

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0513 of 8 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System SPIT VIPER XTREM

Systems for post-installed rebar connections with mortar

SPIT Route de Lyon 26500 BOURG-LÉS-VALENCE FRANKREICH

SPIT

22 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-17/0513 issued on 5 February 2021

European Technical Assessment ETA-17/0513 English translation prepared by DIBt

Page 2 of 22 | 8 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z99932.22 8.06.01-354/21

European Technical Assessment ETA-17/0513 English translation prepared by DIBt

Page 3 of 22 | 8 December 2022

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the injection mortar "SPIT VIPER XTREM" or "SPIT VIPER XTREM TR" in accordance with the regulations for reinforced concrete construction.

Ribbed reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm according to Annex A and the injection mortar "SPIT VIPER XTREM" or "SPIT VIPER XTREM TR" are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1 to C 3
Characteristic resistance under seismic loading	See Annex B 4 and C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 5

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z99932.22 8.06.01-354/21

European Technical Assessment ETA-17/0513 English translation prepared by DIBt

Page 4 of 22 | 8 December 2022

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z99932.22 8.06.01-354/21

Injection mortar

Injection mortar SPIT VIPER XTREM 280 ml, 410 ml and 825 ml: Vinylester adhesive two components

Marking

Trade name VIPER XTREM
Identifying mark of the producer SPIT

Expire date
Curing and processing time
Charge code number

Static mixer

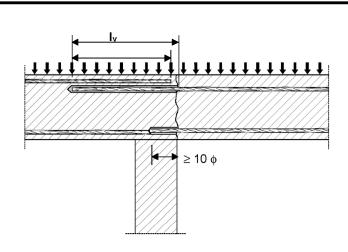
Turbo mixing nozzle

Standard Quadro mixing nozzle

High flow mixing nozzle

Injection system SPIT VIPER XTREM

Product description


Injection system SPIT VIPER XTREM

Annex A1

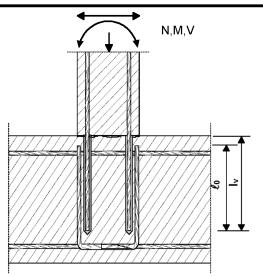
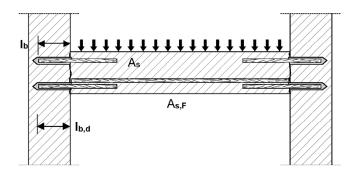
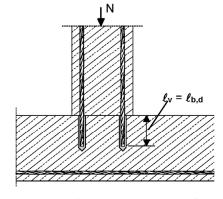


Figure A1: Ribbed reinforcing bar (rebar):	
Marking of s	setting depth applied on jobsite
Properties of the ribbed reinforcing bar (rebar): - Rebar according to EN 1992-1-1:2011 Annex C - Bars or de-coiled rods class B or C - Nominal diameter φ: 8 to 32 mm - Rib height h in the range of 0,05 φ ≤ h ≤ 0,07 φ - Yield strength f _{yk} and k according to NDP or NCI of EN 1992-1 - Ultimate strength f _{uk} = f _{tk} = k ⋅ f _{yk}	
Charries Strongth land it is type	
Injection system SPIT VIPER XTREM	
Product description Specification rebar	Annex A2




Figure A2: Overlap joint for rebar connections of slabs and beams

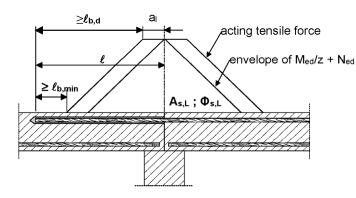

Figure A3: Overlap joint at a foundation of a column or wall where the rebars are stressed in tension

Figure A4: End anchoring of slabs or beams, designed as simply supported

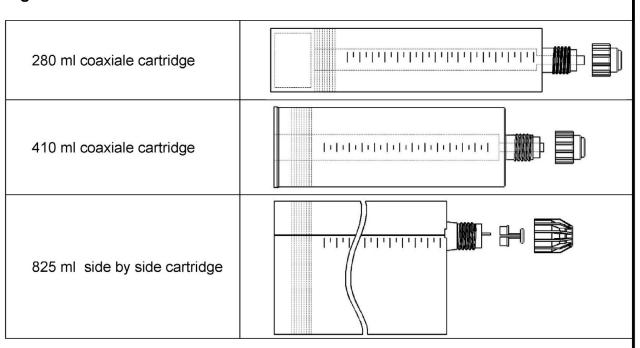
Figure A5: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression

