

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0352 vom 18. August 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS AB für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

55 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-00-0604, Edition 11/2017

ETA-17/0352 vom 8. Juni 2021

Europäische Technische Bewertung ETA-17/0352

Seite 2 von 55 | 18. August 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0352

Seite 3 von 55 | 18. August 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS AB für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit fischer Injektionsmörtel FIS AB, FIS AB Low Speed oder FIS AB High Speed, einer Injektions-Ankerhülse FIS H K und einer Ankerstange mit Sechskantmutter und Unterlegscheibe oder ein Innengewindeanker FIS E besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Widerstand	Siehe Anhang B 13, C 1 bis C 33
Verschiebungen	Siehe Anhang C 33
Dauerhaftigkeit	Siehe Anhang B 2

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-00-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

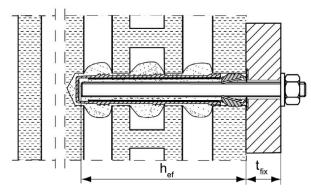
Europäische Technische Bewertung ETA-17/0352

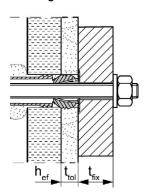
Seite 4 von 55 | 18. August 2022

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 18. August 2022 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Einbauzustände Teil 1

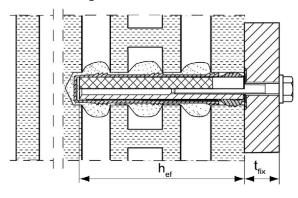
Ankerstangen mit Injektions-Ankerhülse FIS H K; Montage in Loch- und Vollsteinen

Vorsteckmontage:

Montage mit Putzüberbrückung

Größe der Injektions-Ankerhülse:

FIS H 12x85 K FIS H 16x85 K


FIS H 16x130 K

FIS H 20x130 K

FIS H 20x85 K FIS H 20x200 K

Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K; Montage in Loch- und Vollsteinen

Vorsteckmontage:

Abbildungen nicht maßstäblich

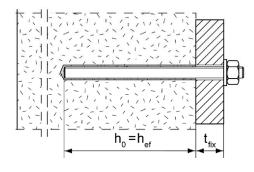
h_{ef} = Effektive Verankerungstiefe

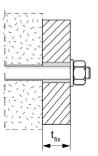
ttol = Dicke der nichttragenden Schicht (z.B. Putz)

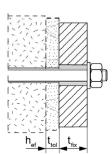
t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS AB für Mauerwerk

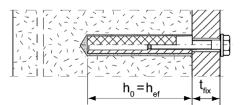
Produktbeschreibung

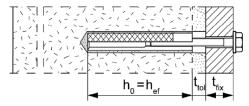

Einbauzustand Teil 1, Montage in Loch- und Vollsteinen; Ankerstange und Innengewindeanker mit Injektions-Ankerhülse Anhang A 1


Einbauzustände Teil 2


Ankerstangen ohne Injektions-Ankerhülse FIS H K; Montage in Vollsteinen und Porenbeton

Vorsteckmontage:





Montage mit Putzüberbrückung

Innengewindeanker FIS E ohne Injektions-Ankerhülse FIS H K; Montage in Vollsteinen und Porenbeton Vorsteckmontage:

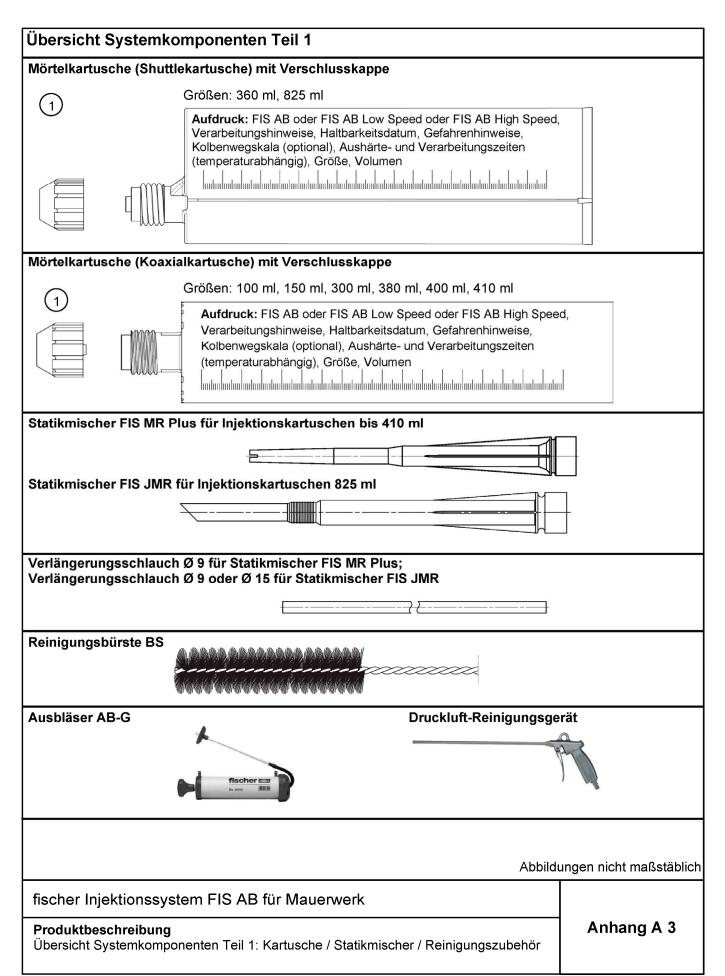
Montage mit Putzüberbrückung

Abbildungen nicht maßstäblich

t_{tol} = Dicke der nichttragenden Schicht (z.B. Putz)

 h_0 = Bohrlochtiefe

t_{fix} = Dicke des Anbauteils


h_{ef} = Effektive Verankerungstiefe

fischer Injektionssystem FIS AB für Mauerwerk

Produktbeschreibung

Einbauzustand Teil 2, Montage in Vollsteinen und Porenbeton. Ankerstange und Innengewindeanker ohne Injektions-Ankerhülse Anhang A 2

Übersicht Sy	stemkomponenten Te	eil 2			
fischer Ankerst	ange				
2		Größen:	M8, M10, M12		
Innengewindea	nker FIS E				
5		Größen:	11x85 M6 / M8 15x85 M10 / M12		
Injektions-Anke	erhülse FIS H K				
7		Größen:	FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K		
7		Größen:	FIS H 16x130 K FIS H 20x130 K FIS H 20x200 K		
Unterlegscheib	е				
3					
Sechskantmutt	er				
4					
Injektionsadap	ter				
				Abbild	ungen nicht maßstäblich
fischer Injekt	ionssystem FIS AB für	Mauerwerk			
Produktbeschi Übersicht Syste	reibung emkomponenten Teil 2: Stal	hlteile, Injektions-A	nkerhülse		Anhang A 4

Teil	Bezeichnung	Material				
1	Mörtel- kartusche					
		Stahl	Nichtrostender Stahl R	Hochkorrosionsbe-ständige Stahl HCR		
		verzinkt	gemäß EN 10088-1:2014 der	gemäß EN 10088-1:2014 der		
			Korrosionsbeständigkeits- klasse CRC III nach EN 1993-1-4:2006+A1:2015	Korrosionsbeständigkeits- klasse CRC V nach EN 1993-1-4:2006+A1:201		
2	Ankerstange	Festigkeitsklasse 4.6, 4.8; 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt \geq 5 μ m, EN ISO 4042:2018 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004+AC:2009 fuk \leq 1000 N/mm ² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4062; $_{\text{LW}} \leq 1000 \text{ N/mm}^2$ $_{\text{LW}} \leq 8\% \text{ Bruchdehnung}$	$Festigkeitsklasse\\ 50 oder 80\\ EN ISO 3506-1:2020\\ oder Festigkeitsklasse 70 m\\ f_{yk}= 560 N/mm^2\\ 1.4565; 1.4529\\ EN 10088-1:2014\\ f_{uk} \leq 1000 N/mm^2\\ A_5 > 8\% Bruchdehnung$		
3	Unterleg- scheibe ISO 7089:2000	verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014		
4	Sechskant- mutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004+AC:2009	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014		
5	Innengewinde- anker FIS E	Festigkeitsklasse 5.8 EN 10277-1:2008-06 verzinkt ≥ 5µm, EN ISO 4042:2018 Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014		
6	Handelsübliche Schraube oder Gewindestange für Innengewinde- anker FIS E	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt ≥ 5µm, EN ISO 4042:2018Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014		
7	Injektions- Ankerhülse		PP / PE			
	her Injektionss duktbeschreibu	system FIS AB für Mauerwe	rk	Anhang A 5		

Spezifizierung des Verwendungszwecks Teil 1

Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien

		fischer Injektionssystem	n FIS AB für Mauerwerk		
Ham	erstellung durch merbohren	alle Steine außer C 20 bis C 23; C 26 bis C 27			
Drehç	erstellung durch gangbohren	alle S	teine		
	nd quasi-statische im Mauerwerk	alle S	teine		
Nutzungs- bedingung	Trockenes oder nasses Mauerwerk	alle Steine			
Montageart	Vorsteck- montage	Ankerstange oder Innengewindeanker (in Vollstein und Porenbeton)	Injektions-Ankerhülse mit Ankerstange oder Innengewindeanker (in Loch- und Vollsteinen) Größen: FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K FIS H 20x200 K		
	Durchsteck- montage	Ankerstange (in Vollstein und Porenbeton (nur im zylindrischen Bohrloch))			
Einbau- und	Bedingung d/d	,			
Nutzungsbe-	Bedingung w/d	alle S	teine		
dingungen	Bedingung w/w				
Einbautemperat	ur	$T_{i,min} = 0$ °C bis $T_{i,max} = +40$ °C			
Gebrauchs- temperaturberei	Temperatur- che bereich Tb	-40 °C bis +80 °C (maximale Kurzzeittemperatur +80 °C; maximale Langzeittemperatur +50 °C)			

fischer Injektionssystem FIS AB für Mauerwerk	
Verwendungszweck Spezifizierung Teil1	Anhang B 1

Spezifizierung des Verwendungszweck Teil 2

Beanspruchung der Verankerung:

Statische oder quasi-statische Lasten

Verankerungsgrund:

- Mauerwerk aus Vollsteinen (Nutzungsbedingung b) und Mauerwerk aus Porenbeton (Nutzungsbedingung d), entsprechend Anhang B 10
- Mauerwerk aus Hohlblöcken und Lochsteinen (Nutzungsbedingung c), entsprechend Anhang B 10
- Für die minimale Bauteildicke gilt hef+30mm
- Mörtel mindestens Druckfestigkeitsklasse M2,5 gemäß EN 998-2:2016
- Für andere Steine in Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach EOTA Technical Report TR 053:2016-04 unter Berücksichtigung des β-Faktors nach Anhang C 33, Tabelle C33.1 ermittelt werden.

Hinweis (gilt nur für Vollsteine und Porenbeton):

Die charakteristischen Tragfähigkeiten gelten auch für größere Steinformate, größere Druckfestigkeiten und größere Rohdichten der Mauersteine.

Temperaturbereiche:

• **Tb:** von - 40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)

Anwendungsbedingungen (Umweltbedingungen):

- X1: Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- **X2:** Bauteile im Freien, einschließlich Industrieatmosphäre und Meeresnähe oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- X3: Bauteile im Freien oder in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Hinweis: Besonders aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

fischer Injektionssystem FIS AB für Mauerwerk	
Verwendungszweck Spezifizierung Teil 2	Anhang B 2

Spezifizierung des Verwendungszweck; Teil 2 fortgesetzt

Bemessung:

 Die Bemessung der Verankerung erfolgt in Übereinstimmung mit EOTA Technical Report TR 054:2016-04, Bemessungsmethode A unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.

Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:

 $N_{Rk} = N_{Rk,b} = N_{Rk,p}$

 $V_{Rk} = V_{Rk,b} = V_{Rk,c}$

Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung $N_{Rk,pb}$ oder das Herausdrücken eines Steines unter Querbeanspruchung $V_{Rk,pb}$ siehe EOTA Technical Report TR 054:2016-04.

N_{Rk,s}, V_{Rk,s} und M⁰_{Rk,s} siehe Anhang C1-C3

Faktoren für Baustellenversuche und Verschiebungen siehe Anhang C 33

 Unter Berücksichtigung des im Bereich der Verankerung vorhandenen Mauerwerks, den zu verankernden Lasten sowie der Weiterleitung dieser Lasten im Mauerwerk sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben.

