 <i>,</i> 4	95 <i>,</i> 4	117,7	128,4			
Partial factor	∦ Ms,	.ca ¹⁾			1,8					
Steel failure: Local flexure of	the char	nnel lips								
Spacing of serrated channel bolts for N ⁰ _{Rk,s,l}	S _{I,N}	[mm]	58	76	80	105	128			
Characteristic resistance	N ⁰ _{Rk,s,l}	[kN]	22,9	39 <i>,</i> 3	53 <i>,</i> 6	82,5	106,1			
Partial factor	۲Ms	1) 5,1	1,8							

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Anchor channel Steel failure: Flexure of cl	HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44			
Characteristic flexural resistance of channel	$M_{Rk,s,flex}$	[Nm]	872	1663	2289	4069	7183	
Partial factor	∦ Ms,flex	1)	1,15					

¹⁾ In absence of other national regulations

Table C3: Characteristic resistance under tension load – steel failure of HALFEN serrated channel bolt

HALFEN serrated channel bol	M12	M16	M20	M24						
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]	67,4	125,6	196,0	282,4				
Partial factor	Y	1) Ms	1,50							

¹⁾ In absence of other national regulations

HALFEN Anchor Channel HZA-PS

Performance

Characteristic resistances under tension load - steel failure

Table C4: Characteristic resistances under tension load – concrete failure									
Anchor channel				HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Concrete failure: Pull-out fa	ilure				•				
Characteristic resistance in c concrete C12/15			[kN]	37,0	55,5	74,0	92,6	123,4	
Characteristic resistance in uncracked concrete C12/15		N _{Rk,p}		51,8	77,7	103,7	129,6	172,8	
	C20/25					1,67			
	C25/30					2,08			
	C30/37	Ψ _c				2,50			
Increasing factor for $N_{Rk,p}$	C35/45		[-]		2,92				
	C40/50			3,33					
$= N_{Rk,p} (C12/15) \cdot \Psi_c$	C45/55				3,75				
	C50/60			4,17					
	C55/67			4,58					
	≥C60/75			5,00					
Partial factor	1	γ _{Mp} =	y Mc ¹⁾	1,5					
Concrete failure: Concrete c	one failure								
Due duct feater la		ka	r,N	8,7	8,7	8,7	8,8	8,9	
Product factor k ₁		ku	cr,N	12,4	12,4	12,5	12,5	12,7	
Characteristic edge distance		C _{cr,N}	[mm]	259	260	263	266	269	
Characteristic spacing		S _{cr,N}	[mm]	518	520	526	532	538	
Partial factor		۲M	1) Ic			1,5			
Concrete failure: Splitting fa	ilure								
Characteristic edge distance		C _{cr,sp}	[[mm]	456	465	477	498	528	
Characteristic spacing		S _{cr,sp}		912	930	954	996	1056	
Partial factor		۷Ms	1) 5p			1,5			

¹⁾ In absence of other national regulations

Table C5: Displacements under tension load

Anchor channel				HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44
Tension load	N	[kN]	9,1	14,6	21,3	31,2	39,7
Short-term displacement	δ_{N0}	[mm]	0,5	0,8	0,9	1,5	0,6
Long-term displacement	δ _{N∞}	[mm]	1,0	1,6	1,8	3,0	1,2

HALFEN Anchor Channel HZA-PS

Performance

Characteristic resistance under tension load - concrete failure and displacements

