

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0728 vom 23. Februar 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

HALFEN Ankerschiene HZA-PS

Ankerschiene

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Werke

Leviat Manufacturing Plants

21 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330008-03-0601, Edition 06/2021

ETA-17/0728 vom 7. Juni 2019

Seite 2 von 21 | 23. Februar 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 21 | 23. Februar 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Die HALFEN Ankerschiene HZA-PS ist ein System bestehend aus einer C-förmigen gezahnten Schiene aus Stahl mit mindestens zwei auf dem Profilrücken unlösbar befestigten Ankern und HALFEN Zahnschrauben.

Die Ankerschiene wird oberflächenbündig einbetoniert. In den Schienen werden HALFEN Zahnschrauben mit entsprechenden Sechskantmuttern und Unterlegscheiben befestigt. In Anhang A ist die Produktbeschreibung dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn die Ankerschiene entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer der Ankerschiene von mindestens

Grunde liegen, führen zur Annahme einer Nutzungsdauer der Ankerschiene von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produktes im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zuglast (statische und quasi-statische Einwirkungen)	
- Widerstand gegen Stahlversagen der Anker	$N_{Rk,s,a}$ siehe Anhang C1
- Widerstand gegen Stahlversagen der Verbindung zwischen Anker und Schiene	$N_{Rk,s,c}$ siehe Anhang C1
- Widerstand gegen Stahlversagen der Schienen- lippen und Herausziehen der Spezialschraube	$N_{Rk,s,l}^{0}$; $s_{l,N}$ siehe Anhang C1
- Widerstand gegen Stahlversagen der Spezialschraube	$N_{Rk,s}$ siehe Anhang C1
- Widerstand gegen Stahlversagen durch Überschreitung der Biegefestigkeit der Schiene	s_{max} siehe Anhang A5 $M_{Rk,s,flex}$ siehe Anhang C1
- Maximales Montagedrehmoment, um Schaden bei der Montage zu vermeiden	$T_{inst,g}$; $T_{inst,s}$ siehe Anhang B4
- Widerstand gegen Herausziehen des Ankers	$\mathit{N}_{\mathit{Rk},p}$ siehe Anhang C2
- Widerstand gegen Betonausbruch	h_{ef} siehe Anhang B3 $k_{cr,N}$; $k_{ucr,N}$ siehe Anhang C2
- Min. Rand-, Achsabstand und min. Bauteildicke, um Spalten bei Montage zu vermeiden	s_{min} siehe Anhang A5 c_{min} ; h_{min} siehe Anhang B3
- Charakteristischer Rand- und Achsabstand gegen Spalten unter Last	$s_{cr,sp}$; $c_{cr,sp}$ siehe Anhang C2
- Widerstand gegen lokalen Betonausbruch – lastabtragende Fläche des Ankerkopfes	A_h siehe Anhang A4

Seite 4 von 21 | 23. Februar 2022

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Querlast (statische und quasi-statische Einwirkungen)	
Widerstand gegen Stahlversagen der Spezialschraube unter Querlast ohne Hebelarm	$V_{Rk,s}$ siehe Anhang C4
- Widerstand gegen Stahlversagen durch Biegung der Spezialschraube unter Querlast mit Hebelarm	$M_{Rk,s}^0$ siehe Anhang C4
Widerstand gegen Stahlversagen der Schienenlippen, Stahlversagen der Verbindung zwischen Anker und Schiene und Stahlversagen des Ankers (Querlast senkrecht zur Schienenlängsachse)	$V_{Rk,s,l,y}^{0}$; $s_{l,v}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ siehe Anhang C3
Widerstand gegen Stahlversagen der Verbindung zwischen Schienenlippen und Spezialschraube (Querlast in Schienenlängsrichtung)	$V_{Rk,s,l,x}$ siehe Anhang C3
- Montagebeiwert (Querlast längs)	γ_{inst} siehe Anhang C3
- Widerstand gegen Stahlversagen der Anker (Querlast längs)	$V_{Rk,s,a,x}$ siehe Anhang C3
Widerstand gegen Stahlversagen der Verbindung zwischen Anker und Schiene (Querlast längs)	$V_{Rk,s,c,x}$ siehe Anhang C3
- Widerstand gegen Betonausbruch auf der lastabgewandten Seite	k_8 siehe Anhang C3
- Widerstand gegen Betonkantenbruch	$k_{cr,V}$; $k_{ucr,V}$ siehe Anhang C3
Charakteristischer Widerstand unter kombinierter Zug- und Querlast (statische und quasi-statische Einwirkungen)	
- Widerstand gegen Stahlversagen der Ankerschiene	k_{13} ; k_{14} siehe Anhang C4
- Charakteristische Widerstände für zyklische Ermüdungsbeanspruchungen unter Zuglast	
- Ermüdungswiderstand gegen Stahlversagen des gesamten Systems (stetige oder tri-lineare Funktion, Prüfverfahren A1, A2)	Leistung nicht bewertet
- Dauerermüdungswiderstand gegen Stahlversagen des gesamten Systems (Prüfverfahren B)	Leistung nicht bewertet
- Ermüdungswiderstand gegen Betonversagen (Exponentialfunktion, Prüfverfahren A1, A2)	Leistung nicht bewertet
- Dauerermüdungswiderstand gegen Betonversagen (Prüfverfahren B)	Leistung nicht bewertet
Verschiebungen (statische und quasi-statische Einwirkungen)	δ_{N0} ; $\delta_{N\infty}$ siehe Anhang C2 $\delta_{V,y,0}$; $\delta_{V,y,\infty}$; $\delta_{V,x,0}$; $\delta_{V,x,\infty}$ siehe Anhang C4