Einbau:

- Bedingung d/d: Montage und Verwendung in trockenem Mauerwerk
- Bedingung w/w:- Montage und Verwendung in trockenem und nassem Mauerwerk
- · Bedingung w/d: Montage in nassem Mauerwerk und Verwendung in trockenem Mauerwerk
- Bohrlocherstellung siehe Anhang C (Bohrverfahren)
- · Im Fall von Fehlbohrungen sind diese zu vermörteln.
- Überbrückung von nichttragenden Schichten (z.B. Putz) bei Lochsteinmauerwerk siehe Anhang B 6,
 Tabelle B6.1
- Einbau des Dübels durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Befestigungsschrauben oder Ankerstangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen für den fischer Innengewindeanker FIS E entsprechen.
- · Aushärtezeiten siehe Anhang B 7, Tabelle B7.2
- Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

Materialabmessungen und mechanische Eigenschaften der Metallteile entsprechend den Angaben aus Anhang A 5, Tabelle A5.1.

Bestätigung der Material- und mechanischen Eigenschaften der Metallteile durch ein Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden.

Markierung der Ankerstange mit der vorgesehenen Verankerungstiefe. Dies darf durch den Hersteller oder durch eine Person auf der Baustelle erfolgen.

fischer Injektionssystem FIS AB für Mauerwerk

Verwendungszweck
Spezifizierung; Teil 2 fortgesetzt

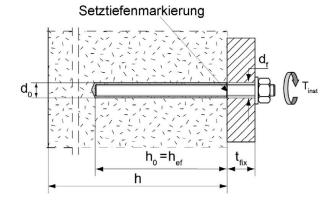
Anhang B 3

Tabelle B4.1: Montagekennwerte für Ankerstangen in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse

Ankerstange	Gewinde	M8	M10	M12	
Bohrernenndurchmesser	d₀ [mm]	10	12	14	
Effektive Verankerungstiefe	h _{0,min} =h _{ef,min} [mm]	100			
h _{ef} ¹⁾ in Porenbeton	h _{0,max} =h _{ef,max} [mm]	min (h-30, ≤ 200)			
Effektive Verankerungstiefe	h _{ef,min} [mm]	50			
$h_{ef}^{1)}$ in Vollsteinen (Bohrlochtiefe $h_0 = h_{ef}$)	h _{ef,max} [mm]	min (h-30, ≤ 200)			
Durchgangsloch	Vorsteck d _f ≤[mm]	9	12	14	
im Anbauteil	Durchsteck d _f ≤[mm]	11	14	16	
Durchmesser der Stahlbürste d _b ≥ [mm]		Siehe Tabelle B7.1			
Maximales Montagedrehmon	nent max T _{inst} [Nm]	Siehe	Steinkennwerte Anh	ang C	

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ ist möglich.

Prägung (an beliebiger Stelle) fischer Ankerstange:


Stahl galvanisch verzinkt FK¹) 8.8	• oder +	Stahl feuerverzinkt FK¹) 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK1) 50	•	Hochkorrosionsbeständiger Stahl HCR FK1) 70	-
Hochkorrosionsbeständiger Stahl HCR FK1) 80) (Nichtrostender Stahl R FK ¹⁾ 50	~
Nichtrostender Stahl R FK1) 80	*		

Alternativ: Farbmarkierung nach DIN 976-1:2016

1) FK = Festigkeitsklasse

Festigkeitsklasse 4.6 Markierung nach EN ISO 898-1:2013

Einbauzustand:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS AB für Mauerwerk

Verwendungszweck
Montagekennwerte für Ankerstangen ohne Injektions-Ankerhülse

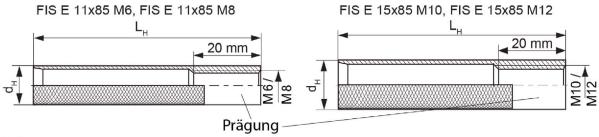
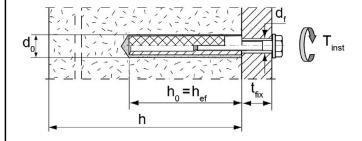

Anhang B 4

Tabelle B5.1: Montagekennwerte für Innengewindeanker FIS E in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse

Innengewindeanker FIS E		11x85 M6			15x85 M12
Ankerdurchmesser	d _H [mm]	1	11 15		
Bohrernenndurchmesser	d₀[mm]	14 18			18
Ankerlänge	L _H [mm]	85			
Effektive Verankerungstiefe	$h_0 = h_{ef}[mm]$	85			
Durchmesser der Stahlbürste	d _b ≥[mm]	siehe Tabelle B7.1			
Maximales Montagedrehmoment	max T _{inst} [Nm]	siehe Steinkennwerte Anhang C			
Durchgangsloch im Anbauteil	d _f [mm]	7 9 12 14			14
Figure Is a sub-figure	I _{E,min} [mm]	6 8 10 12		12	
Einschraubtiefe	I _{E,max} [mm]	60			

fischer Innengewindeanker FIS E



Prägung:

Größe, z.B. M8, nichtrostender Stahl: R, z.B. M8 R, hochkorrosionsbeständiger Stahl: HCR, z.B. M8 HCR

Einbauzustand:

Innengewindeanker FIS E im zylindrischen Bohrloch

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS AB für Mauerwerk

Verwendungszweck
Montagekennwerte für Innengewindeanker FIS E ohne Injektions-Ankerhülse

Anhang B 5

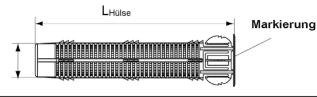
Tabelle B6.1: Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülsen (Vorsteckmontage)

Injektions-Ankerhülse FIS H K		12x85	16x85	16x130 ²⁾	20x85	20x130 ²⁾	20x200 ²⁾
Bohrernenndurchmesser d ₀ = D _{Hülse,nom}	d₀ [mm]	12	1	6		20	
Bohrlochtiefe	h₀ [mm]	90	90	135	90	135	205
Effektive Verankerungstiefe	h _{ef,min} [mm]	85	85	110	85	110	180
	h _{ef,max} [mm]	85	85	130	85	130	200
Ankergröße	[-]	M8	M8 ur	nd M10	M12		
Größe des Innengewindeankers	FIS E	-	11x85		15x85		
Durchmesser der Stahlbürste ¹⁾	d _b ≥[mm]	m] siehe Tabelle B7.1					
Max. Montagedrehmoment	max T _{inst} [Nm]	siehe Steinkennwerte Anhang C					

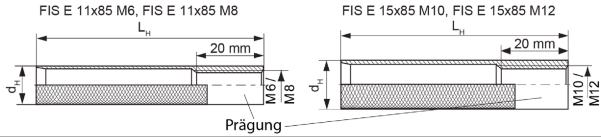
¹⁾ Nur für Vollsteine und massive Bereiche in Lochsteinen.

Injektions-Ankerhülsen

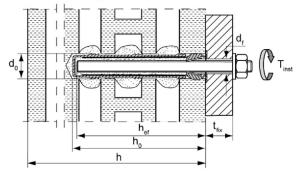
FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K; FIS H 20x85 K; FIS H 20x130 K; FIS H 20x200 K


Markierung:

Größe D_{Hülse,nom} x L_{Hülse}


(z.B.: 16x85)

D_{Hülse,nom}



fischer Innengewindeanker FIS E



Einbauzustände:

Ankerstange mit Injektions-Ankerhülse

Innengewindeanker mit Injektions-Ankerhülse

ı

fischer Injektionssystem FIS AB für Mauerwerk

Verwendungszweck

Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse (Vorsteckmontage)

Anhang B 6

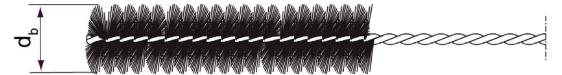

²⁾ Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei Reduzierung der effektiven Verankerungstiefe h_{ef,min} müssen die Werte der nächst kürzeren Injektions-Ankerhülse des selben Durchmessers verwendet werden. Der kleinere charakteristische Wert ist maßgebend

Tabelle B7.1: Kennwerte der Reinigungsbürste BS (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrdurchmesser	d₀[mm]	10	12	14	16	18	20
Bürstendurchmesser	d₀ [mm]	11	14	16	20	20	25

Nur für Vollsteine und Porenbeton und massive Bereiche in Lochsteinen

Tabelle B7.2: Maximale Verarbeitungszeiten und minimale Aushärtezeiten (Die Temperatur im Mauerwerk darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Temperatur im	Maxim	ale Verarbeitui t _{work}	ngszeit	Minimale Aushärtezeit 1) t _{cure}			
Verankerungsgrund [°C]	FIS AB High Speed ³⁾	FIS AB 2)	FIS AB Low Speed ²⁾	FIS AB High Speed ³⁾	FIS AB ²⁾	FIS AB Low Speed ²⁾	
0 bis 5	5 min	13 min	20 min	3 h	3 h	6 h	
> 5 bis 10	3 min	9 min	20 min	50 min	90 min	3 h	
> 10 bis 20	1 min	5 min	10 min	30 min	60 min	2 h	
> 20 bis 30	-	4 min	6 min	-	45 min	60 min	
> 30 bis 40	-	2 min	4 min	-	35 min	30 min	

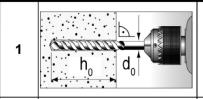
¹⁾ In nassen Steinen muss die Aushärtezeit verdoppelt werden

Abbildungen nicht maßstäblich

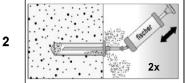
fischer Injektionssystem FIS AB für Mauerwerk

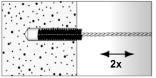
Verwendungszweck
Reinigungsbürste (Stahlbürste)
Maximale Verarbeitungszeiten und minimale Aushärtezeiten

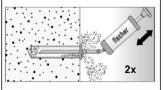
Anhang B 7

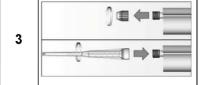

²⁾ Minimale Kartuschentemperatur +5°C

³⁾ Minimale Kartuschentemperatur ±0°C

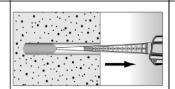


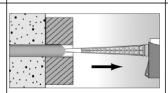

Montageanleitung Teil 1

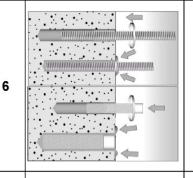

Montage in Vollsteinen und Porenbeton (ohne Injektions-Ankerhülsen)


Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines) Bohrlochtiefe \mathbf{h}_0 und Bohrdurchmesser \mathbf{d}_0 siehe **Tabelle B4.1**; **B5.1**

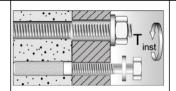
Bohrloch zweimal ausblasen, zweimal ausbürsten, und nochmal zweimal ausblasen.


Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Ca. 2/3 des Bohrlochs vom Grund her mit Mörtel verfüllen ¹⁾. Lufteinschlüsse vermeiden.


Bei Durchsteckmontage (nicht FIS E) den Ringspalt mit Mörtel verfüllen.

Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker FIS E von Hand unter leichten Drehbewegungen einschieben. Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund austreten.

Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B7.2**

Montage des Anbauteils, max T_{inst} siehe Steinkennwerte im Anhang C

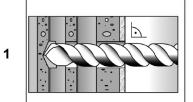
fischer Injektionssystem FIS AB für Mauerwerk

Verwendungszweck

Montageanleitung (ohne Injektions-Ankerhülsen) Teil 1

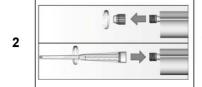
Anhang B 8

Z78084.22


¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers.

6

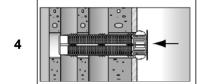
Montageanweisung Teil 2

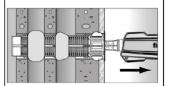

Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse (Vorsteckmontage)

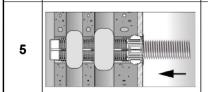
Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines). Bohrlochtiefe ho und Bohrdurchmesser do

siehe Tabelle B6.1

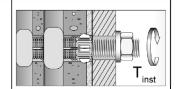
Bei der Montage von Injektions-Ankerhülsen in Vollsteinen oder massiven Bereichen von Lochsteinen ist das Bohrloch durch Ausblasen und Bürsten zu reinigen.


Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gut durchmischt ist. Nicht grau gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Die Injektions-Ankerhülse bündig mit der Oberfläche des Mauerwerks oder Putzes in das Bohrloch stecken.


Die Injektions-Ankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen¹⁾.