nchor channel teel failure: Anchor					HZA-PS 53/34	HZA-PS 64/44				
$V_{Rk,s,a,y}$	[kN]	22,9	43,9	53 <i>,</i> 6	101,1	156,3				
$V_{Rk,s,a,x}$	[kN]	14,8	22,2	38,6	48,2	64,3				
Y Ms,a ¹⁾		1	,5		1,32	•				
Steel failure: Connection between anchor and channel										
V _{Rk,s,c,y}	[kN]	22,9	43,9	53,6	101,1	156,3				
V _{Rk,s,c,x}	[kN]	46,7	46,7	58,3	68,0	77,8				
γ Ms,ca ¹)			1,8		•				
Steel failure: Local flexure of channel lips under shear load perpendicular to the longitudinal axis of the channel										
SI,V	[mm]	58	76	80	105	128				
$V^0_{Rk,s,l,y}$	[kN]	22,9	43,9	53,6	101,1	156,3				
۲ ۲ (Ms,I			1,8							
een channel l	ips and	channel b	olt under	shear in the d	lirection of					
V _{Rk,s,l,x}	[kN]	12,6	25,4	27,2 (M12) 32,1 (M16)	59,0	85,8				
₿inst		1,0		1,2						
re										
k ₈ ²⁾				2,0						
% Mc ¹⁾				1,5						
ge failure										
Cracked concrete	k _{cr,V}	6,1 7,5								
Uncracked concrete		8,5	8,5 10,5							
8 Mc 1)		1,5								
	$\frac{V_{Rk,s,a,x}}{Y_{MS,a}}$ /een anchor all $V_{Rk,s,c,y}$ $V_{Rk,s,c,x}$ $Y_{MS,ca}$ hannel lips ur SI,V $V^0_{Rk,s,l,y}$ $Y_{MS,l}$ / / / / / / / / / / / / /	$V_{Rk,s,a,x}$ $[kN]$ $Y_{Ms,a}^{1}$ veen anchor and chan $V_{Rk,s,c,y}$ $[kN]$ $V_{Rk,s,c,x}$ $[kN]$ $Y_{Ms,ca}^{1}$ hannel lips under she $S_{I,V}$ $[mm]$ $V^0_{Rk,s,l,y}$ $[kN]$ $Y_{Ms,1}^{1}$ veen channel lips and $V_{Rk,s,l,x}$ $[kN]$ $Y_{Ms,1}^{1}$ veen channel lips and $V_{Rk,s,l,x}$ $[kN]$ Y_{inst} re k_g^{2} Y_{Mc}^{1} ge failureCracked $k_{cr,V}$ Uncracked $k_{ucr,V}$	VRk,s,a,x[kN]14,8 $Y_{Ms,a}^{(1)}$ 1reen anchor and channel $V_{Rk,s,c,y}$ [kN] $V_{Rk,s,c,x}$ [kN] $V_{Rk,s,c,x}$ [kN] $V_{Rk,s,c,x}$ [kN] $Y_{Ms,ca}^{(1)}$ hannel lips under shear load per $S_{I,V}$ [mm] $S_{I,V}$ [mm] $S_{I,V}$ [kN] $V_{Rk,s,l,y}$ [kN] $V_{Rk,s,l,y}$ [kN] $V_{Rk,s,l,x}$ [kN] $failure$ $Cracked$ $Cracked$ $k_{cr,V}$ $Cracked$ $k_{cr,V}$ $Cracked$ $k_{ucr,V}$ $8,5$	$V_{Rk,s,a,y}$ [kN] 22,9 43,9 $V_{Rk,s,a,x}$ [kN] 14,8 22,2 $Y_{Ms,a}^{1}$ 1,5 reen anchor and channel $V_{Rk,s,c,y}$ [kN] 22,9 43,9 $V_{Rk,s,c,x}$ [kN] 22,9 43,9 $V_{Rk,s,c,x}$ [kN] 46,7 46,7 $Y_{Ms,ca}^{1}$ 46,7 46,7 $Y_{Ms,ca}^{1}$ 1 58 76 $V_{Rk,s,l,y}$ [kN] 22,9 43,9 $Y_{Ms,ca}^{1}$ 1 58 76 $V_{Rk,s,l,y}$ [kN] 22,9 43,9 $Y_{Ms,l}^{1}$ 1 22,9 43,9 $Y_{Ms,l,l}^{1}$ 1 22,9 43,9 $Y_{Ms,l,l}^{1}$ 12,6 25,4 25,4 Y_{inst} 1,0 1 1 Yeen channel lips and channel bolt under $V_{Rk,s,l,x}$ [kN] 12,6 25,4 Y_{inst} 1,0 1 1 Yeen channel with the sen test of the sen tesen test of the sen test of the sen test of	VRk,s,a,y [kN] 22,9 43,9 53,6 VRk,s,a,x [kN] 14,8 22,2 38,6 YMs,a ¹⁾ 1,5 1,5 reen anchor and channel VRk,s,c,x [kN] 22,9 43,9 53,6 VRk,s,c,x [kN] 22,9 43,9 53,6 VRk,s,c,x [kN] 46,7 46,7 58,3 YMs,ca ¹⁾ 1,8 1,8 1,8 hannel lips under shear load perpendicular to the long 3,6 3,6 V ⁰ _{Rk,s,l,y} [kN] 22,9 43,9 53,6 V ⁰ _{Rk,s,l,y} [kN] 22,9 43,9 53,6 YMs,c ¹ 1,8 76 80 76 Si,V [mm] 58 76 80 V ⁰ _{Rk,s,l,y} [kN] 12,6 25,4 27,2 (M12) Yinst 1,0 1,2 32,1 (M16) Yinst 1,0 1,2 32,1 (M16) Ymc ¹ 1,5 2,0 32,1 (M16) Ymc ¹ 1,5 2,0 32,0 <td>$V_{Rk,s,a,x}$ [kN] 22,9 43,9 53,6 101,1 $V_{Rk,s,a,x}$ [kN] 14,8 22,2 38,6 48,2 $Y_{Ms,a}^{1}$ 1,5 1,32 1,32 reen anchor and channel $V_{Rk,s,c,y}$ [kN] 22,9 43,9 53,6 101,1 $V_{Rk,s,c,x}$ [kN] 46,7 46,7 58,3 68,0 $Y_{Ms,ca}^{11}$ 1,8 1,8 1,8 105 105 $V_{Rk,s,l,y}$ [kN] 22,9 43,9 53,6 101,1 $Y_{Ms,ca}^{11}$ 1,8 1,8 105 105 105 $V_{Rk,s,l,y}^{0}$ [kN] 22,9 43,9 53,6 101,1 $Y_{Ms,ca}^{11}$ 1,8 105 105 105 107 $V_{Rk,s,l,x}$ [kN] 12,6 25,4 27,2 (M12) 32,1 (M16) 59,0 Y_{inst} 1,0 1,2 1,5 1,5 1,5 1,5 cracked k_{cr,V} 6,1 7,5 Uncracked k_{ucr,V}</td>	$V_{Rk,s,a,x}$ [kN] 22,9 43,9 53,6 101,1 $V_{Rk,s,a,x}$ [kN] 14,8 22,2 38,6 48,2 $Y_{Ms,a}^{1}$ 1,5 1,32 1,32 reen anchor and channel $V_{Rk,s,c,y}$ [kN] 22,9 43,9 53,6 101,1 $V_{Rk,s,c,x}$ [kN] 46,7 46,7 58,3 68,0 $Y_{Ms,ca}^{11}$ 1,8 1,8 1,8 105 105 $V_{Rk,s,l,y}$ [kN] 22,9 43,9 53,6 101,1 $Y_{Ms,ca}^{11}$ 1,8 1,8 105 105 105 $V_{Rk,s,l,y}^{0}$ [kN] 22,9 43,9 53,6 101,1 $Y_{Ms,ca}^{11}$ 1,8 105 105 105 107 $V_{Rk,s,l,x}$ [kN] 12,6 25,4 27,2 (M12) 32,1 (M16) 59,0 Y_{inst} 1,0 1,2 1,5 1,5 1,5 1,5 cracked k _{cr,V} 6,1 7,5 Uncracked k _{ucr,V}				