Seite 5 von 21 | 23. Februar 2022

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung	
Brandverhalten	Klasse A1	
Feuerwiderstand	Leistung nicht bewertet	

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

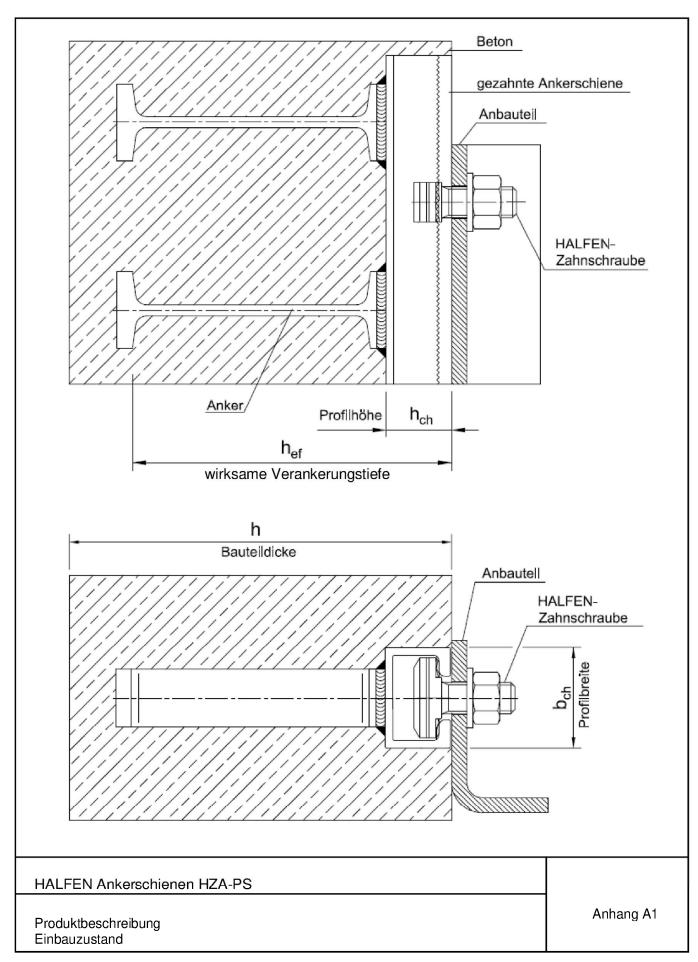
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330008-03-0601 gilt folgende Rechtsgrundlage: [2000/273/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 23. Februar 2022 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Referatsleiterin