Nur saubere und ölfreie Stahlteile verwenden. Ankerstange mit Setztiefenmarkierung versehen. Die Ankerstange oder den Innengewindeanker FIS E von Hand unter leichten Drehbewegungen bis zum Erreichen der Setztiefenmarkierung (Ankerstange) bzw. oberflächenbündig (Innengewindeanker) einschieben.

Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B7.2**

Montage des Anbauteils. max T_{inst} siehe Steinkennwerte im Anhang C

fischer Injektionssystem FIS AB für Mauerwerk

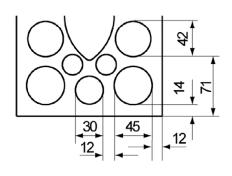
Verwendungszweck

Montageanleitung (mit Injektions-Ankerhülsen) Teil 2

Anhang B 9

Z78084.22

¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers.


Tabelle B10.1: Übersicht der geregelten Steine									
Steinart / Bezeichnung Steinabmessungen [mm]			Druckfestigkeit f₀ [N/mm²]	Herkunfts- land	Dichte ρ [kg/dm³]	Anhang			
		Vo	ollziegel Mz						
	NF	≥240x115x71	12 / 20	Deutschland	≥1,8	C 4 – C 7			
Vollziegel Mz	2DF	≥240x115x113	10 / 16	Deutschland	≥1,8	C8/C9			
		≥ 245x118x54	10 / 20	Italien	≥1,8	C 10 / C 11			
	Ka	lksandvollstein	KS / Kalksandlochs	tein KSL					
Kalksandvollstein KS	NF	≥240x115x71	12 / 20	Deutschland	≥2,0	C 12 / C 13			
Kalksandlochstein KSL	3DF	240x175x113	12 / 20	Deutschland	≥1,4	C14 / C 15			
		Hoch	lochziegel HLz						
		370x240x237	10	Deutschland	≥1,0	C 16 / C 17			
		500x175x237	10	Deutschland	≥1,0	C 16 / C 17			
	2DF	240x115x113	20	Deutschland	≥1,4	C 18 / C 19			
Hochlochziegel HLz		248x365x249	8 - 12	Deutschland	≥0,7	C 20 / C 21			
		248x425x248	4 - 8	Deutschland	≥0,6	C 22 / C 23			
		253x300x240	2 - 6	Österreich	≥0,8	C 24 / C 25			
		250x440x250	6 - 10	Österreich	≥0,7	C 26 / C27			
		Hohlblock	aus Leichtbeton Hb	ı					
Hohlblock aus Leichtbeton Hbl		362x240x240	4	Deutschland	≥1,0	C 28 / C 29			
		P	orenbeton						
Porenbeton PP2 / AAC		-	2	Deutschland	0,35	C30 - C 32			
Porenbeton PP4 / AAC		-	4	Deutschland	0,50	C30 - C 32			
Porenbeton PP6 / AAC		-	6	Deutschland	0,65	C30 - C 32			

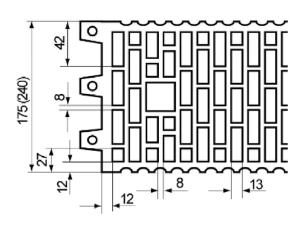
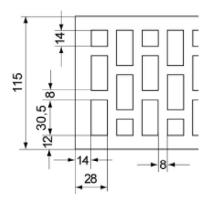
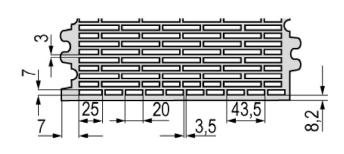

fischer Injektionssystem FIS AB für Mauerwerk	
Verwendungszweck Übersicht der geregelten Steine	Anhang B 10

Tabelle B11.1: Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 1


Kalksandlochstein KSL, 3DF, EN 771-2:2011+A1:2015; z.B. KS Wemding entsprechend Anhang C 14 Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B.Wienerberger, Poroton entsprechend Anhang C 16



Hochlochziegel HLz, 2DF, EN 771-1:2011+A1:2015; z.B. Wienerberger entsprechend Anhang C 18

Hochlochziegel HLz, T10, T11, EN 771-1:2011+A1:2015 entsprechend Anhang C 20

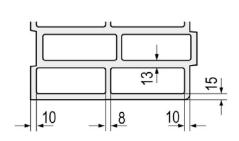
Abbildungen nicht maßstäblich

fischer Injektionssystem FIS AB für Mauerwerk

Leistung

Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 1

Anhang B 11


Z78084.22

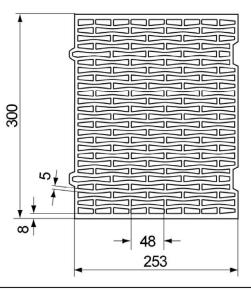
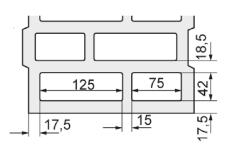
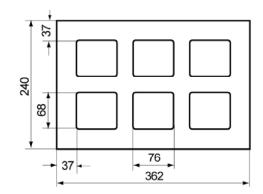


Tabelle B12.1: Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 2

Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015 entsprechend Anhang C 22


Hochlochziegel HLz, EN 771-1:2011+A1:2015; z.B. Ziegelwerk Brenner entsprechend Anhang C 24

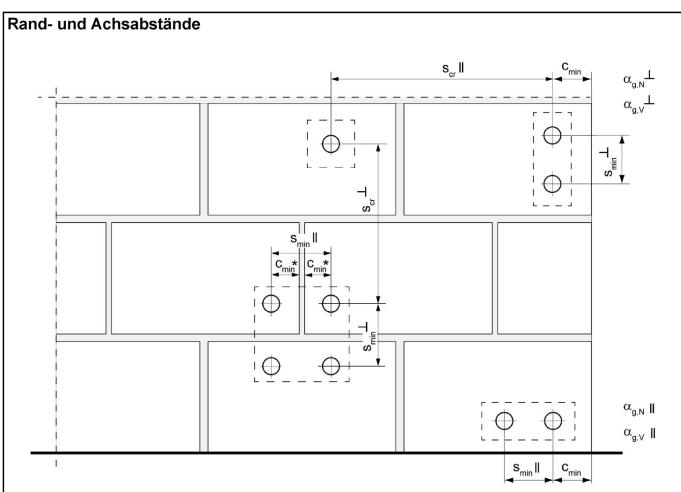


Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015 entsprechend Anhang C 26

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015 entsprechend Anhang C 28

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS AB für Mauerwerk


Leistung

Übersicht der Steinabmessungen für Loch- und Hohlblocksteine Teil 2

Anhang B 12

Z78084.22

* Nur wenn die Stoßfugen nicht vollständig vermörtelt sind

s_{min} II = Minimaler Achsabstand parallel zur Lagerfuge

 s_{min} = Minimaler Achsabstand senkrecht zur Lagerfuge

s_{cr} II = Charakteristischer Achsabstand parallel zur Lagerfuge

 s_{cr} = Charakteristischer Achsabstand senkrecht zur Lagerfuge

 $c_{cr} = c_{min} = Randabstand$

 $\alpha_{g,N} \parallel I = Gruppenfaktor bei Zugbeanspruchung, Dübelanordnung parallel zur$

Lagerfuge

 $\alpha_{g,V}II$ = Gruppenfaktor bei Querbeanspruchung, Dübelanordnung parallel zur Lager

 $\alpha_{q,N} \perp$ = Gruppenfaktor bei Zugbeanspruchung, Dübelanordnung senkrecht zur

^{tg,N}— Lagerfuge

 $\alpha_{g,V}\bot$ = Gruppenfaktor bei Querbeanspruchung, Dübelanordnung senkrecht zur

Lagerfuge

Für $s \ge s_{cr}$ $\alpha_g = 2$

Für $s_{min} \le s < s_{cr}$ α_g entsprechend Montagekennwerte der Steine

 $N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$; $V^{g}_{Rk} = \alpha_{g,V} \cdot V_{Rk}$ (Gruppe von 2 Ankern)

 $N^{g}_{Rk} = \alpha_{g,N} II \cdot \alpha_{g,N} \perp N_{Rk}$; $V^{g}_{Rk} = \alpha_{g,V} II \cdot \alpha_{g,V} \perp V_{Rk}$ (Gruppe von 4 Ankern)

fischer Injektionssystem FIS AB für Mauerwerk

Verwendungszweck

Rand- und Achsabstände

Anhang B 13

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

Anke	rstange/Standard	I-Gewindesta	ange		М8	M10	M12		
Char	akteristischer Wid	derstand geg	jen St	ahlve	rsagen unter Zugbe	anspruchung ³⁾			
Widerstand			4.6		15(13)	23(21)	33		
	Stahl verzinkt		4.8		15(13)	23(21)	33		
ersta	Starii verzirikt		5.8		19(17)	29(27)	43		
Vide		Festigkeits-	8.8	FIZA IT	29(27)	47(43)	68		
akt. Wid N _{RK,s}	Nichtrostender Stahl R und	klasse	50	[kN]	19	29	43		
Charakt.	Hochkorrosions-		70		26	41	59		
	beständiger Stahl HCR		80		30	47	68		
Teilsi	icherheitsbeiwert	e ¹⁾							
			4.6			2,00			
/er	Ctable varminist		4.8		1,50				
bei	Stahl verzinkt		5.8		1,50				
eits		Festigkeits-	8.8	r 1		1,50			
Teilsicherheitsbeiwert	Nichtrostender Stahl R und	klasse	50 [-]			2,86			
eilsic	Hochkorrosions- beständiger Stahl HCR		70			1,50 ²⁾ / 1,87			
Ĕ			80		1,60				

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Charakteristischer Widerstand gegen Stahlversagen unter Zugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

²⁾ Nur für fischer FIS A aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A_s für feuerverzinkte fischer Ankerstangen und feuerverzinkte Standard-Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1: Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung mit und ohne Hebelarm von fischer Ankerstangen und Standard-Gewindestangen

Anke	rstange				M8	M10	M12	
Chara	akteristischer Wid	derstand geg	jen St	ahlve	ersagen unter Zugbe	anspruchung ³⁾		
	Hebelarm							
			4.6		9(8)	14(13)	20	
Charakt. Widerstand V _{Rks}	Stahl verzinkt		4.8	1	9(8)	14(13)	20	
	Starii verzirikt		5.8		11(10)	17(16)	25	
		Festigkeits-	8.8	[kN]	15(13)	23(21)	34	
ğ	Nichtrostender Stahl R und	klasse	50	[KIN]	9	15	21	
hara	Hochkorrosions-		70		13	20	30	
0	beständiger Stahl HCR		80		15	23	34	
mit H	ebelarm		•					
_	Stahl verzinkt	Festigkeits-	4.6		15(13)	30(27)	52	
and			4.8	8 8 [Nm]	15(13)	30(27)	52	
erst			5.8		19(16)	37(33)	65	
t. Wide M ^o Rk,s			8.8		30(26)	60(53)	105	
ıkt. M°∨	Nichtrostender Stahl R und	klasse	50		19	37	65	
Charakt. Widerstand M ⁰ Rk,s	Hochkorrosions-		70		26	52	92	
	beständiger Stahl HCR		80		30	60	105	
Teilsi	icherheitsbeiwert	e ¹⁾						
			4.6			1,67		
≪ ≪	Stahl verzinkt		4.8			1,25		
pe:	Otarii verzirikt		5.8			1,25		
rheits Yms,v		Festigkeits-	8.8		1,25			
Teilsicherheitsbeiwert	Nichtrostender Stahl R und	klasse	50		2,38			
eilsic	Hochkorrosions- beständiger		70		1,25 ²⁾ / 1,56			
 	Stahl HCR		80			1,33		

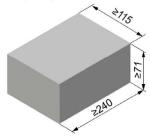
¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Charakteristischer Widerstand gegen Stahlversagen unter Querbeanspruchung mit und ohne Hebelarm von fischer Ankerstangen und Standard-Gewindestangen	Anhang C 2