¹⁾ In absence of other national regulations

²⁾ Without supplementary reinforcement. In case of supplementary reinforcement factor k₈ should be multiplied by 0,75.

HALFEN Anchor Channel HZA-PS

Performance Characteristic resistance under shear load

Anchor channel			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44			
Shear load	Vy	[kN]	9,1	17,4	21,3	31,2	62,0			
Short-term displacement	δ_{V0}	[mm]	0,9	0,7	0,9	0,9	1,9			
Long-term displacement	δν∞	[mm]	1,4	1,0	1,4	1,4	2,85			
Shear load	Vx	[kN]	5,0	8,4	10,6	19,5	28,4			
Short-term displacement	δ_{V0}	[mm]	0,4	0,2	0,2	0,3	0,9			
Long-term displacement	δ _{v∞}	[mm]	0,6	0,3	0,3	0,5	1,4			

Table C7: Displacements under shear load

Table C8: Characteristic resist. under shear load – steel failure of HALFEN serrated channel bolt

HALFEN serrated channel bolt thread diameter			M12	M16	M20	M24			
Steel failure									
Characteristic resistance	V _{Rk,s}	[kN]	33,7	62,8	98,0	141,2			
Characteristic flexure resistance	M ⁰ Rk,s	[Nm]	105	266	519	898			
Partial factor	¥Ms 1)			1	,25				