Figure A6: Anchoring of reinforcement to cover the line of acting tensile force

Note to Figure A2 to A6:

- In the Figures no transverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2011 shall be present.
- Preparing of joints according to Annex B3

Injection system SPIT VIPER XTREM


Product description

Installation conditions and application examples reinforcing bar

Annex A3

Cartridges

Injection accessories for deep hole

Plastic extension must be use for hole deeper $h_0 > 250 \text{ mm}$ Piston plug for hole deeper must be use for hole deeper $h_0 > 350 \text{ mm}$

Cartridge volume	Mixing Nozzle	Extension for piston plug	Piston plug
All cartridges	Turbo or Standard Quadro	Ø13x1000 l	
Cartridge 825 ml	High flow	Ø20x1000	

Injection system SPIT VIPER XTREM

Product description

Cartridges

Injection accessories for deep hole

Annex A4

Specifications of intended use

Anchorages subject to:

- Static and quasi static loading : rebar size

 φ8 to
 φ32
- Seismic loading : rebar size φ12 to φ32, only hammer drilling and compressed air drilling technique
- Fire exposure : : rebar size φ8 to φ32

Base material:

- Compacted Reinforced or unreinforced normal weight concrete without fibres of strength classes C 12/15 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2011. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature range:

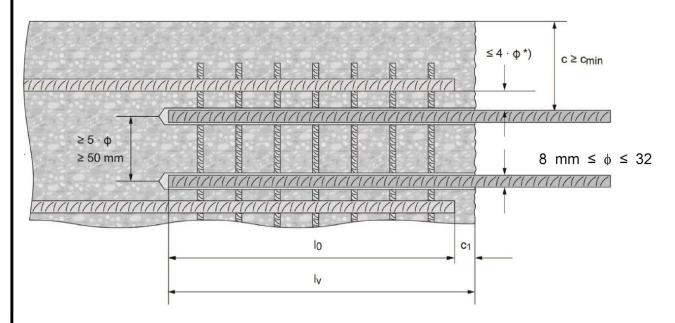
- At installation
 - -10°C to °40°C
- In-service
 - 40°C to +80°C: max short term temperature +80°C, max long term temperature +50°C

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design under static or quasi-static loading in accordance with EN 1992-1-1:2011 and Annex B3 and under seismic action in accordance with EN 1998-1:2004+AC:2009.
- Design under fire exposure in accordance with EN 1992-1-2:2011
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Injection system SPIT VIPER XTREM	
Intended used	Annex B1
Specifications	

Installation:


- Drilling technique:
 - Hammer drilling technique: all sizes
 - Hammer drilling with hollow drill bit XTD: sizes φ 12-25
 - Compressed air drilling: all sizes
 - Diamond drilling technique with roughening tool: sizes φ 12-32
- <u>Use category:</u>
 - Dry or wet concrete (not in flooded holes) for Hammer drilling technique, compressed air drilling and diamond drilling technique with roughening tool
 - Only dry concrete for hammer drilling with hollow drill bit XTD
 - Installation direction downwards, horizontal and overhead
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Injection system SPIT VIPER XTREM	
Intended used Specifications	Annex B2

Figure B1: Construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2011.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

- *) If the clear distance between lapped bars exceeds $4.\phi$, then the lap length shall be increased by the difference between the clear bar distance and $4.\phi$
- c: concrete cover of post-installed rebar
- c₁: concrete cover at end-face of existing rebar
- c_{min}: minimum concrete cover according to Table B1, c_{min,seis} according to Table B2 (Annex B4) and to EN 1992-1-1:2011, Section 4.4.1.2
- b: diameter of post-installed rebar
- I₀: lap length, according to EN 1992-1-1:2011, Section 8.7.3
- I_v: effective embedment depth ≥ $I_0 + c_1$
- d₀ nominal drill bit diameter, see Table B5 (Annex B3)
- Minimum spacing between two post-installed bars a = 50 mm \geq 5 ϕ