²⁾ Nur für fischer FIS A aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A_s für feuerverzinkte fischer Ankerstangen und feuerverzinkte Standard-Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C3.1: Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Innengewindeankern FIS E


fischer Innengewind	deankern FIS E			M6	M8	M10	M12
Charakteristischer \	Niderstand ge	gen Sta	hlve	rsagen unter Z	ugbeanspruch	ung	
Charakteristischer	Festigkeits- klasse	5.8		10	18	29	42
Widerstand Ni mit Schraube	Rk,s Festigkeits-	R	[kN]	14	26	41	59
	klasse 70	HCR		14	26	41	59
Teilsicherheitsbeiw	erte ¹⁾						
Teilsicherheits-	Festigkeits- klasse	5.8	.,		1	,50	
beiwert γ_{Mis}	restigkeits-		[-]		1	,87	
	klasse 70	HCR			1	,87	
Charakteristischer \	Niderstand ge	gen Sta	hlve	rsagen unter Q	uerbeanspruch	nung	
ohne Hebelarm						_	
Charakteristischer	Festigkeits- klasse	5.8		5	9	15	21
Widerstand Vi mit Schraube	Rk,s Festigkeits-	R	[kN]	7	13	20	30
THE COMPAGE	klasse 70	HCR		7	13	20	30
mit Hebelarm							
Charakt.	Festigkeits- klasse	5.8		8	19	37	65
Widerstand M ⁰ _F	Festigkeits-	R	Nm]	11	26	52	92
	klasse 70	HCR		11	26	52	92
Teilsicherheitsbeiw	erte ¹⁾						
Teilsicherheits-	Festigkeits- klasse	5.8			1	,25	
beiwert $^{\gamma_{Ms,}}$	V Festigkeits-	R	[-]		1	,56	
	klasse 70	HCR			1	,56	

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von Innengewindeankern FIS E	Anhang C 3

Vollziegel Mz, NF, EN 771-1:2011+A1:2015

Vollziege	l Mz, NF,	EN 771-1:	2011+A1:20	015	
Hersteller		z.B. Wienerberger			
Nennmaße	[mm]	Länge L	Breite B	Höhe H	
Neililliaise	[mm]	≥ 240	≥ 115	≥ 71	
Dichte ρ	[kg/dm ³]		≥ 1,8		
Druckfestigkeit fb	[N/mm ²]	12 / 20			
Norm		EN 771-1:2011+A1:2015			

Tabelle C4.1: Montageparameter mit Randabstand c=100mm

Ankerstange	nkerstange		M8	M10	M12		-
Innongovind	Innengewindeanker FIS E					M6	M8
Innengewind			-	-	-	11:	x85
Ankerstangen	und Innengewindean	ker FIS E ohne	Injektions-Anker	hülse			
Ecc. I ii			50	50	50		
Effektive Verankerungsti	iefe h _{ef}	[mm]	80	80	80	8	35
Verankerangsti			200	200	200		
Max. Montage- drehmoment	max T _{inst}	[Nm]		10		4	10
Allgemeine Mo	ontageparameter						
Randabstand	C _{min}			100		10	00
Randabstand h	nef=200 Cmin		150			_1)	
	Smin II,N			60		6	60
	h _{ef} =200 s _{min} II, _N	[mm]		240		_1)	
Achs- abstand	S _{min} II,v		240			24	40
	Scr II		240			24	40
	S _{cr} ⊥ = S _{min} ⊥			75		7	75

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

1) Leistung nicht bewertet

Tabelle C4.2: Gruppenfaktoren

Ankerstange	Ankerstange			M10	M12		-	
Innengewindeanker FIS E						M6	M8	
mnengewinde	mengewindeanker FIS E		-	- - -				
Randabstand	C _{min}	[mm]		10	00			
	$\alpha_{g,N}$ II			1,	5			
	$lpha_{g,V}$ II		2,0					
	h _{ef} =200 $lpha_{g,N}$ II		1,5					
On war and alst an	h _{ef} =200 α _{g,V} II		2,0					
Gruppenfaktor	$lpha_{ extsf{g,N}}ot$	[-]	2,0					
	$lpha_{ extsf{g,V}}oldsymbol{olga}}}}}}$		2,0					
	h _{ef} =200 $lpha_{g,N}ot$		2,0					
	h _{ef} =200 $lpha_{ extsf{g,V}}oldsymbol{oldsymbol{\perp}}$		2,0					

fischer	Injektionss	ystem FIS AB	für Mauerwerk
tischer	Injektionss	ystem FIS AB	fur Mauerwerk

Leistung

Vollziegel Mz NF, Abmessungen, Montageparameter c=100mm

Anhang C 4

Vollziegel Mz, NF, EN 771-1:2011+A1:2015

Tabelle C5.1: Charakteristischer Widerstand unter Zugbeanspruchung für Randabstand c=100mm

Ankerstange	M8	M10	M12	-	
Innengewindeanker				М6	M8
FIS E	-	-	-	112	k85

N _{Rk} = I	$N_{Rk} = N_{Rk,b} = N_{Rk,p}$ [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
Druck-	Nutzungs-			Effektive Verankerungstiefe hef [mm]								
festigkeit fb bedingung		≥ 50	50	80	200	50	80	200	85			
12 N/mm²	w/w	w/d	2,5	2,0	3,0	7,5	2,0	3,5	5,0	3,5		
	d/	′d	4,0	3,5	5,0	12,0	3,0	5,5	8,0	5,5		
20 N/mm²	w/w	w/d	3,5	3,0	4,5	11,0	3,0	5,0	7,0	5,0		
20 N/mm ²	d/	/d	5,5	5,0	7,0	12,0	4,5	8,0	11,5	8,0		

Tabelle C5.2: Charakteristischer Widerstand unter Querbeanspruchung für Randabstand c=100mm

Ankerstange	M8	M10	M12	-		
Innengewindeanker FIS E				М6	M8	
	-	-	-	112	x85	

V _{Rk} =	$V_{Rk,b} = V_{Rk,c}$	[kN] in Abhängigkeit	von der Di	rucktestigk	ceit fb (Tem	peraturbei	eich 50/80°C)			
Druck-	Nutzungs-	Effektive Verankerungstiefe hef [mm]								
festigkeit f _b	bedingung	≥ 50	≥ 50	200	≥ 50	200	85			
12 N/mm²	w/w w/d	2,5	4,0	8,5	4,0	11,5	2,5			
20 N/mm ²	w/w w/d	4,0	6,0	12,0	5,5	12,0	4,0			

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Vollziegel Mz NF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung c=100mm	Anhang C 5

Vollziegel Mz, NF, EN 771-1:2011+A1:2015 **Tabelle C6.1:** Montageparameter mit reduziertem Randabstand c=60mm **Ankerstange M8** M10 M12 **M6 M8** Innengewindeanker FIS E 11x85 Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse 50 50 Effektive 100 100 100 85 h_{ef} [mm] Verankerungstiefe 200 200 200 Max. Montage-10 4 10 max Tinst [Nm] drehmoment Allgemeine Montageparameter Randabstand 60 Randabstand hef=200 60 \mathbf{C}_{min} 80 $s_{\mathsf{min}} \ II,_{\mathsf{N}}$ hef=200 smin II,N 80 [mm] s_{min} II,v 80 Achsabstand scr II $3x h_{\text{ef}}$ $s_{min} \perp$ 80 $\mathbf{s}_{\mathsf{cr}} \bot$ $3x h_{ef}$ Bohrverfahren Hammerbohren mit Hartmetall-Hammerbohrer Tabelle C6.2: Gruppenfaktoren **M8** M10 M12 **Ankerstange M6 M8** Innengewindeanker FIS E 11x85 Randabstand [mm] 60 Cmin 0,6 $\alpha_{g,N}$ || 1,3 $\alpha_{g,V} II$ 1,4 h_{ef} =200 $\alpha_{g,N}$ II hef=200 $\alpha_{g,V}$ II 1,5 Gruppenfaktor [-] 0,3 $\alpha_{\mathsf{g},\mathsf{N}} \perp$ 1,3 $\alpha_{\text{g,V}} \, \bot$ 2,0 hef=200 $\alpha_{g,N} \perp$ hef=200 $\alpha_{g,V} \perp$ 1,1

fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Vollziegel Mz NF, Abmessungen, Montageparameter c=60mm

Anhang C 6

Vollziegel Mz, NF, EN 771-1:2011+A1:2015

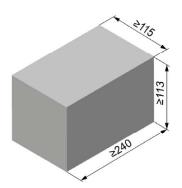
Tabelle C7.1: Charakteristischer Widerstand unter Zugbeanspruchung für reduzierten Randabstand c=60mm

Ankerstang	е		N	18		M10		M12				•
Innengewindeanker FIS E										M8		
				-			-			11x85		
N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von d							kfestigl	keit fb (Temper	aturbei	reich 50/80	°C)
Druck-	Nutzı	ıngs			Eff	Effektive Verankerungstiefe hef [mm]						
festigkeit fb	bedingung		50	100	50	100	200	50	100	200	8	5
40 N/2	w/w	w/d	2,0	2,0	2,0	2,5	_1)	2,0	2,5	_1)	_	1)
12 N/mm ²	d	/d	3,0	4,0	3,0	4,0	9,5	3,0	4,0	9,5	_	1)
20 N/mm²	w/w	w/d	2,5	3,0	2,5	3,5	_1)	3,0	3,5	_1)	_	1)
20 N/mm ²	4	/d	45	5.5	15	5.5	12	45	5.5	12		1)

¹⁾ Leistung nicht bewertet

Tabelle C7.2: Charakteristischer Widerstand unter Querbeanspruchung für reduzierten Randabstand c=60mm

Ankerstan	ge	M8 M10 M12 -							•			
Innengewindeanker FIS E				_			_		M6	М8		
				-			_			85		
V _{Rk} :	V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
Druck-	Nutzungs		Effektive Verankerungstiefe h _{ef} [mm]									
festigkeit fb	bedingung	50	100	50	100	200	50	100	200	8	5	
12 N/mm²	w/w w/d d/d	1,2	3,0	2,0	3,0	1,5	1,5	3,0	3,0	_1)	
20 N/mm ²	w/w w/d d/d	1,5	4,5	3,0	4,5	2,5	2,0	4,5	4,5	_1)	


Leistung nicht bewertet

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Vollziegel Mz NF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung c=60mm	Anhang C 7

Vollziegel Mz, 2DF, EN 771-1:2011+A1:2015

Vollziege	Vollziegel Mz, 2DF, EN 771-1:2011+A1:2015										
Hersteller		z. B. Wienerberger									
Namman	[mm]	Länge L	Breite B	Höhe H							
Nennmaße	[mm]	≥ 240	≥ 115	≥ 113							
Dichte ρ	[kg/dm ³]		≥ 1,8								
Druckfestigkeit fb	[N/mm ²]		10 / 16								
Norm EN 771-1:2011+A1:2015											

Tabelle C8.1: Montageparameter

Ankerstange			IV	18	M	10	M12			- -			
Innongovindo	ankar EIS E								M6	M8	M10	M12	
Innengewinde	anker FIS E		•	•		•		•	11)	k85	15	k 85	
Ankerstangen	und Inneng	ewind	eanker	FIS E o	hne Inje	ektions	Ankerh	ülse					
Effektive Verankerungsti	efe h _{ef}	[mm]	50	100	50	100	50	100		85			
Max. Montage- drehmoment	max T _{inst}	[Nm]			1	0			4 10				
Ankerstangen	Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H 16x85 K												
Effektive Verankerungsti	efe h _{ef}	[mm]		85			_1)		85		_	1)	
Max. Montage- drehmoment	T _{inst}	[Nm]		1	0		-	.,	4	10	_	,	
Allgemeine Mo	ontageparar	neter											
Randabstand	C _{min}						(30					
	s _{min} II	[mama]					1	20					
Achs- — abstand —	s _{cr} II	[mm]					2	40					
	$s_{cr} \perp = s_{min} \perp$						1	15					

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C8.2: Gruppenfaktoren

Ankerstange		M8	M8 M10 M12 -									
Innengewindeanker FIS E				_	_	M6	M8	M10	M12			
		-	-		-	11x85		15x85				
	α _{g,N} II		1,5									
Cruppopfoktor	α _{g,V} II	1	1,4									
Gruppenfaktor	<u>α_{g,N} ⊥</u> [-	.1	2									
	$\alpha_{g,V} \perp$		2									

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Vollziegel Mz 2DF, Abmessungen, Montageparameter	Anhang C 8

¹⁾ Leistung nicht bewertet

Vollziegel Mz, 2DF, EN 771-1:2011+A1:2015

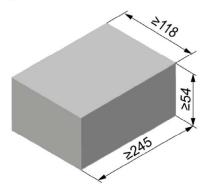
Tabelle C9.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	M8	M10	M12	-		-		M8	M10		-
Innengewindeanker FIS E	-	-	-	M6 M8 11x85		M10 M12 15x85		-		M6 112	M8 x85
Injektions-Ankerhülse FIS H K	-	-	-	-			•		162	ĸ85	