Beglaubigt

Müller

Z15917.22

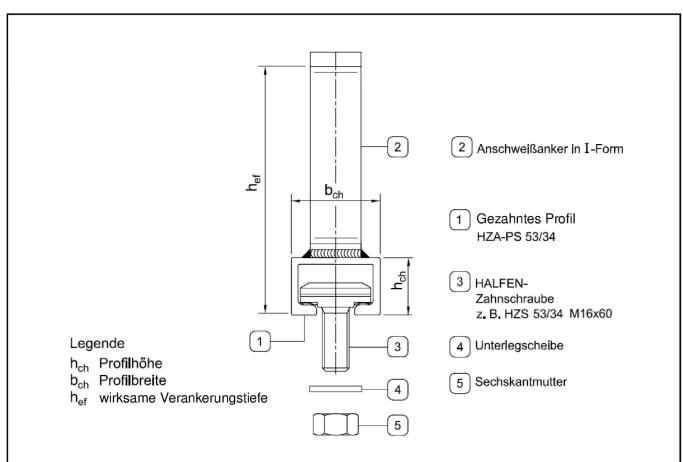
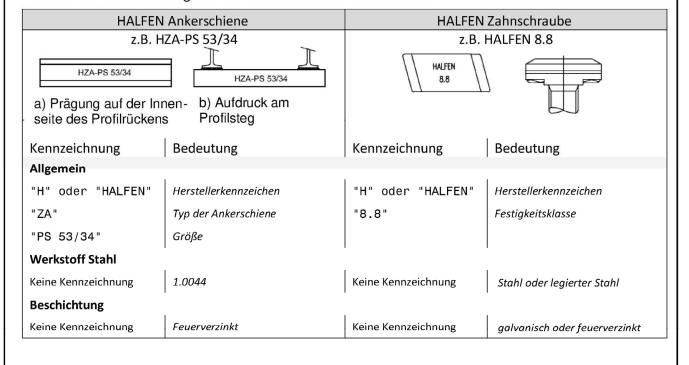



Tabelle A0: Kennzeichnung der Ankerschiene und der Zahnschraube

HALFEN Ankerschienen HZA-PS	
Produktbeschreibung Produkt und Kennzeichnung	Anhang A2

Tabelle A1: Werkstoffe und Anwendungsbereich	۱e
--	----

		Anwendungsbereich				
		1	2			
	Bezeichnung	Trockene Innenräume	Feuchte Innenräume			
Teile- Nr.		Ankerschienen dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet	Ankerschienen dürfen zusätzlich in Bauteilen mit normaler Luftfeuchte verwendet werden			
		werden	Für Beispiele siehe Anwendungsbedingungen im Anhang B1			
		Werk	stoffe			
1	gezahntes Schienenprofil	Stahl 1.0044(A) feuerverzinkt ≥ 55 μm ⁴⁾	Stahl 1.0044(A) feuerverzinkt ≥ 55 μm ⁴⁾			
2	Anker	Stahl 1.0038, 1.0045(A) feuerverzinkt ≥ 55 μm ⁴⁾	Stahl 1.0038, 1.0045(A) feuerverzinkt ≥ 55 μm ⁴⁾			
3	HALFEN Zahnschrauben	Stahl, Festigkeitsklasse 8.8 EN ISO 898-1:2013 feuerverzinkt ≥ 50 μm ^{1) 3)}	Stahl, Festigkeitsklasse 8.8 EN ISO 898-1:2013 feuerverzinkt ≥ 50 μm ^{1) 3)}			
4	Unterlegscheiben ⁵⁾ EN ISO 7089:2000 und EN ISO 7093-1:2000 Produktklasse A 200 HV	Stahl galvanisch verzinkt ≥ 5 μm ²⁾	Stahl feuerverzinkt ≥ 50 μm ^{1) 3)}			
5	Sechskantmuttern EN ISO 4032:2012	Stahl Festigkeitsklasse 8 EN ISO 898-2:2012 galvanisch verzinkt≥5 μm²)	Stahl Festigkeitsklasse 8 EN ISO 898-2:2012 feuerverzinkt ≥ 50 μm ^{1) 3)}			

¹⁾ oder galvanisch verzinkt mit Sonderbeschichtung \geq 12 μm (A) gem. EN 10025-2:2004

HALFEN Ankerschienen HZA-PS	
Produktbeschreibung Werkstoffe und Anwendungsbereiche	Anhang A3

²⁾ galvanisch verzinkt gem. EN ISO 4042:1999

³⁾ feuerverzinkt gem. EN ISO 10684:2004 + AC2009

⁴⁾ feuerverzinkt gem. EN ISO 1461:2009

⁵⁾ nicht im Lieferumfang enthalten

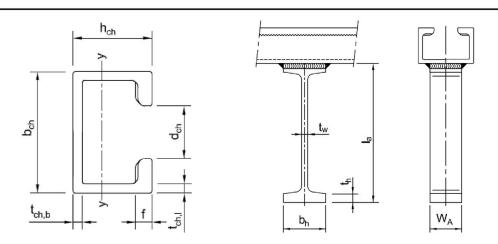


Tabelle A2: Profilabmessungen

Ankovsehione	Abmessungen						
Ankerschiene HZA-PS	b _{ch}	h _{ch}	t _{ch,b}	t _{ch,I}	d _{ch}	f	ly
IIZA-F3		[mm]				[mm ⁴]	
29/20	29,0	20,0	2,5	2,5	14,0	5,0	10.200
38/23	38,0	23,0	3,5	3,0	18,0	5,5	21.100
41/27	40,0	27,0	4,2	4,0	18,0	7,0	39.000
53/34	52,5	34,0	4,0	4,0	22,5	7,5	92.600
64/44	64,0	44,0	4,5	5,0	26,0	10,0	240.300