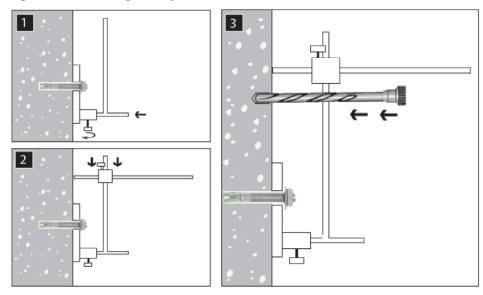
Injection system SPIT VIPER XTREM

Intended used
General construction rules for post-installed rebars

Annex B3

Table B1: Minimum concrete cover $c_{min}^{\,1)}$ of post-installed rebar under static loading

Drilling method	Bar diameter φ	Without drilling aid	With drilling aid
Hammer drilling	< 25 mm	30 + 0,06 lv ≥ 2¢	$30 + 0.02 \text{ Iv} \ge 2\phi$
Hammer drilling	≥ 25 mm	40 + 0,06 lv ≥ 2¢	40 + 0,02 lv ≥ 2¢
Hammer drilling	< 25 mm	30 + 0,06 lv ≥ 2¢	30 + 0,02 lv ≥ 2¢
with hollow drill bit XTD	≥ 25 mm	40 + 0,06 lv ≥ 2¢	$40 + 0.02 \text{ lv} \ge 2\phi$
Compressed air	< 25 mm	50 + 0,08 lv ≥ 2¢	$50 + 0.02 \text{ lv} \ge 2\phi$
drilling	≥ 25 mm	60 + 0,08 lv ≥ 2¢	60 + 0,02 lv ≥ 2¢
Diamond core	< 25 mm	Drill stand is used	$30 + 0.02 \text{ lv} \ge 2\phi$
drilling	≥ 25 mm	as drilling aid	40 + 0,02 lv ≥ 2¢


¹⁾ See Annex B3, Figure B1

Note: The minimum concrete cover as specified in EN 1992-1-1:2011 must be observed.

Table B2: Minimum concrete cover c_{min,seis} of post-installed rebar under seismic loading

Drilling method	Design condition	Distance of 1 st edge	Distance of 2 nd edge
Hammer drilling	Edge	≥ 4 ф	≥ 8 ф
and Compressed air drilling	Corner	≥ 6 ф	≥ 6 ф

Figure B2: Drilling aid system

Injection system SPIT VIPER XTREM	
Intended used	Annex B4
Minimum concrete cover	

Table B3: Maximum embedment depth $I_{\nu,\text{max}}$ depending on bar diameter and dispenser

Rebar diameter ø	Maximum embedment length l _{v,max} [mm]		
	Manuel Dispenser	Pneumatic Dispenser	
[mm]	280 ml		
	410 ml	410 ml	825 ml
	825 ml		
8			
10			
12			
16	500	600	900
20	300	000	900
25			
28			
32			

Table B4: Installation parameters

Rebar diameter φ	Nominal drilling diameter d _{cut} [mm]			
[mm]	Hammer drilling	Hammer drilling with hollow drill bit XTD ¹⁾	Diamond core	Diamond core and roughening drill bit
8	10	-	-	-
10	12	-	-	-
12	15	16	16	-
16	20	20	-	20
20	25	25	_	25
25	30	30	_	30
28	35	-	-	35
32	40	-	_	40

¹⁾ Maximum working length: 600 mm

Injection system SPIT VIPER XTREM	
Intended used	Annex B5
Maximum embedment depth Iv _{max}	
Installation parameters	

Table B5: Parameters for use of Roughening tool

Diamond coring	Roughtening tool 1)
d _{cut} [mm]	d _{cut} [mm]
20	20
25	25
30	30
35	35
40	40

¹⁾ For checking the wear of roughening drill bit, a wear gauge is delivered with each roughtening tool

Table B6: Dimensions of the cleaning tools for reinforcing bars (rebars)