N _{Rk} =	$N_{Rk} = N_{Rk,b} = N_{Rk,p}$ [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)										
Druck-	Nutzur	ngs-		Effektive Verankerungstiefe hef [mm]							
festigkeit f _b	beding	jung	50	100 50 100 50 100 85						5	
10 N/mm ²	w/w	w/d	1,5	2,5	1,5	3	2	3,5	2	1,5	
10 N/MM-	d/	d	3,0	4,0	3,0	4,5	3	5,5	3	3	
16 N/mm ²	w/w	w/d	2,5	4	2,5	4,5	3,5	5,5	3,5	2,5	
16 N/IIIII-	d/	d	4,5	7,0	4,5	7,5	5,5	8	5,5	4,5	

Tabelle C9.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstange	M8	M10	M12	-		-		-		-		M8			
Innengewindeanker				M6	M8	M10	M12			М6	M8				
FIS E	-	_	-	11x85		15x85		-	_	11x85					
Injektions-Ankerhülse FIS H K	-	-	-	-			-		162	k85					


V _{Rk} =	$V_{Rk} = V_{Rk,b} = V_{Rk,c}$ [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)														
Druck-	Nutzur	ngs-		Effektive Verankerungstiefe hef [mm]											
festigkeit f ь	beding	ung		≥ 50						85					
10 N/mm ²	w/w	w/d	3.0	3.0	2.5	2.5	3.0	3.0	3,0	3,0	3,5	2,5	3,0		
IU N/IIIII	d/d	d	3,0	3,0	3,5	2,5	3,0	3,0	3,0	3,0	3,5	2,5	3,0		
16 N/mm²	w/w	w/d	5,0	F	5,5	4.0	5.0	5,0	5,0	5,0	6.0	4.0	5,0		
10 14/111111	d/d		3,0	5,5	3,5	4,0	3,0	3,0	3,0	3,0	0,0	4,0	3,0		

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Vollziegel Mz 2DF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C 9

Vollziegel Mz, EN 771-1:2011+A1:2015

CO.											
Vollziegel Mz, EN 771-1:2011+A1:2015											
Hersteller			z. B. Nigra								
Nennmaße	[mm]	Länge L	Breite B	Höhe H							
Nenimaise	[mm]	≥ 245	≥ 118	≥ 54							
Dichte ρ	[kg/dm ³]		≥ 1,8								
Druckfestigkeit f₀ [N/mm²] 10 / 20											
Norm EN 771-1:2011+A1:2015											

Tabelle C10.1: Montageparameter

Ankerstange		M	8	M	10	М	12				
Innengewindeanker FIS E								М6	M8	M10	M12
innengewindeanker FIS E		-		-		-		11x85		15x85	
Ankerstangen und Innenge	Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse										
Effektive Verankerungstiefe h _{ef} [r	mm]	50	100	50	100	50	100	85			
Max. Montage- drehmoment max T _{inst} [I	Nm]			1	0			4		10	
Allgemeine Montageparam	neter										
Randabstand c _{min}						6	0				
Achs- s _{cr} II = s _{min} II [mm						24	15				
abstand $s_{cr} \perp = s_{min} \perp$						6	0				

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C10.2: Gruppenfaktoren

Ankerstange		M8	M10	M10 M12 -		-		-
Innengewindear	nker FIS E	-	-	-	<u> </u>		M10 15)	M12 <85
Gruppenfaktor	$ \begin{array}{c c} \alpha_{g,N} & II \\ \hline \alpha_{g,V} & II \\ \hline \alpha_{g,N} & \bot \\ \hline \alpha_{g,V} & \bot \end{array} $ [-]			2				

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Vollziegel Mz, Abmessungen, Montageparameter	Anhang C 10

Vollziegel Mz, EN 771-1:2011+A1:2015

Tabelle C11.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	M8	M10	M12		-		-
Innengewindeanker				М6	M8	M10	M12
FIS E		-	-	112	x85	15:	x85

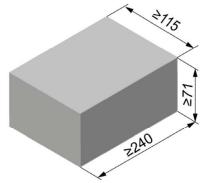
N _{Rk} =	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
	Nutzı			Effektive Verankerungstiefe hef [mm]								
festigkeit f _b	bedin g	igun		≥ 50		85						
10 N/mm ²	w/w	w/d	0,9	0,75	0,75	0,6	0,75					
10 N/IIIII	d,	/d	1,5	1,2	1,2	1,2	1,2					
20 N/mm ²	w/w	w/d	1,5	1,2	1,2	0,9	1,2					
d/d			2,5	2,0	2,0	1,5	2,0					

Tabelle C11.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstange	M8	M10	M12		-		-
Innengewindeanker				M6	M8	M10	M12
FIS E	-	-	-	11:	x85	15:	x85

V _{Rk} =	$V_{Rk} = V_{Rk,b} = V_{Rk,c}$ [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)												
Druck-	Nutzungs-		Effektive Verankerungstiefe hef [mm]										
festigkeit f _b	bedingun g		≥ 50		85								
10 N/mm²	w/w w/d	3,0	4,0	4,5	2,0	3,0	4,0	4,5					
20.11/	w/w w/d	1.0			0.5	4.0							
20 N/mm ²	d/d	4,0	5,5	6,0	2,5	4,0	5,5	6,0					

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Vollziegel Mz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung

Anhang C 11

Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015

Kalksandvoll	Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015									
Hersteller		-								
Nennmaße	[mm]	Länge L Breite E		Höhe H						
Nemmaise	[mm]	≥ 240	≥ 115	≥ 71						
Dichte ρ	[kg/dm³]		≥ 1,8							
Druckfestigkeit fb	[N/mm ²]		12 / 20							
Norm		EN 771-2:2011+A1:2015								

Tabelle C12.1: Montageparameter

Ankerstange			M8	M12	-						
Imponentiad	oonkor EIC I	_				M6	M8				
Innengewind	eanker FIS E	-	-	-	-	11x85					
Ankerstange	n und Innen	gewin	deanker FIS E ohne	e Injektions-Ankerh	ülse						
Effektive Verankerungstiefe h _{ef}			50	50	50						
	tiefe hef	[mm]	100	100	100	3	85				
	illere		_1)	200	200						
Max. Montage- drehmoment max T _{inst} [Nm]		[Nm]	5	15	3	5					
Allgemeine M	lontagepara	meter	,								
Randabstand	C _{min}			6	0						
	s _{min} II			8	0						
Achs-	s _{cr} II	[mm]	3x h _{ef}								
abstand	Smin⊥		80								
_	scr⊥			3x	h _{ef}						

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

1) Leistung nicht bewertet

Tabelle C12.2: Gruppenfaktoren

Ankerstange		M8	M10	M12	-					
Innengewindea	nker FIS E	-								
	α _{g,N} II	0,7								
Ownerselder	α _{g,V} II									
Gruppenfaktor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]		2,0							
		2,0								

fis	cher Injektionssystem FIS AB für Mauerwerk	
	istung Iksandvollstein KS, NF, Abmessungen, Montageparameter	Anhang C 12

Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015

Tabelle C13.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	M8	M10	M12		-
Innengewindeanker FIS E				М6	M8
	-	-	-	112	k85

N _{Rk} =	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
Druck-	Nutzungs-			Effektive Verankerungstiefe hef [mm]								
festigkeit f _b	bedir	gung	50	100	50	100	200	50	100	200	85	
12 N/mm²	w/w	w/d	2,5	4,5	2,5	3,5	7,0	2,5	3,0	6,5	2,5	
	d/d		4,0	8,0	4,0	5,5	12	4,0	4,5	12	4,0	
20 N/mm ²	w/w	w/d	3,5	6,5	3,5	4,5	10	3,5	4,0	9,5	3,5	
20 N/MM-	d	/d	6,0	11	6,0	8,0	12	6,0	6,5	12	6,0	

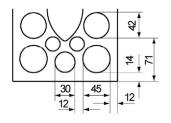
Tabelle C13.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstang	е	M	18	М	10	M12		-	
Innengewindeanker							_	М6	М8
FIS E		-		-		_		11x85	
V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)								°C)	
Druck-	Nutzungs-			Effektiv	ve Veranke	rungstiefe h	lef [mm]		
festigkeit f _b	bedingung	50	100	50	≥100	50	≥100	8	5
12 N/mm²	w/w w/d d/d	1,5	3,0	1,2	2,0	1,2	2,0	1,	2
20 N/mm ²	w/w w/d d/d	2,5	4,0	1,5	3,0	1,5	3,0	1,	5

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Kalksandvollstein KS, NF, Charakteristischer Widerstand unter Zug- und
Querbeanspruchung


Anhang C 13

Kalksandlochstein KSL, 3DF, EN 771-2:2011+A1:2015

Kalksandlochs	Kalksandlochstein KSL, 3DF, EN 771-2:2011+A1:2015									
	tem ito.	STATE PROPERTY AND COMMON COMM								
Hersteller		Z. E	3. KS Wemd	ling						
Nennmaße	[mm]	Länge L	Breite B	Höhe H						
Nemmaise	נייייין	240	175	113						
Dichte ρ	[kg/dm ³]		≥ 1,4							
Druckfestigkeit fb	[N/mm ²]	12 / 20								
Norm		EN 771-2:2011+A1:2015								

Steinabmessung siehe auch Anhang R11

Tabelle C14.1: Montageparameter

Ankerstange	М8	-		M8	M10	M8 M10		/110 -		M12	M12
Innengewindeanker FIS E		М6	M8					M10	M12		
Illinengewindeanker FIS E	-	11x85]		-		15x85		-	-
Injektions-Ankerhülse FIS H K	12x85	16>		x85	35 16x130		20:		(85	20x130	

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm] 2

Allgemeine Montageparameter

Aligemeine won	tageparai	neter							
Randabstand	C _{min}		60 80						
Achsabstand	s _{min} II		100						
	s _{cr} II	[mm]	240						
	s _{min} ⊥		115						
	s _{cr} ⊥			115					

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C14.2: Gruppenfaktoren

Ankerstange		M8	-		M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E		1	M6 11:	M8 x85	_					M12 x85	-	1
Injektions-A	12x85		162	x85	5 16x130		130	20x85		20x130		
Gruppen-	$\alpha_{g,N} \parallel = \alpha_{g,V} \parallel$	1,5										
foldor	$\frac{\alpha_{g,N} \perp = \alpha_{g,V} \perp}{\alpha_{g,N} \perp = \alpha_{g,V} \perp} $ [-]	2,0										

Leistung

Kalksandlochstein KSL, 3DF, Abmessungen, Montageparameter

Anhang C 14

Kalksandlochstein KSL, 3DF,EN 771-2:2011+A1:2015

Tabelle C15.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	М8	-		M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E	_	M6	M8				_	M10 M12 15x85		_	_
	_	11x85									-
Injektions-Ankerhülse FIS H K	12x85	16x		k 85		16x130		20		c 85	20x130

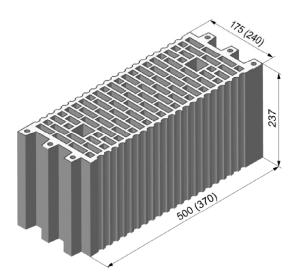
N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
Druckfestigkeit f ₀		ungs- igung									
12 N/mm²	w/w w/d		2,5	2,5	3,0	3,0	3,0				
12 N/IIIII	d/d		2,5	3,0	3,5	3,5	3,5				
20 N/mm ²	w/w	w/d	4,0	4,5	5,5	5,5	5,5				
20 14/111111	d/d		4,5	5,0	6,0	6,0	6,0				

Tabelle C15.2: Charakteristischer Widerstand unter Querbeanspruchung

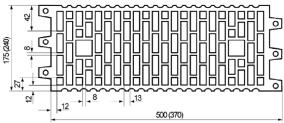
Ankerstange	M8	-		M8	M10	M8	M8 M10		-	M12	M12
Innengewindeanker FIS E	_	М6	M8	M8			_		M12	_	
	-	11x85		_		-		15:	x85	-	-
Injektions-Ankerhülse FIS H K	FIS H K 12x85		162	c 85		16x130		20		k 85	20x130

$V_{Rk} = V_{Rk,b}$	=V _{Rk,c}	[kN] in	Abhä	ngigk	eit vo	on der Druckfestigkeit f₀ (Temperaturbereich 50/80°C)				
Druckfestigkeit f ₀	fь Nutzungs- bedingung									
12 N/mm²	w/w	w/d /d	2,5			4,5				
	w/w	w/d								
20 N/mm²		/d	4,0	4,5	4,0	7,5				

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Kalksandlochstein KSL, 3DF, Charakteristischer Widerstand unter Zug- und
Querbeanspruchung