Tabelle A3: Ankerabmessungen

Ankerschiene	I-Anker					
HZA-PS	min l _a	t _w	b _h	t _h	WA	Ah
IIZA I S			[mm]			[mm ²]
29/20	140	5,7	40	8	12 - 20	412
38/23	140	5,7	40	8	18 - 25	617
41/27	140	5,7	40	8	24 - 30	823
53/34	140	5,7	40	8	30 - 40	1029
64/44	140	5,7	40	8	40 - 50	1372

HALFEN Ankerschienen HZA-PS	
Produktbeschreibung Profilabmessungen und Abmessungen der Anker	Anhang A4

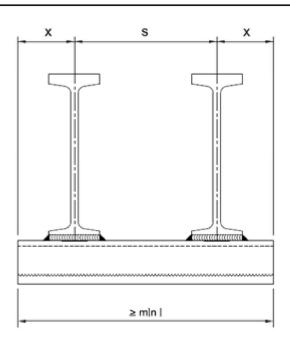


Tabelle A4: Ankeranordnung

	Achsabstan	d der Anker	Endabstand	Min. Schienenlänge	
Ankerschiene HZA-PS	S _{min} S _{max} X		I _{min}		
пда-гэ		[mm]			
29/20	80	200	35	150	
38/23	80	250	35	150	
41/27	80	250	35	150	
53/34	80	250	35	150	
64/44	80	300	35	150	

HALFEN Ankerschienen HZA-PS	
Produktbeschreibung Ankeranordnung und Schienenlänge	Anhang A5

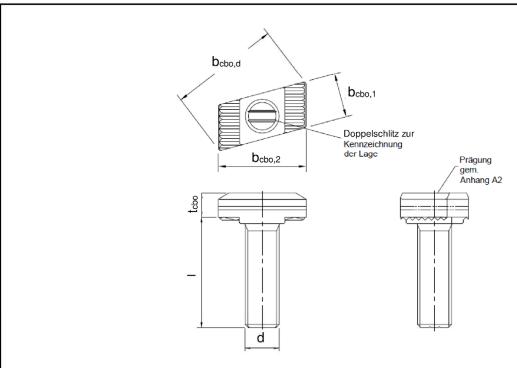


Tabelle A5: Abmessungen der HALFEN Zahnschraube

			Abmessungen							
Anker- schiene	Zahn- schraube	Gewinde-	Breite	Diagonale	Länge	Kopfdicke				
HZA-PS	HZS	durchmesser	b _{cbo,1}	b _{cbo,d}	b _{cbo2}	t _{cbo}				
			[mm]	[mm]	[mm]	[mm]				
29/20	29/20	M12	13,4	27,1	20,9	6,5				
38/23 +	38/23	M12	17,0	37,0	28,8	8,0				
41/27		M16	17,0	37,0	28,8	9,5				
E2/24	E2/24	M16	21,0	51,6	41,6	11,5				
53/34	53/34	M20	21,0	51,6	41,6	13,5				
CA/AA	C 1 / 1 1	M20	24,7	63,1	51,0	14,0				
64/44	64/44	M24	24,7	63,1	51,0	16,0				

Tabelle A6: Festigkeitsklassen

	Stahl ¹⁾
Festigkeitsklasse	8.8
f _{uk} [N/mm²]	800
f _{yk} [N/mm²]	640
Beschichtung	feuerverzinkt

¹⁾ Werkstoffe gemäß Anhang A2, Tab. A0 und Anhang A3, Tab. A1

HALFEN Ankerschienen HZA-PS	
Produktbeschreibung HALFEN Zahnschrauben, Abmessungen, Festigkeitsklassen	Anhang A6

Anwendungsbedingungen

Beanspruchung der Ankerschienen und Zahnschrauben:

• Statische und quasi-statische Zug- und Querlast senkrecht zur Schienenlängsrichtung sowie Querlast in Schienenlängsrichtung.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklassen C12/15 bis C90/105 gemäß EN 206-1:2000.
- Gerissener oder ungerissener Beton.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (z.B. Wohnräume, Büroräume, Schulen, Krankenhäuser, Verkaufsstätten mit Ausnahme von Feuchträumen)
 (gezahnte Ankerschienen und Zahnschrauben gemäß Anhang A3, Tabelle A1, Spalten 1 - 2).
- Bauteile unter den Bedingungen von Innenräumen mit normaler Luftfeuchte (z.B. Küchen, Bäder und Waschküchen in Wohngebäuden mit Ausnahme permanenter Dampfeinwirkung und Anwendungen unter Wasser)
 (gezahnte Ankerschienen und Zahnschrauben gemäß Anhang A3, Tabelle A1, Spalte 2).