		Nominal diameter of the reinforcing bars (rebars)										
Dimensions	ф 8	ф 10	ф 12	ф14	ф 16	ф 20	ф 25	ф 28	ф32			
Ø Brush [mm] 1)	11	13	16	20	22	26	32	37	42			
Ø Plastic extension for compress air	6	9	9	13	13	13	13/20	13/20	13/20			

¹⁾ The diameter of the round steel brush shall be checked before use. The minimum brush diameter has to be at least equal to the borehole diameter d₀. The round steel brush shall produce natural resistance as it enters the drill hole. If this is not the case, please use a new brush or a brush with a larger diameter.

Injection system SPIT VIPER XTREM	
Intended used	Annex B6
Parameters for using of roughening drill bit	
Dimensions of cleaning tools	

Table B7: Gel time and curing time for Regular Version

Temperature of base material	Working time	Curing time ¹⁾		
-10°C to -5°C	90 min	24 h		
-4°C to 0°C	50 min	240 min		
1°C to 5°C	25 min	120 min		
6°C to 10°C	15 min	90 min		
11°C to 20°C	7 min	60 min		
21°C to 30°C	4 min	45 min		
31°C to 40°C	2 min	30 min		

¹⁾ For wet concrete the curing time must be doubled

Table B8: Gel time and curing time for Tropical Version:

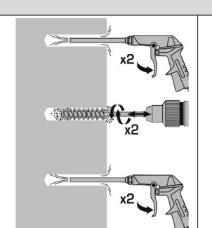
Temperature of base material	Working time	Curing time ¹⁾		
+ 5°C	60 min	240 min		
6°C to 10°C	40 min	180 min		
11°C to 20°C	15 min	120 min		
21°C to 30°C	8 min	60 min		
31°C to 40°C	4 min	60 min		

¹⁾ For wet concrete the curing time must be doubled

Injection system SPIT VIPER XTREM

Product description
Minimum curing time and maximum working time

Annex B7

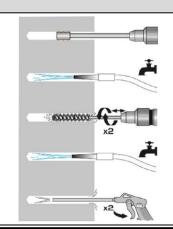

Rotary hammer drilling or compressed air drilling Electrical hammer drilling with XTD hollow drill bit used in relation with the SPIT AC 1625 vacuum or the type. This drilling technique allows for cleaning the hole from the dust debris while operating drilling. No further

Diamond core drilling

The roughening tool must be used for core diameter higher than 20 mm.

Cleaning the hole:

Hammer drilling technique


cleaning is then required before injecting resin.

- 1. Using compress air cleaning (min 6 bars), use the appropriate extension, starting from the top of the hole blow out at least 2 times by moving downward to the bottom of the hole then moving upward to the top of the hole and until no dust is evacuated. (not less than 10s per each blowing).
- 2. Using the relevant brush and extension fitted on a Spit drilling machine, starting from the top of the hole, move downward to the bottom of the hole then move upward to the top of the hole. Repeat this operation.
- 3.Using compress air cleaning (min 6 bars), use the appropriate extension, starting from the top of the hole blow out at least 2 times by moving downward to the bottom of the hole then moving upward to the top of the hole and until no dust is evacuated. (not less than 10s per each blowing).

Hammer drilling technique

Electrical hammer drilling with XTD hollow drill bit used in relation with the SPIT AC 1625 vacuum or the type. This drilling technique allows for cleaning the hole from the dust debris while operating drilling. No further cleaning is then required before injecting resin.

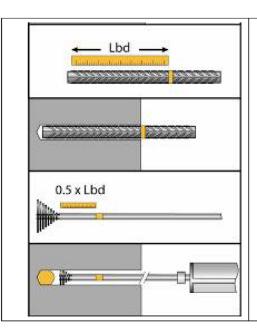
Diamond core drilling technique

- 1. For core diameter higher than 20 mm, remove water in the hole and use the roughening drill bit before applying cleaning procedure
- 2. Clean the hole with tap water.
- 3. Using the relevant brush and extension fitted on a Spit drilling machine, starting from the top of the hole, move downward to the bottom of the hole then move upward to the top of the hole. Repeat this operation.
- 4. Clean the hole with tap water
- 5. Using compress air cleaning (mini 6 bars), use the appropriate extension, starting from the top of the hole blow out at least 2 times by moving downward to the bottom of the hole then moving upward to the top of the hole and until no dust is evacuated. (not less than 10s per each blowing).