Anhang C 15

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Hochlochz	iegel HLz	z, EN 771-1	:2011+A1:2	2015				
Hersteller		z. B. Wienerberger, Poroton						
		Länge L	Breite B	Höhe H				
Nennmaße	[mm]	500	175	237				
		370	240	237				
Dichte ρ	[kg/dm ³]	≥ 1,0						
Druckfestigkeit fb	[N/mm ²]							
Norm		EN 771-1:2011+A1:2015						

Steinabmessung siehe auch Anhang B 11

Tabelle C16.1: Montageparameter

Ankerstange	M8	-		M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E	-	- M6			-		-		M12 x85	_	-
Injektions-Ankerhülse FIS H K	12x85	16>		x85	(85		16x130		202	.	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm] 2

Allgemeine Montageparameter

Randabstand	C _{min}		100			
Ashashatand	s _{min} II	[mm]	100			
	s _{cr} II		500 (370)			
Achsabstand	$s_{min} \perp$		100			
	s cr ⊥					

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C16.2: Gruppenfaktoren

Ankerstange	М8	-	M8 M10	M8 M10	-	M12	M12	
Innengewindeanker FIS E	-	M6 M8	-	-	M10 M12 15x85	_	-	
Injektions-Ankerhülse FIS H K	12x85	5 16x85 16x130 20x85 20						
Gruppen- $\frac{\alpha_{g,N} I = \alpha_{g,V} I}{\alpha_{g,N} \perp = \alpha_{g,V} \perp} $ [-]				1				

fischer Injektionssystem FIS AB für Mauerwerk

Leistung

Hochlochziegel HLz, Abmessungen, Montageparameter

Hochlochziegel HLz, EN 771-1:2011+A1:2015

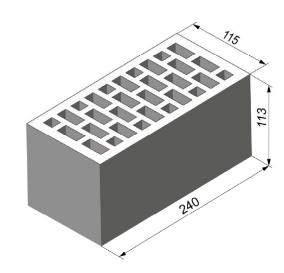
Tabelle C17.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	М8	-		M8	M10	M8	M10		-	M12	M12
Innengewindeanker FIS E	-	M6 M8			-		-	M10	M12 <85		-
Injektions-Ankerhülse FIS H K	12x85	16)		x85		16x130		20		(85	20x130

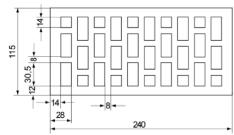
N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
Druckfestigkeit f ₀		ungs- ngung									
10 N/mm²	w/w	w/d	0,9	2,5	3,0						
	d.	/d	0,9	2,5	3,5						

Tabelle C17.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstange	М8	-		M8	M10	M8	M8 M10		-	M12	M12
Innengewindeanker FIS E	-	M6	M8 x85	-			-		M12 x85	-	-
Injektions-Ankerhülse FIS H K	12x85	11x85		x85		16x	16x130		20	(85	20x130


$V_{Rk} = V_{Rk,b}$	=V _{Rk,c}	[kN] in	Abhängigkeit von der Druckfesti	gkeit f₀ (Te	mperaturbereich 50/80)°C)
Druckfestigkeit f ₀		ungs- ngung				
10 N/mm²	w/w	w/d	1,2	1.5	1.2	1.5
	d.	/d	-,-	.,-	-,_	.,.

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C 17

Hochlochziegel HLz, 2DF, EN 771-1:2011+A1:2015

Hochlochziegel HLz, 2DF, EN 771-1:2011+A1:2015											
Hersteller		z. B	. Wienerbe	rger							
Nennmaße	[mm]	Länge L	Breite B	Höhe H							
	[mm]	240	115	113							
Dichte ρ	[kg/dm ³]		≥ 1,4								
Druckfestigkeit f₀	[N/mm ²]	20									
Norm		EN 771-1:2011+A1:2015									

Steinabmessung siehe auch Anhang B11

Tabelle C18.1: Montageparameter

Ankerstange	M8		- M8		M10	ı		M12
Innengewindeanker FIS E		M6	M8			M10	M12	
	-	11x85		<u>-</u>		15x85		-
Injektions-Ankerhülse FIS H K	12x85	16)		x85			20:	x85

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm] 2

Allgemeine Montageparameter

Randabstand	C _{min}		80
Achs-	$s_{cr} \parallel = s_{min} \parallel$	[mm]	240
abstand	$s_{cr} \perp = s_{min} \perp$		115

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C18.2: Gruppenfaktoren

Ankerstange		M8		-		M10	-		M12	
Innengewindeanker FIS E		_					M10	M12	_	
		_	11	11x85		-		x85	_	
Injektions-Anke	rhülse FIS H K	12x85		16:	x85		20x85			
	α _{g,N} II									
Gruppenfaktor	ααVII					2				
Gruppenfaktor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]			2						
	α _{g,∨} ⊥									

fischer Injektionssystem FIS AB für Mauerwerk

Leistung

Hochlochziegel HLz, 2DF, Abmessungen, Montageparameter

Hochlochziegel HLz; 2DF, EN 771-1:2011+A1:2015

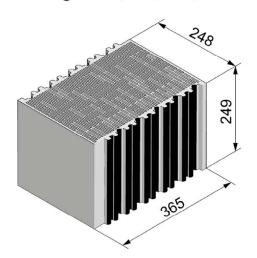
Tabelle C19.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	M8	-		M8	M10	M10 -		M12	
Innengewindeanker FIS E		M6	M8			M10	M12	112	
	-	112	x85		-	15x85		_	
Injektions-Ankerhülse FIS H K	12x85		162	k 85			20)	k 85	

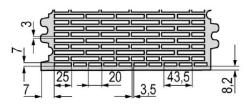
$N_{Rk} = N_{Rk,b}$	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)										
Druckfestigkeit f ь		ungs- igung									
20 N/mm²	w/w	w/d	3,5	2,5	3,0						
	d.	/d	4,0	2,5	3,0						

Tabelle C19.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstange	M8	-		M8	M10	-		M12	
Innengewindeanker FIS E		M6	M8			M10	M12		
	-	112	x85		-	15x85		<u> </u>	
Injektions-Ankerhülse FIS H K	12x85	16x		x85		20:		x85	


	$V_{Rk} = V_{Rk,b}$	$=V_{Rk,c}$	[kN] in	Abhängigkeit v	on der l	Oruckfestigkeit f♭ (Tem	peraturbereich 50/80°C)
	Druckfestigkeit f ₀		ungs- ngung				
ſ	20 N/mm²	w/w	w/d	7.5	4.0	4.5	8.5
ı		d	/d	7,5	4,0	4, 5	0,5

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hochlochziegel HLz, 2DF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C 19

Hochlochziegel HLz, T10, T11, EN 771-1:2011+A1:2015

Hochlochziege	I HLz, T10), T11, EN 7	771-1:2011-	+A1:2015				
Hersteller			ε - γ					
Nonnmaßo	[mm]	Länge L	Breite B	Höhe H				
Nennmaße	Limin	248	365	249				
Dichte ρ	[kg/dm³]		0,7					
Druckfestigkeit fb	[N/mm ²]	8 / 10 / 12						
Norm EN 771-1:2011+A1:201								

Steinabmessungen siehe auch Anhang B 11

Tabelle C20.1: Montageparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

Ankerstange	M8	-		M8	M10	M8	M10		-	M12	M12	M12
Innengewindeanker FIS E	_	М6	M8					M10	M12	_	_	
Illileligewilldealiker FIS E	-	11)	k 85	-				15	x85	-	-	_
Injektions-Ankerhülse FIS H K	12x85	16x		(85		16x	130		20:	k 85	20x130	20x200

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Mon		nax T _{inst}	[MM]	3	5	2		5
drehmome	ent ''	I I I I I I	ןנייייין	3	3	3	,	J

Allgemeine Montageparameter

Randabstar	nd c _{min}		60
	s _{min} II		80
Achs-	s _{cr} II	[mm]	250
Achs- abstand	$\mathbf{s}_{min} oldsymbol{\perp}$	-	80
	s _{cr} ⊥		250

Bohrverfahren

Drehbohren mit Hartmetallbohrer

Tabelle C20.2: Gruppenfaktoren

Ankerstange	M8	-		M8	M10	M8	M10	-	M12	M12	M12		
Innengewindear	-	M6 M8			-		-	M10 M12	_		-		
Injektions-Anker	12x85		162	x85		16x	130	20x85		20x130	20x200		
	α _{g,N} II							1	,7				
Cruppopfaktor	_α _{g,∨} II		0,5										
Gruppenfaktor	$\frac{\alpha_{g,V}}{\alpha_{g,N}}$ [-]							1	,3				
	$\alpha_{\sf g,V} \perp$		0,5										

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hochlochziegel HLz, T10, T11, Abmessungen, Montageparameter	Anhang C 20

Hochlochziegel HLz, T10, T11, EN 771-1:2011+A1:2015

Tabelle C21.1: Charakteristischer Widerstand unter Zugbeanspruchung (Vorsteck-Montage)

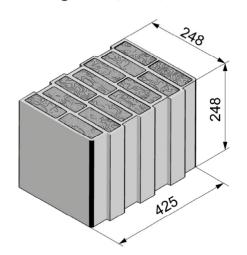
Ankerstange	M8	-		M8	M10	M8	M10	_		M12	M12	M12
Innengewindeanker FIS E	-	M6 11x	M8 85	-		-		M10 M12		-	-	-
Injektions-Ankerhülse FIS H K	ektions-Ankerhülse FIS H K 12x85		16x8			16x	130	20:		c 85	20x130	20x200

$N_{Rk} = N_{Rk,b}$	= N _{Rk,p}	[kN] in	Abhängigkeit von der Druckfestigkeit f₀ (Temperaturbereich 50/80°C)
Druckfestigkeit f ₀		ungs- ngung	
8 N/mm²	w/w	w/d	1,5
O N/IIIII	đ	/d	2,0
10 N/mm²	w/w	w/d	2,0
10 14/111111	đ	/d	2,0
12 N/mm²	w/w	w/d	2,0
12 N/IIIII-	d.	/d	2,5

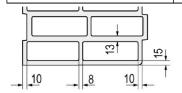
Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

Tabelle C21.1: Charakteristischer Widerstand unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	M8	-		М8	М8	-		M12	M12	M12
Innengewindeanker FIS E	-	M6	М8			M10	M12			
Innengewindeanker FIS E		11x85		-	-	15x	85	-	-	-
Injektions-Ankerhülse FIS H K	12x85	5 16x		c 85	16x130		20x85		20x130	20x200


$V_{Rk} = V_{Rk,b}$	V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)											
Druckfestigkeit f ₀		ungs- ngung										
8 N/mm²	w/w	w/d	0.0	1.5	2.0							
0 14/111111	d/d		0,9	1,5	2,0							
10 N/mm²	w/w	w/d	0.0	1.5	2.0							
10 14/111111	d	/d	0,9	1,5	2,0							
12 N/mm²	w/w	w/d	1,2	2,0	2,0							
	d	/d	۱,۷	2,0	2,0							

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk	
	Anhona C 21
Leistung	Anhang C 21
Hochlochziegel HLz, T10, T11, Charakteristischer Widerstand unter Zug- und	
Querbeanspruchung	

Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

EN 771-1:2011+A		Mineralwo	lie gefullt,					
Hersteller		-						
Nennmaße	[mm]	Länge L	Breite B	Höhe H				
Nemmaise	[mm]	248	425	248				
Dichte ρ	[kg/dm ³]		0,6					
Druckfestigkeit fb	[N/mm ²]							
Norm		EN 771-1:2011+A1:2015						

Steinabmessungen siehe auch Anhang B 12

Tabelle C22.1: Montageparameter (Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

M8 M10 M8 M10 M12 M12 **Ankerstange M8** M12 M10 M12 M6 | M8 Innengewindeanker FIS E 11x85 15x85 16x85 20x85 Injektions-Ankerhülse FIS H K 12x85 16x130 20x130 20x200

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K Max. Montage-

max T_{inst} [Nm] 2 5 2 5 drehmoment

Allgemeine Montageparameter

Randabstar	nd c _{min}		60
	s _{min} II		80
Achs- abstand	Scr II	[mm]	250
	S _{min} ⊥		80
	s _{cr} ⊥		250