Bemessung:

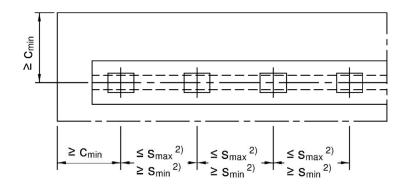
- Ankerschienen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Ankerschienen und Zahnschrauben anzugeben (z.B. Lage der Ankerschiene zur Bewehrung oder zu den Auflagern).
- Die Bemessung von Ankerschienen unter statischer und quasi-statischer Belastung erfolgt gemäß EOTA TR 047 "Design of Anchor Channels", März 2018, oder EN 1992-4:2018.
- Die charakteristischen Widerstände sind mit der minimalen wirksamen Verankerungstiefe berechnet.

HALFEN Ankerschienen HZA-PS

Verwendungszweck
Spezifikation

Anhang B1

715917 22 8 06 01-33/20


Einbau:

- Der Einbau der Ankerschienen erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Verwendung der Ankerschienen nur so, wie vom Hersteller geliefert ohne Veränderungen,
 Umordnung oder Austausch einzelner Teile.
- Ablängen der Ankerschienen, nur wenn Stücke einschließlich der Endabstände und minimalen Schienenlängen gemäß Anhang A5, Tabelle A4 erzeugt werden und nur zur Verwendung in trockenen Innenräumen (Anhang A3, Tabelle A1, Spalte 1).
- Einbau nach der Montageanleitung des Herstellers gemäß Anlagen B5 und B6.
- Die Ankerschienen sind so an der Schalung, der Bewehrung oder Hilfskonstruktion zu fixieren, dass sie sich beim Verlegen der Bewehrung sowie beim Einbringen und Verdichten des Betons nicht bewegen.
- Einwandfreie Verdichtung des Betons unter dem Kopf der Anker. Die Schienen sind gegen Eindringen von Beton in den Schieneninnenraum geschützt.
- Unterlegscheiben können gemäß Anhang A3 gewählt und separat durch den Anwender bezogen werden.
- Ausrichtung der Zahnschrauben (Doppelschlitz gemäß Anhang A6) rechtwinklig zur Schienenachse.
- Die angegebenen Montagedrehmomente gemäß Anhang B4 sind aufzubringen und dürfen nicht überschritten werden.

HALFEN Ankerschienen HZA-PS	
Verwendungszweck Spezifikation	Anhang B2

Draufsicht

Seitenansicht

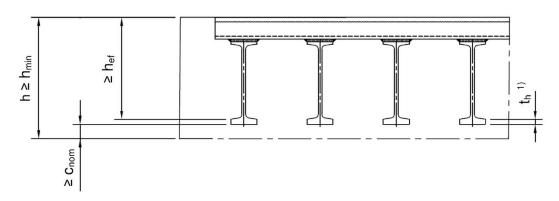


Tabelle B1: Wirksame Verankerungstiefe, Randabstand und Bauteildicke

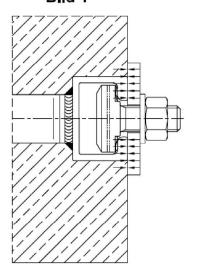
Ankerschiene			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Minimale wirksame Verankerungstiefe		$h_{\sf ef,min}$	152	155	159	166	176	
Min. Randabstand	nm]	C _{min}	50	75	75	100	125	
Min Bouteildieke	느	h _{min}	$h_{ef} + t_h + c_{nom}^{3)}$					
iviin. Bauteildicke	/lin. Bauteildicke		170	173	177	190	200	

 $^{^{1)}}$ t_h = Ankerkopfdicke

HALFEN Ankerschienen HZA-PS	
Verwendungszweck Montageparameter der Ankerschienen	Anhang B3

 $^{^{2)}}$ s_{min} , s_{max} gem. Anhang A5, Tabelle A4

³⁾ c_{nom} gem. EN 1992-1-1:2004 + AC 2010



Allgemein

Das Anbauteil befindet sich in Kontakt mit dem Schienenprofil und der Betonoberfläche.