Injection system SPIT VIPER XTREM

Product description

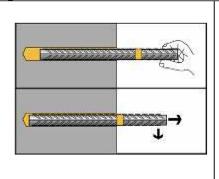
Installation instruction


Annex B8

Safety precaution:

The safety data sheet must be read before using the product and the safety instructions followed.

- Storage temperature of cartridge +0°C à +35 °C
- Cartridge temperature at time of installation: Must be ≥ +5°C
- Base material temperature at time of installation: Must be between -10°C and +40°C
- Check the date of expiry of the cartridge


Dispensing into the hole:

- Put the anchorage depth mark on the rebar
- 2. Check the anchorage depth
- Cut the piston plug at the relevant diameter. The volume of resin that need to be injected in the hole must be indicated on the mixing nozzle or its extension. The marking must be placed at 0.5 time the anchorage depth
- Dispense the first part to waste until an even colour is achieved (≈ 20cm). Insert the nozzle to the far end of the hole, and inject the resin, withdrawing the nozzle as the hole fills in order to avoid trapping air bubbles. Fill the hole until the mark appear. For pneumatic dispenser with 410 ml cartridge, the maximum pressure is 6 bars.

Inserting the rebar:

Electronic copy of the ETA by DIBt: ETA-17/0513

- 1. Immediately insert the rebar, slowly and with a slight twisting motion. Remove excess resin from around the mouth of the hole before it sets. Control the embedment depth during the working time (See Annex B7 Table B7 or B8) which varies according to temperature of base material.
- 2. Leave the rebar undisturbed until the curing time has elapse. (See Annex B7 Table B7 or B8)

Injection system SPIT VIPER XTREM

Product description

Installation instruction

Annex B9

7113214 22 8.06.01-354/21

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ given in Table C1.

Table C1: Amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ related to concrete strength class for Hammer drilling and compressed air drilling with a working life of 50 or 100 years under static loading

Bar			Am	plificatio	n factor o	_{lib} = α _{lb,100}	ру [-]				
diameter	Concrete strength class										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф8				1,0							
ф10				1,0							
ф12		1,0									
φ14				1,0				1	,1		
ф16				1,0				1,1			
ф20				1,0			1,1	1,2	1,2		
ф25		1	,0		1,	,1	1,2	1,3	1,3		
ф28		1	,0		1,	,1	1,2	1,3	1,4		
ф32		1	,0		1	,2	1,3	1,4	1,5		

Table C2: Bond efficiency factor $k_b = k_{b,100y}$ for Hammer drilling and compressed air drilling with a woking life of 50 or 100 years under static loading

Bar			Bon	d efficier	ncy facto	r k _b = k _{b,10}	оу[-]		
diameter Concrete strengt									
diamotor	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
ф8-ф32	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0

Table C3: Design values of the bond resistance f_{bd,PIR} = f_{bd,PIR,100y} in N/mm² for Hammer drilling and compressed air drilling with a working life of 50 or 100 years under static loading

 $f_{bd,PIR} = k_b \cdot f_{bd}$

 $\mathbf{f}_{bd,PIR,100y} = \mathbf{k}_{b,100y} \cdot \mathbf{f}_{bd}$

 f_{bd} : Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by η_1 = 0,7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2011

k_b and k_{b,100y}: Bond efficiency factor according to Table C2

		Bond resistance f _{bd,PIR} = f _{bd,PIR,100y} [N/mm ²]									
Bar		Concrete strength class									
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф8-ф32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

Injection system SPIT VIPER XTREM

Performance

Minimum anchor length and minimum lap length, amplification factor, bond efficiency factor and design value of bond strength under static loading

Annex C1

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor α_{lb} given in Table C4.