Bohrverfahren

Drehbohren mit Hartmetallbohrer

Tabelle C22.2: Gruppenfaktoren

Ankerstange	Ankerstange			M8 -		M10	M8	M10	-	M12	M12	M12
Innengewindear	-	M6 M8 11x85		-	-	-		M10 M12	-	-	1	
Injektions-Anke	12x85		16	x85		16x130		20x85		20x130	20x200	
	α _{g,N} II		1,9									
Gruppenfaktor	α _{g,V} II		0,9									
Grupperilaktoi	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]		1,0									
	$lpha_{ extsf{g,V}}oldsymbol{\perp}$		0,7									

fischer Injektionssystem FIS AB für Mauerwerk

Leistung

Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt; Abmessungen, Montageparameter

Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C23.1: Charakteristischer Widerstand unter Zugbeanspruchung (Vorsteck-Montage)

Ankerstange	M8	-		M8	M10	M8	M10	-	M12	M12	M12
Innengewindeanker FIS E		М6	M8					M10 M12	l		
Illinengewindeanker FIS E	-	11x85			•		-	15x85	-	-	-
Injektions-Ankerhülse FIS H K	12x85		162	x85		16x	130	20:	x85	20x130	20x200

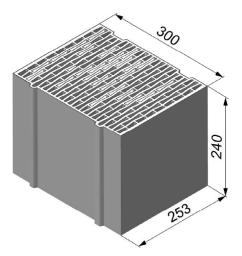
N _{Rk} = N _{Rk,b}	= N _{Rk,p}	[kN] in	Abhängi	gkeit von der Druck	kfestigkeit	f _b (Temperaturbere	eich 50/80	°C)
Druckfestigkeit f ₀		ungs- igung						
4 N/mm²	w/w	w/d	0,75	1,5	2,0	1,2	2,0	2,0
4 19/111111	d	/d	0,9	1,5	2,0	1,5	2,0	2,5
6 N/mm²	w/w	w/d	0,9	1,5	2,0	1,5	2,5	2,5
0 14/111111	d	/d	0,9	2,0	2,5	2,0	2,5	3,0
8 N/mm²	w/w	w/d	1,2	2,0	2,5	2,0	2,5	3,0
0 14/111111	d	/d	1,2	2,0	3,0	2,0	3,0	3,5

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

Tabelle C23.1: Charakteristischer Widerstand unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	M8	-	M8	M8	-	M12	M12	M12
Innengewindeanker FIS E	-	M6 M8	-	-	M10 M12	_	-	-
Injektions-Ankerhülse FIS H K	12x85	16	x85	16x130	20:	x85	20x130	20x200

$V_{Rk} = V_{Rk,b}$	=V _{Rk,c}	kN] in	Abhängigkeit von der Druckfestigkeit fb (Temperaturbereich 50/80°)C)
Druckfestigkeit f ₀	Nutzu bedin			
4 N/mm²	w/w	w/d	1.5	1.5
4 19/111111	d/	d	1,5	1,5
6 N/mm²	w/w	w/d	2,0	1,5
0 14/111111	d/	d	2,0	1,5
8 N/mm²	w/w	w/d	2.5	2.0
O IN/IIIIII	d/	d	2,5	2,0


Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Hochlochziegel HLz, FZ 7, Mineralwolle gefüllt;
Charakteristischer Widerstand unter Zugbeanspruchung

Hochlochziegel HLz, EN 771-1: 2011+A1:2015

Hochlochz	Hochlochziegel HLz, EN 771-1:2011+A1:2015										
Hersteller	Hersteller z. B. Ziegelwerk Brenner										
Nennmaße	[mm]	Länge L	Breite B	Höhe H							
Nemmaise	[mm]	253	300	240							
Dichte ρ	[kg/dm ³]		≥ 0,8								
Druckfestigkeit fb	[N/mm ²]		2/4/6								
Norm EN 771-1:2011+A1:2015											

Steinabmessungen siehe auch Anhang B 12

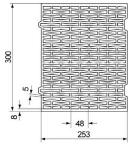


Tabelle C24.1: Montageparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

Ankerstange	M8	-	- M8 M10		M10	M8	M10	10 -		M12	M12
Innengewindeanker FIS E		M6	M8					M10	M12		
Innengewindeanker FIS E	-	11>	85		•		-	15:	(85	-	-
Injektions-Ankerhülse FIS H K	12x85		16:	x85		16x	130		20>	k 85	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm] 2

Allgemeine Montageparameter

3			
Randabsta	nd c _{min}		60
Achs-	$s_{min} \parallel = s_{cr} \parallel$	[mm]	255
abstand	$s_{min} \perp = s_{cr} \perp$		240

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C24.2: Gruppenfaktoren

Ankerstange		M8		-	M8	M10	M8	M10		-	M12	M12
Innongovindoo	nkor EIC E		M6	M8					M10	M12		
Innengewindeanker FIS E		-	11x85		_		-		15	x85	-	-
Injektions-Anke	rhülse FIS H K	12x85		162	x85		16x	130		20>	(85	20x130
	α _{g,N} II											
Gruppenfaktor	$\frac{\alpha_{g,V}\;II}{I}$ [-]						•	2				
or appointment of	$\alpha_{\sf g,N} \perp$						•	_				
	α _{g,} ∨⊥											

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hochlochziegel HLz, Abmessungen, Montageparameter	Anhang C 24

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Tabelle C25.1: Charakteristischer Widerstand unter Zugbeanspruchung (Vorsteck-Montage)

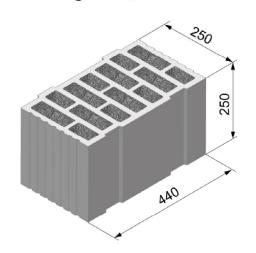
Ankerstange	M8	-	M8	M10	M8	M10	0 -		M12	M12	
Innengewindeanker FIS E		M6 M	18		_		M10 M12		_	_	
		11x85					15x85				
Injektions-Ankerhülse FIS H K	12x85	1	6x85	x85		16x130		202	x85	20x130	

$N_{Rk} = N_{Rk,b}$	= N _{Rk,p}	[kN] in	Abhängigk	ceit von der Druckfest	igkeit f₀ (Te	mperaturbereich 50/8	0°C)
Druckfestigkeit f ₀		ungs- igung					
2 N/mm²	w/w	w/d	0,5	0,5	0,4	0,5	0,4
2 N/IIIII	d.	/d	0,5	0,5	0,5	0,5	0,5
4 N/mm²	w/w	w/d	0,9	0,9	0,9	0,9	0,9
4 19/111111	d.	/d	0,9	0,9	0,9	0,9	0,9
6 N/mm²	w/w	w/d	1,5	1,5	1,2	1,5	1,2
O IN/IIIII-	d.	/d	1,5	1,5	1,5	1,5	1,5

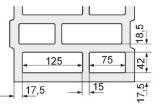
Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

Tabelle C25.1: Charakteristischer Widerstand unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	М8	-		M8	M10	M8	M8 M10		-	M12	M12
Innengewindeanker FIS E	-	M6	M6 M8		_	-		M10	M12	-	
Innengewindeanker i 10 E		11x85						15x85			
Injektions-Ankerhülse FIS H K	12x85	16x		x85		16x130		20		x85	20x130


$V_{Rk} = V_{Rk,b}$	=V _{Rk,c}	[kN] in	Abhängigkeit von der Druckfestigkeit fb (Tempera	aturbereich 50/80°C)		
Druckfestigkeit f ₀		ungs- igung				
2 N/mm²	w/w	w/d	0.5	0.6		
2 14/111111	d	/d	0,5	0,6		
4 N/mm ²	w/w	w/d	9,0	1,2		
4 19/111111	d	/d	0,9	1,2		
6 N/mm²	w/w w/d		1.5	1.5		
6 14/111111	d	/d	1,5	1,5		

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zugbeanspruchung	Anhang C 25

Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Hochlochziegel HLz, Porotherm 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015											
·		X — X									
[mm]	Länge L	Breite B	Höhe H								
נייייו	250	440	250								
[kg/dm ³]		0,7									
Druckfestigkeit f _b [N/mm ²] 6 / 8 / 10											
Norm EN 771-1:2011+A1:2015											
	lle gefüllt [mm]	Länge L 250 [N/mm²]	Länge L Breite B 250 440 [kg/dm³] 0,7 [N/mm²] 6 / 8 / 10								

Steinabmessungen siehe auch Anhang B 12

Tabelle C26.1: Montageparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

Ankerstange			М8	M8 -			M10	M8	M10	-	M12	M12	M12
Innongovindo	ankar EIG I	-			M8					M10 M1	2		
Innengewindeanker FIS E		_	-	112	x85		-	'	•	15x85	-	-	-
Injektions-Ankerhülse FIS H K 12x85			12x85	16x85				16x	130	2	0x85	20x130	20x200
Ankerstangen und Innengewindeanker FIS E mit Injekt						tions	-Ank	erhül	se FIS F	l K			
Max. Montage- drehmoment	max T _{inst}	[Nm]		2			5	2	į	5		6	
Allgemeine Mo	ntagepara	meter	•										
Randabstand	C _{min}								6	0			
	s _{min} II								8	0			
Achs-	s _{cr} II	[mm]							2	50			
abstand	s _{min} ⊥				80								
	s cr⊥								2	50			
Bohrvorfahron													

Bohrverfahren

Drehbohren mit Hartmetallbohrer

Tabelle C26.2: Gruppenfaktoren

Ankerstange		M8	-	ı	M8	M10	M8	M10	-	M12	M12	M12
Innengewindear	-	M6 11x	M8 85	<u> </u>		-		M10 M12 15x85	1	-	-	
Injektions-Anke	12x85		16)	(85		16x130		20x85		20x130	20x200	
	_α _{g,N} II	1,3										
Gruppenfaktor	_α _{g,V} II		1,3									
Gruppernaktor	$\frac{\alpha_{g,N} \perp}{\alpha_{g,N} \perp}$ [-]		0,8									
	$\alpha_{\sf g,V} oldsymbol{\perp}$	·						1	,3	·	·	

fischer Injektionssystem FIS AB für Mauerwerk

Leistung

Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt; Abmessungen, Montageparameter

Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, EN 771-1:2011+A1:2015

Tabelle C27.1: Charakteristischer Widerstand unter Zugbeanspruchung (Vorsteck-Montage)

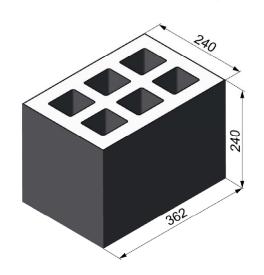
Ankerstange	М8		-		M10	M8	M10		-	M12	M12	M12
Innengewindeanker FIS E		М6	M8				_	M10 M12		_	_	
	-	11x85			_		_	15	c 85	_	_	-
Injektions-Ankerhülse FIS H K	12x85		162	k 85		16x	130	20:		k 85	20x130	20x200

N _{Rk} = N _{Rk,b}	= N _{Rk,p}	[kN] in	Abhängi	gkeit von der Druck	festigkeit	f _b (Temperaturbere	ich 50/80°	C)
Druckfestigkeit f ь		ungs- ngung						
6 N/mm²	w/w	w/d	1,5	1,2		1,5		2,5
0 14/111111	đ	/d	1,5	1,2		1,5		2,5
8 N/mm²	w/w	w/d	1,5	1,2		1,5		2,5
0 14/111111	đ	/d	2,0	1,5		2,0		3,0
10 N/mm²	w/w	w/d	2,0	1,5		2,0		3,0
10 14/111111	d.	/d	2,0	1,5		2,0		3,5

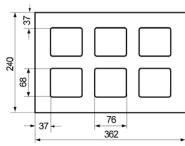
Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

Tabelle C27.1: Charakteristischer Widerstand unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	М8	-		M8	M10	M8	M10	-	M12	M12	M12
Innongovindoonkor EIS E		М6	M8			-		M10 M12	l	-	-
Innengewindeanker FIS E	-	11x85			-			15x85	-		
Injektions-Ankerhülse FIS H K	12x85		162	(85		16x130		20:	x85	20x130	20x200


$V_{Rk} = V_{Rk,b}$	=V _{Rk,c}	[kN] in	Abhängigkeit von der Druck	festigkeit	f _b (Temperaturbere	ich 50/80°	'C)
Druckfestigkeit f ₀		ungs- ngung					
6 N/mm²	w/w	w/d	0,9	1,2	0,9	1,2	1,2
• 10	d.	/d	3,3	1,2	0,0	.,_	1,2
8 N/mm²	w/w	w/d	0,9	1,5	0,9	1,5	1,2
0 14///////	d.	/d	0,3	1,5	0,5	1,5	1,2
10 N/mm²	w/w w/d		1,2	1,5	1,2	1 5	1,5
'0 14/111111	d.	/d	1,2	1,5	1,2	1,5	1,5