¹⁾ In absence of other national regulations

Table C9: Characteristic resistance under combined tension and shear load

Anchor channel	Anchor channel		hor channel			HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44		
Steel failure: Local failure by flexure of channel lips and failure by flexure of channel										
Product factor	k ₁₃	Values according to EN 1992-4:2018, Section 7.4.3.1								
Steel failure: Failure of anchor and connection between anchor and channel										
Product factor	k ₁₄	Values according to EN 1992-4:2018, Section 7.4.3.1								

HALFEN Anchor Channels HZA-PS

Performances Displacements under shear load, char. resistance of HALFEN serrated channel bolt under shear, combined tension and shear load

For seismic performance category C1

Table C10: Characteristic resistances under seismic tension load

Anchor channel	HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44				
Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a,eq}	[kN]	_ 2)	36,9	_ 2)	80,3	_ 2)		
Partial factor	∦ Ms,a	1)	1	,8	1,59				
Steel failure: Connection between anchor and channel									
Characteristic resistance	N _{Rk,s,c,eq}	[kN]	_ 2)	76,4	_ 2)	117,7	_ 2)		
Partial factor	∦ Ms,ci	a 1)	1,8						
Steel failure: Local flexure of	the chann	el lips							
Spacing of serrated channel bolts for N ⁰ _{Rk,s,l,eq}	SI,N	[mm]		76		105			
Characteristic resistance	N ⁰ _{Rk,s,l,eq}	[kN]	_ 2)	39,3	_ 2)	82,5	_ 2)		
Partial factor	∦ Ms,I	1)	1,8						

¹⁾ In absence of other national regulations

²⁾ No performance assessed

Table C11: Characteristic flexural resistance of channel under seismic tension load

Anchor channel	HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44					
Steel failure: Flexure of channel										
Characteristic flexural resistance of channel	$M_{Rk,s,flex,eq}$	[Nm]	_ 2)	1663	_ 2)	4069	_ 2)			
Partial factor	۲ ۲Ms,flex		1,15							

¹⁾ In absence of other national regulations

²⁾ No performance assessed

Table C12: Characteristic resistance under seismic tension load – steel failure of HALFEN serrated channel bolt

HALFEN serrated channel bol	M12	M16	M20	M24					
Steel failure									
Characteristic resistance	N _{Rk,s,eq}	[kN]	67,4	125,6	196,0	282,4			
Partial factor	Y	1) Ms ¹)	1,50						

¹⁾ In absence of other national regulations

HALFEN Anchor Channels HZA-PS

Performances

Char. resistances under seismic tension load (seismic performance category C1)

Anchor channel	HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44			
Steel failure: Anchor						·		
Characteristic resistance	$V_{Rk,s,a,y,eq}$	[kN]	- ²⁾	43,9	_ 2)	101,1	_ 2)	
Characteristic resistance	V _{Rk,s,a,x,eq}	[kN]	_ 2)	22,2	_ 2)	48,2	_ 2)	
Partial factor	y Ms,a ¹)	1	,5		1,32	•	
Steel failure: Connection betw	veen anchor a	nd chan	nel					
	V _{Rk,s,c,y,eq}	[kN]	_ 2)	43,9	_ 2)	101,1	_ 2)	
Characteristic resistance	V _{Rk,s,c,x,eq}	[kN]	_ 2)	46,7	_ 2)	68,0	_ 2)	
Partial factor	م لا Ms,ca	L)	1,8					
Steel failure: Local flexure of o channel	channel lips u	nder she	ar load pe	erpendicu	lar to the lon	gitudinal ax	is of the	
Spacing of serrated channel bolt for $V_{Rk,s,l,eq}$	SI,V	[mm]	_ 2)	76	_ 2)	105	_ 2)	
Characteristic resistance	V ⁰ _{Rk,s,l,y,eq}	[kN]	_ 2)	43,9	_ 2)	101,1	_ ²⁾	
Partial factor	۲ ۲ YMs,I)	1,8					
Steel failure: Connection betw longitudinal channel axis			channel b	olt under	shear in the	direction of	:	
Characteristic resistance	V _{Rk,s,l,x,eq}	[kN]	_ 2)	25,4	_ 2)	59,0	_ 2)	
Installation factor	Yinst		1,0	1,2				

¹⁾ In absence of other national regulations

²⁾ No performance assessed

Table C14: Characteristic resistances under seismic shear load – steel failure of HALFEN serrated channel bolt