Table C4: Amplification factor α_{lb} for Hammer drilling with XTD hollow drill bit with a working life of 50 years under static loading

Bar		Amplification factor α _{lb} [-]									
diameter	Concrete strength class										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф12-ф25					1,5						

Table C5: Bond efficiency value k_b for Hammer drilling with XTD hollow drill bit with a working life of 50 years under static loading

Bar		Bond efficiency factor k _b [-]										
diameter	Concrete strength class											
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
ф12-ф25					1,0							

Table C6: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for Hammer drilling with XTD hollow drill bit with a working life of 50 years under static loading

 $f_{bd,PIR} = k_b \cdot f_{bd}$

f_{bd}: Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by η_1 = 0,7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2011

k_b: Bond efficiency factor according to Table C5

		Bond resistance f _{bd,PIR} [N/mm²]									
Bar		Concrete strength class									
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ12-φ25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

Injection system SPIT VIPER XTREM

Performance

Minimum anchor length and minimum lap length, amplification factor, bond efficiency factor and design value of bond strength under static loading

Annex C2

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor α_{lb} given in Table C7.

Table C7: Amplification factor α_{Ib} for Diamond drilling with a working life of 50 years under static loading

Bar		Amplification factor αι _ι [-]										
diameter		Concrete strength class										
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
φ12												
φ14								1,1	1,2			
ф16								1,1				
ф20				1,0					1,1			
φ25									','			
ф28								1,0	1,0			
ф32									',0			

Table C8: Bond efficiency value k₀ for Diamond drilling with a working life of 50 years under static loading

Static io	aamg										
Bar diameter	Bond efficiency factor k₀ [-]										
	Concrete strength class										
	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф12-ф20		1,0									
ф25	1,0 0,9								0,9		
ф28	1,0 0,9								0,9		
ф32	1,0							0,8	0,9		

Table C9: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for Diamond drilling with a working life of 50 years under static loading

 $f_{bd,PIR} = k_b \cdot f_{bd}$

 f_{bd} : Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by η_1 = 0,7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2011

k_b: Bond efficiency factor according to Table C8.

	Bond resistance f _{bd,PIR} [N/mm²]										
Bar	Concrete strength class										
diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф12-ф20				2,7	3,0	3,4	3,7	4.0	4,3		
ф25	1,6	2,0	2,3					4,0	4,0		
ф28								3,7	4,0		
ф32							3,4	3,4	3,7		

Injection system SPIT VIPER XTREM

Performance

Minimum anchor length and minimum lap length, amplification factor, bond efficiency factor and design value of bond strength under static loading

Annex C3

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2011 shall be multiplied by the relevant amplification factor $\alpha_{Ib,seis} = \alpha_{Ib,seis,100y}$ given in Table C10.

Table C10: Amplification factor α_{Ib,seis} = α_{Ib,seis,100y} for Hammer drilling and compressed air drilling with a working life of 50 or 100 years under seismic loading

Bar diameter	Amplification factor α _{lb,seis} = α _{lb,seis,100y} [-]									
	Concrete strength class									
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф12		1,0								
φ14	1,0 1,1							1,1		
ф16	1,0 1,1									
ф20	1,0 1,1					,1	1,2	1,2		
ф25	1,0			1,	1	1,2	1,3	1,3		
ф28	1,0			1,	1	1,2	1,3	1,4		
ф32		1,0		1,2		1,3	1,4	1,5		

Table C10: Bond efficiency factor $k_{b,seis} = k_{b,seis,100y}$ for Hammer drilling and compressed air drilling with a working life of 50 or 100 years under seismic loading

drining with a working me of too or too yours and or colonia loading										
Bar diameter	Bond efficiency factor k _{b,seis} = k _{b,seis,100y} [-]									
	Concrete strength class									
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
ф12-ф20	1,0	1,0 1,0	1,0	1,0	1,0	1,0	1,0	1,0		
ф25							0,92	0,93		
ф28					0,90	0,82	0,76	0,79		
ф32			0,86	0,76	0,69	0,63	0,58	0,54		

Table C11: Design values of the bond resistance f_{bd,PIR,seis} = f_{bd,PIR,seis,100y} in N/mm² for Hammer drilling and compressed air drilling with a working life of 50 or 100 years under seismic loading