Das Montagedrehmoment wird gemäß Anhang B4, Tabelle B2 aufgebracht und darf nicht überschritten werden.

Bild 1

Stahl - Stahl Kontakt

Das Anbauteil befindet sich nicht in Kontakt mit der Betonoberfläche. Das Anbauteil wird gegen die Ankerschiene mittels passender Stahlteile (z.B. Unterlegscheibe) verspannt.

Das Montagedrehmoment wird gemäß Anhang B4, Tabelle B2 aufgebracht und darf nicht überschritten werden.

Bild 2

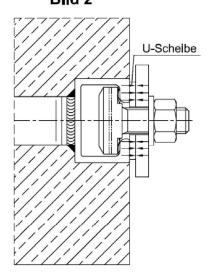
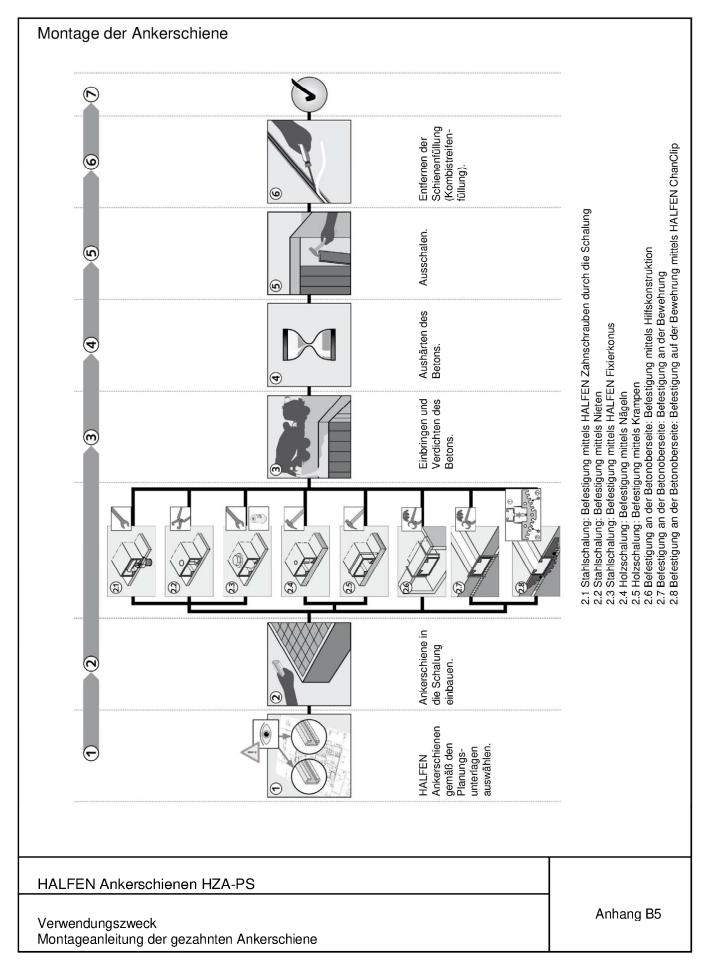
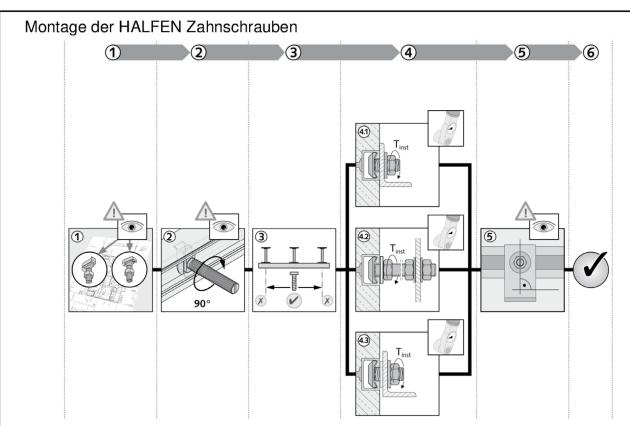


Tabelle B2: Minimaler Achsabstand der HALFEN Zahnschrauben und Montagedrehmoment

	HALFEN	Minimaler Achs-	Montagedrehmoment T _{inst} 3)			
gezahnte Anker-	Zahn-	abstand s _{min,cbo}	Allgemein 1)	Stahl – Stahl Kontakt ²⁾		
schiene	schraube	der Zahnschrauben	$T_{inst,g}$	$T_{inst,s}$		
HZA-PS	d	der Ediniserradier	Stahl 8.8	Stahl 8.8		
IIZA-I 3	[mm]	[mm]	[Nm]	[Nm]		
29/20	12	60	40	75		
20/22	12	60	65	75		
38/23	16	80	90	185		
41/27	12	60	75	75		
41/27	16	80	135	185		
53/34	16	80	185	185		
33/34	20	100	235	360		
64/44	20	100	300	360		
04/44	24	120	360	625		