HALFEN serrated channel bolt threa	M12	M16	M20	M24					
Steel failure									
Characteristic resistance	V _{Rk,s,eq}	V _{Rk,s,eq} [kN]		62 <i>,</i> 8	98,0	141,2			
Partial factor	¥м	s 1)	1,25						

¹⁾ In absence of other national regulations

HALFEN Anchor Channel HZA-PS

Performances Char. resistances under seismic shear load (seismic performance category C1)

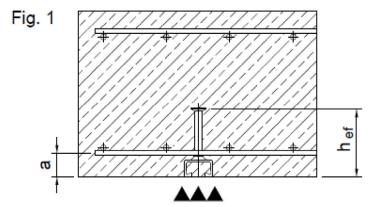
Table C15: Characteristic resistances under tension and shear load under fire exposure	
– steel failure	

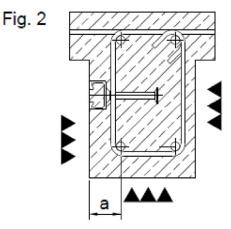
Anchor channe	el				HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44		
Steel failure: Anchor, Connection anchor /					channel, Local flexure of channel lips, Channel bolts						
		M12			2,7	3,5	3,5	_ 2)	_ 2)		
		M16			_ 2)	4,5	4,5	4,5	_ 2)		
	R30	M20			_ 2)	_ 2)	_ 2)	10,3	10,3		
		M24			_ 2)	_ 2)	_ ²⁾	_ 2)	17,0		
		M12			2,1	2,7	2,7	_ 2)	_ 2)		
	R60 -	M16	N _{Rk,s,fi} = [kN] V _{Rk,s,y,fi}		_ 2)	3,3	3,3	3,3	_ 2)		
Characteristic		M20		_ 2)	_ 2)	_ 2)	7,8	7,8			
		M24		_ 2)	_ 2)	_ 2)	_ 2)	14,8			
resistances	R90	M12		נגואן	1,5	1,9	1,9	_ 2)	_ 2)		
		M16			_ 2)	2,1	2,1	2,1	_ 2)		
		M20			_ 2)	_ 2)	_ 2)	5,3	5,3		
		M24			_ 2)	_ 2)	_ 2)	_ 2)	9,9		
		M12			1,3	1,5	1,5	_ 2)	_ 2)		
	0120	M16			_ 2)	1,5	1,5	1,5	_ 2)		
	R120	M20			_ 2)	_ 2)	_ 2)	4,0	4,0		
		M24			_ 2)	_ 2)	_ 2)	_ 2)	7,4		
Partial	factor		∦ Ms,fi ¹⁾	[-]			1,0				

¹⁾ In absence of other national regulations

²⁾ No performance assessed

Table C16: Minimum edge distance and spacing under fire exposure – concrete failure


Anchor channel Concrete failure			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44
Minimum edge distance	C _{min,fi}	[]	304	310	318	332	352
Minimum spacing	S _{min,fi}	[mm]	608	620	636	664	704


Performances Characteristic resistances under tension and shear load under fire exposure

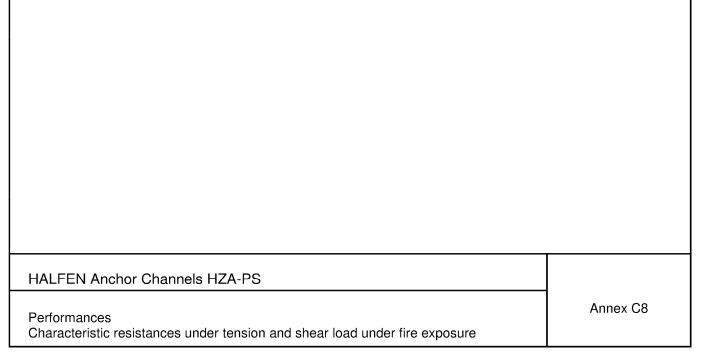


Table C17: Characteristic resistances under tension and shear load under fire exposure – min. axis distance of reinforcement

Anchor channel				HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44		
Min. axis distance of reinforcement										
	R30	а		35	35	35	40	50		
Min. axis	R60	а	[mm]	35	35	35	40	50		
distance	R90	а	[mm]	35	35	35	40	50		
	R120	а		50	50	50	50	50		