 $f_{bd,PIR,seis} = k_{b,seis} \cdot f_{bd}$

 $f_{bd,PIR,seis,100y} = k_{b,seis,100y} \cdot f_{bd}$

f_{bd}: Design value of the bond strength in N/mm² considering the concrete strength classes and the rebar diameter for good bond condition (for all other bond conditions multiply the values by η_1 = 0,7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2011

k_{b,seis} and k_{b,seis,100y}: Bond efficiency factor according to Table C10

Bar diameter	Bond resistance f _{bd,PIR,seis} = f _{bd,PIR,seis,100y} [N/mm²]									
	Concrete strength class									
	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
φ12-φ20	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		
ф25							3,7	4,0		
ф28					3,0	3,0	3,0	3,4		
ф32			2,3	2,3	2,3	2,3	2,3	2,3		

Injection system SPIT VIPER XTREM

Performance

Minimum anchor length and minimum lap length, amplification factor, bond efficiency factor and design value of bond strength under seismic loading

Annex C4

Design value of ultimate bond strength in case of fire f_{bd,fi}, f_{bd,fi,100y} [N/mm²] at increased tempreture for concrete strength classes C12/15 to C50/60, all drilling methods and a working life of 50 or 100 years

The design value of bond strength under fire exposure f_{b,f_i} , $f_{b,f_i,100y}$ at increased temperature has to be calculated by the following equation:

 $f_{bd,fi,(100y)} = k_{b,fi,(100y)}(\theta) \bullet f_{bd,PIR,(100y)} \bullet \gamma_c / \gamma_{M,fi}$

where

 θ < 281 °C: $k_{b,fi,(100y)}(\theta) = min \{1,0; 23,755 e^{-0.011 \bullet \theta} / (f_{bd,PIR,(100y)} \bullet 4,3)\}$

 $\theta > 281 \,^{\circ}\text{C}$: $k_{b,fi,(100v)} = 0$

fbd,fi Design value of ultimate bond strength at increased temperature in N/mm² for working life 50

years

f_{bd,fi,100y} Design value of ultimate bond strength at increased temperature in N/mm² for working life 100

years

θ Temperature in °C in the mortar layer

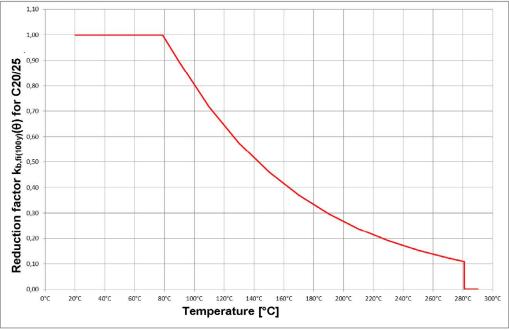
 $k_{b,fi,100y}(\theta)$ Reduction factor at increased temperature for working life 50 years $k_{b,fi,100y}(\theta)$ Reduction factor at increased temperature for working life 100 years

fbd,PIR Design values of the ultimate bond strenght in N/mm² in cold condition according to Table C3, C6

or C9 considering the concrete strength class, rebar diameter, drilling method and bond condition

according to EN 1992-1-1:2011

fbd,PIR,100y Design values of the ultimate bond strenght in N/mm² in cold condition according to Table C3


considering the concrete strength class, rebar diameter, drilling method and bond condition

according to EN 1992-1-1:2011.

 γ_c = 1,5 recommended partial factor according to EN 1992-1-1:2011 $\gamma_{M,fi}$ = 1,0 recommended parial factor according to EN 1992-1-2:2011

For evidence a increased Temperature the anchorage length shall be calculated according to EN 1992-1-1:2011, Equation 8.3 using the temperature-dependent design value of ultimate bond strength fbd,fi, fbd,fi,100y.

Figure C1: Example graph of reduction factor k_{b,fi(100y)}(θ) for concrete strength class C20/25 for good bond conditions

Injection system SPIT VIPER XTREM

Annex C5

Performance

Design value of bond strength $f_{bd,fi}$, $f_{bd,fi,100y}$ at increased temperature