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33


fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hochlochziegel HLz, Porotherm W 44, Mineralwolle gefüllt, Charakteristischer Widerstand unter Zugbeanspruchung	Anhang C 27

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015

Hohlblock aus L	Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015											
Hersteller		-										
Nennmaße	[mm]	Länge L	Breite B	Höhe H								
ivenininaise	[111111]	362	240	240								
Dichte ρ	[kg/dm³]		≥ 1,0									
Druckfestigkeit fb	[N/mm ²]		4									
Norm		EN 77	1-3:2011+A	1:2015								

Steinabmessung siehe auch Anhang B12

Tabelle C28.1: Montageparameter

Ankerstange	М8	-		M8	M8 M10		M10	-		M12	M12
Innengewindeanker FIS E	-	M6 112	M8 <85		-		-		M12 x85	-	-
Injektions-Ankerhülse FIS H K	12x85	16x		x85		16x130		20		ĸ85	20x130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm]

Allgemeine Montageparameter

Aligemeine	e Montagepara	meter	
Randabstar	nd c _{min}		60
A - I	S _{min} II	[mm]	100
Achs- abstand	s _{cr} II	[mm]	362
abstand	$s_{min} \perp = s_{cr} \perp$		240

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C28.2: Gruppenfaktoren

Ankerstange		M8	18 -		M8	M10	M8	M10	-		M12	M12
Innengewindeanker FIS E		-	M6 M8 11x85			-	_			M12 x85	-	-
Injektions-Anke	12x85	16x85				16x130		20x85		20x130		
	α _{g,N} II						1	,2				
Gruppenfaktor	<u>α_{g,V} II</u> [-]						1	,1				
Gruppernaktor	$\frac{\alpha_{g,N}\perp}{\alpha_{g,V}\perp}$						2	2,0				

fischer Injektionssystem FIS AB für Mauerwerk

Leistung

Hohlblock aus Leichtbeton Hbl, Abmessungen, Montageparameter

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015

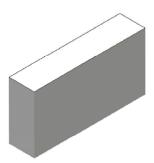
Tabelle C29.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange	М8	-		M8	M10	M8	M8 M10		-	M12	M12
Innengewindeanker FIS E	-	M6	M6 M8 11x85		-	-			M12 (85	-	•
Injektions-Ankerhülse FIS H K	12x85	16x		x85		16x130			20x85		20x130

$N_{Rk} = N_{Rk,b}$	N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)										
Druckfestigkeit f ь	Nutzı bedir	ungs- igung									
4 N/mm²	w/w	w/d	3,0								
4 14/111111	d	/d	3,0								

Tabelle C29.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstange	М8	-		M8	M10	M8 M10		-		M12	M12
Innengewindeanker FIS E	-	M6	M6 M8 11x85		•	-			M12 x85	-	-
Injektions-Ankerhülse FIS H K	12x85	16>		k85		16x130		20:		(85	20x130


$V_{Rk} = V_{Rk,b}$	$=V_{Rk,c}$	[kN] in	Abhängigkeit von der Druckfestigkeit f₀ (Temperaturbereich 50/80°C)
Druckfestigkeit f ₀		ungs- igung	
4 N/mm ²	w/w	w/d	2.0
4 14/111111	d.	/d	2,0

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zug und Querbeanspruchung	Anhang C 29

Porenbeton, EN 771-4: 2011+A1:2015

Porenbeton, EN 771-4:2011+A1:2015											
Hersteller		z. B. Ytong									
Dichte ρ	[kg/dm³]	≥ 0,35	≥ 0,5	≥ 0,65							
Druckfestigkeit fb	[N/mm ²]	2	4	6							
Norm EN 771-4: 2011+A1:201											

Tabelle C30.1: Montageparameter

Ankerstar	nge		M	18	М	10	М	12	0-	•	,	•
Innengew	indeanker FIS E	•	-		-		-		M6 112	M8 (85	M10	M12 (85
Ankerstar	ngen und Innen	gewin	rindeanker FIS E ohne Injektions-Ankerhülse									
Effektive Verankeru	ngstiefe h _{ef}	[mm]	100	200	100	200	100	200	85		35	
Max. Montage- drehmoment max T _{inst}		[Nm]	1	8	2	12	2	16	,	1	2	2
Allgemein	ne Montagepara	meter	,									
Randabsta	and c _{min}		100									
	s _{cr} II = s _{min} II		250									
	h _{ef} =200mm s _{min} II	I I	80									
Achs-	h _{ef} =200mm s _{cr} II	[mm]	3x h _{ef}									
abstand	$s_{cr} \perp = s_{min} \perp$]]					2	50				
	h _{ef} =200mm s _{min} ⊥						8	0				
	$h_{\sf ef}$ =200mm ${\sf s}_{\sf cr}$ \perp						3x	h _{ef}				

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Porenbeton (zylindrisches Bohrloch), Abmessungen, Montageparameter	Anhang C 30

Ankerstange Innengewindeanker FIS E		M8	M10	M12		-	-	
					M6	M8	M10	M12
		-	-	-	11x85		15x85	
	h _{ef} =200 α _{g,N} II	1,6		_1)		_1)		
	h _{ef} =200 α _{g,V} II		1,1		_1)		_1)	
Ownerstalden	α _{g,N} II, α _{g,V} II							
Gruppenraktor	$h_{ef}=200 \alpha_{g,N} \perp$ [-]		1,6		_	1)	_	1)
	h _{ef} =200 α _{g,V} ⊥		0,8	_1)		_1)		
	GaN GaV			2	•		•	

¹⁾ Leistung nicht bewertet

Tabelle C31.2: Gruppenfaktoren für Porenbeton (Druckfestigkeit fb = 4 N/mm²)

Ankerstange		M8	M10	M12	-		-	
Innengewind	oanker FIS F	_	_	_	M6	M8	M10	M12
Innengewindeanker FIS E		<u>-</u>	-	_	11x	11x85		85
	h _{ef} =200 α _{g,N} II		0,7		_1)	_1)
	h _{ef} =200 α _{g,V} II		2,0		_1)	_1)	
Cruppopfokto	$r \frac{\alpha_{g,N} \parallel, \alpha_{g,V} \parallel}{h_{ef} = 200 \alpha_{g,N} \perp} [-]$			2	·			
Gruppemakto	$r = \frac{\underset{g,N}{\underbrace{\otimes g,V}}}{h_{ef} = 200 \ \alpha_{g,N} \perp} \ [-]$		0,7	0,7		_1)	
	h _{ef} =200 α _{g,V} \perp	1,2			_1	_1))
	$\alpha_{g,N} \perp, \alpha_{g,V} \perp$	2						

¹⁾ Leistung nicht bewertet

Tabelle C31.3: Gruppenfaktoren für Porenbeton (Druckfestigkeit f_b = 6 N/mm²)

Ankerstange		M8	M10	M12		-		-	
Innongovindo	ankar EIS E				M6	M8	M10	M12	
Innengewindeanker FIS E		-	-	-	11:	11x85		c 85	
	h _{ef} =200 $lpha_{g,N}$ II		0,7		-	1)	-	1)	
	h _{ef} =200 α _{g,V} II		_	1)	_1)				
Grupponfaktor	$\alpha_{g,N} \parallel, \alpha_{g,V} \parallel$			2					
Gruppenfaktor	$\frac{\log_{\rm H}(1) \log_{\rm H}(1)}{\ln_{\rm H}(1)} = 200 \log_{\rm H}(1)$		0,7		-	1)		1)	
	h _{ef} =200 α _{g,} ∨⊥		1,2					1)	
	$\alpha_{g,N}\perp$, $\alpha_{g,V}\perp$								

¹⁾ Leistung nicht bewertet

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung Porenbeton, Gruppenfaktoren	Anhang C 31

Porenbeton, EN 771-4:2011+A1:2015

Tabelle C32.1: Charakteristischer Widerstand unter Zugbeanspruchung

Ankerstange Innengewindeanker			M	18	М	M10		12	_			
			-		-			· -	М6	M8	M10	M12
FIS E		_					11x85		15x85			
N _{Rk} = N _{Rk,b} = N _{Rk,p} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C)										;)		
Druck- Nutzungs-				Effektive Verankerungstiefe hef [mm]								
festigkeit f ь	bedingung		100	200	100	200	100	200	85			
2 N/mm ²	w/w	w/d	1,5	2,0	1,5	3,0	1,5	3,0	1	,5	1,	5
2 N/IIIII-	d/d		1,5	3,0	1,5	3,5	2,0	4,0	1	,5	1,	5
4 N/mama2	w/w	w/d	2,0	1,5	2,5	3,5	2,5	3,5	2	,0	1,	5
4 N/mm²	d/d		2,0	3,0	3,0	5,0	2,5	5,0	2	,0	1,	5
C N/mana2	w/w	w/d	3,0	2,5	4,5	5,0	4,5 7,0		3	,5	2,	5
6 N/mm ²	d/d		3,5	4,0	5,0	7,0	5,0	9,0	3	,5	2,	5

Tabelle C32.2: Charakteristischer Widerstand unter Querbeanspruchung

Ankerstange			M	18	M10		M12		-		-	
Innengewindeanker FIS E		-		-		-		М6	M8	M10	M12	
								11x85		15x85		
V _{Rk} =	V _{Rk} = V _{Rk,b} =V _{Rk,c} [kN] in Abhängigkeit von der Druckfestigkeit f _b (Temperaturbereich 50/80°C))	
	Nutzun		Effektive Verankerungstiefe hef [mm]									
festigkeit f _b	bedingung		100	200	100	200	100	200	85			
2 N/mm ²	w/w	w/w w/d		12 12 15		1,2	1,2			1,5		
2 19/111111	d/d		1,2	1,2	1,2	1,2	1,5	1,2		1,2		1,5
4 N/mm ²	w/w	w/d	2,5	2.0	2.0	2.0	2,5	2,0		2.0		2,5
4 19/111111	d/d		2,5 2,0		2,0 2,0		2,5	2,0	2,0			2,5
6 N/mm ²	w/w	w/d	3,0	2,5	3,0	3,0	3,5	4,0		2,5		3,5
ישוא/או ס	d/c	t	3,0	2,5	3,0	3,0	3,5	4,0		۷,5		3,5

Faktor für Baustellenversuche und Verschiebungen siehe Anhang C 33

fischer Injektionssystem FIS AB für Mauerwerk

Leistung
Porenbeton, Charakteristischer Widerstand unter Zug- und Querbeanspruchung

Anhang C 32

β -Faktoren für Baustellenversuche; Verschiebungen

Tabelle C33.1: β-Faktoren für Baustellenversuche

Nutzungsbedingung		w/w und w/d	d/d		
Temperaturbereich		50/80	50/80		
Material	Größe				
	M8	0,57			
	M10	0,59			
Vollsteine	M12 FIS E 11x85	0,60	0,96		
	FIS E 15x85	0,62			
	FIS H 16x85 K	0,55	1		
Lochsteine	Alle Größen	0,86	0,96		
Porenbeton (AAC)	Alle Größen	0,73	0,81		

Tabelle C33.2: Verschiebungen

Material	N [kN]	δ N ₀ [mm]	δ N ∞ [mm]	V [kN]	δV_0 [mm]	δ V ∞ [mm]
Vollsteine und Porenbeton h _{ef} =100mm	N _{Rk} 1,4 * γ _{Mm}	0,03	0,06	V _{Rk} 1,4 * γ _{Mm}	0,82	0,88
Lochsteine	N _{Rk} 1,4 * γ _{Mm}	0,48	0,96	V _{Rk} 1,4 * γ _{Mm}	1,71	2,56
Vollstein Mz NF Anhang C 4 – C 7	N _{Rk} 1,4 * γ _{Mm}	0,74	1,48	V _{Rk} 1,4 * γ _{Mm}	1,23	1,85
Vollstein KS NF Anhang C 14 – C 15	N _{Rk} 1,4 * γ _{Mm}	0,20	0,40	V _{Rk} 1,4 * γ _{Mm}	0,91	1,37
Porenbeton (AAC) h _{ef} =200 mm Anhang C 30 – C 32	N _{Rk} 1,4 * γ _{Mm}	1,03	2,06	V _{Rk} 1,4 * γ _{Mm}	1,25	1,88

Für Verankerung in Porenbeton (AAC) ist der Teilsicherheitsbeiwert γ_{MAAC} anstelle von γ_{Mm} zu verwenden

fischer Injektionssystem FIS AB für Mauerwerk	
Leistung β-Faktoren für Baustellenversuche; Verschiebungen	Anhang C 33