¹⁾ Gemäß Bild 1


HALFEN Ankerschienen HZA-PS Verwendungszweck Montagekennwerte der HALFEN Zahnschrauben Anhang B4

²⁾ Gemäß Bild 2

³⁾ T_{inst} darf nicht überschritten werden.

HALFEN Zahnschrauben gemäß den Planungsunterlagen auswählen. HALFEN Zahnschrauben in den Schienenschlitz einsetzen. Nach 90°-Drehung im Uhrzeigersinn klemmt sich diese in die Schiene (Kontrolle der Lage der Schraube mittels Markierungsschlitzen). Ausrichten der HALFEN Zahnschraube: An den Schienenenden darf im Bereich der Endüberstände gem. Anhang A5 keine Schraube installiert werden. Anziehen der Mutter mit dem Montagedrehmoment T_{inst} gemäß untenstehender Tabelle. T_{inst} darf nicht überschritten werden.

T_{inst} darf nicht überschritten werden. 4.1: Allgemeine Anwendung, 4.2 und 4.3: Stahl – Stahl Kontakt. Nach dem Einbau:
Richtigen Sitz der Schrauben an den Schlitzen des
Schraubenschaftes überprüfen.
Die Schlitze müssen quer zur
Schienenlängsrichtung stehen.
Wenn die Schlitze nicht quer zur
Schienenlängsrichtung stehen,
müssen die Schrauben vollständig gelöst, erneut eingeführt und angezogen
werden.

Tabelle B3: Montagedrehmoment

Lage des Anbauteils	Werl	cstoff	Ankerschiene	T _{inst} [Nm] ¹⁾			
gem. Anhang B4 Festigkeitsklasse		HZA-PS	M12	M16	M20	M24	
	Stahl	8.8	29/20	40	-	-	-
			38/23	65	90	-	-
Allgemein			41/27	75	135	-	-
			53/34	-	185	235	-
			64/44	-	-	300	360
Stahl – Stahl Kontakt			alle	75	185	360	625

¹⁾ T_{inst} darf nicht überschritten werden.

HALFEN Ankerschienen HZA-PS Verwendungszweck Montageanleitung der HALFEN Zahnschrauben Anhang B6

Tabelle C1: Charakteristische Widerstände unter Zuglast – Stahlversagen Ankerschiene

Ankerschiene	HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44		
Stahlversagen: Anker							
Charakteristischer Widerstand	$N_{Rk,s,a}$	[kN]	24,6	36,9	64,3	80,3	100,0
Teilsicherheitsbeiwert Y _{Ms,a} 1)		1,8			1,59		
Stahlversagen: Verbindung zwischen Anker und Schiene							
Charakteristischer Widerstand	$N_{Rk,s,c}$	[kN]	71,7	76,4	95,4	117,7	128,4
Teilsicherheitsbeiwert	Y Ms,c	1) :a	1,8				
Stahlversagen: Aufbiegen der Sch	ienenlippe	en					
Achsabstand der Zahnschrauben für N _{Rk,s,l}	S _{I,N}	[mm]	58	76	80	105	128
Charakteristischer Widerstand	N ⁰ _{Rk,s,l}	[kN]	22,9	39,3	53,6	82,5	106,1
Teilsicherheitsbeiwert	¥Ms,I 1)		1,8				

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle C2: Charakteristischer Biegewiderstand der Schiene

Ankerschiene			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Stahlversagen: Biegung der Schiene								
Charakteristischer Biegewiderstand der Schiene	M _{Rk,s,flex}	[Nm]	872	1663	2289	4069	7183	
Teilsicherheitsbeiwert	¥Ms,flex ¹⁾				1,15			

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle C3: Charakt. Widerstände unter Zuglast – Stahlversagen der HALFEN Zahnschrauben

HALFEN Zahnschrauben Gewindedurchmesser			M12	M16	M20	M24			
Stahlversagen									
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	67,4	125,6	196,0	282,4			
Teilsicherheitsbeiwert	Y Ms ¹⁾		1,50						

¹⁾ Sofern andere nationale Regelungen fehlen

HALFEN Ankerschienen HZA-PS	
Leistung Charakteristische Widerstände unter Zuglast – Stahlversagen	Anhang C1

1,5

Ankerschiene					HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Betonversagen: Herausziehe	en								
Charakteristischer Widerstand in gerissenem Beton C12/15		N	[LAI]	37,0	55,5	74,0	92,6	123,4	
Charakteristischer Widerstan ungerissenem Beton C12/15	ıd in	$N_{Rk,p}$	[kN]	51,8	77,7	103,7	129,6	172,8	
	C20/25					1,67			
Erhöhungsfaktor für $N_{Rk,p}$ = $N_{Rk,p}$ (C12/15) \cdot Ψ_c	C25/30	Ψ _c	[-]			2,08			
	C30/37			2,50					
	C35/45			2,92					
	C40/50			3,33					
	C45/55			3,75					
	C50/60			4,17					
	C55/67			4,58					
	≥C60/75			5,00					
Teilsicherheitsbeiwert	'	γ _{Mp} = '	$\gamma_{Mp} = \gamma_{Mc}^{1} \qquad 1,5$						
Betonversagen: Betonausbro	uch			ı					
D		k_{cr}	,N	8,7	8,7	8,7	8,8	8,9	
Produktfaktor k ₁		k _{ucr,N}		12,4	12,4	12,5	12,5	12,7	
Charakt. Randabstand		C _{cr,N}	[mama]	259	260	263	266	269	
Charakt. Achsabstand		S _{cr,N}	[mm]	2,0 c _{cr,N}					
Teilsicherheitsbeiwert		ү мс	Y _{Mc} 1) 1,5						
Betonversagen: Spalten									
Charakt. Randabstand		C _{cr,sp}	[mm]	456	465	477	498	528	
Charakt. Achsabstand		S _{cr,sp}	[111111]	2,0 c _{cr,sp}					
			<u> </u>						

¹⁾ Sofern andere nationale Regelungen fehlen

Teilsicherheitsbeiwert

Tabelle C5: Verschiebung unter Zuglast

Ankerschiene				HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44
Zuglast	Ν	[kN]	9,1	14,6	21,3	31,2	39,7
Kurzzeitverschiebung	δ_{NO}	[mm]	0,5	0,8	0,9	1,5	0,6
Langzeitverschiebung	$\delta_{N^{\infty}}$	[mm]	1,0	1,6	1,8	3,0	1,2

YMsp 1)

HALFEN Ankerschienen HZA-PS	
Leistung Charakteristische Widerstände unter Zuglast – Betonversagen und Verschiebungen	Anhang C2

Tabelle C6: Charakteristische Widerstände unter Querlast								
Ankerschiene			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Stahlversagen: Anker								
Charakteristischer Widerstand	$V_{Rk,s,a,y}$	[kN]	22,9	43,9	53,6	101,1	156,3	
Charakteristischer Widerstand	$V_{Rk,s,a,x}$	[kN]	14,8	22,2	38,6	48,2	64,3	
Teilsicherheitsbeiwert	¥Ms,a 1)		1	,5		1,32		
Stahlversagen: Verbindung zwischen Anker und Schiene								
Charalitariaticahar Widaratan d	$V_{Rk,s,c,y}$	[kN]	22,9	43,9	53,6	101,1	156,3	
Charakteristischer Widerstand	$V_{Rk,s,c,x}$	[kN]	46,7	46,7	58,3	68,0	77,8	
Teilsicherheitsbeiwert Y _{Ms,ca} 1)					1,8			
Stahlversagen: Aufbiegen der S	Stahlversagen: Aufbiegen der Schienenlippen							
Achsabstand der Zahnschrauben für V _{Rk,s,l}	S _{I,V}	[mm]	58	76	80	105	128	
Charakteristischer Widerstand	$V^0_{Rk,s,l,\gamma}$	[kN]	22,9	43,9	53,6	101,1	156,3	
Teilsicherheitsbeiwert	YMs,I 1)		1,8					
Stahlversagen: Verbindung zwis Schienenlängsrichtung	schen Schiene	nlippen	und Zahn	schraube	unter Querlas	t in		
Charakteristischer Widerstand	$V_{Rk,s,l,x}$	[kN]	12,6	25,4	27,2 (M12) 32,1 (M16)	59,0	85,8	
Montagebeiwert	Yinst		1,0	1,2				
Betonversagen: Betonausbruch	auf lastabgev	vandter	Seite					
Produktfaktor	k ₈ 2)		2,0					
Teilsicherheitsbeiwert	Y Mc ¹⁾		1,5					
Betonversagen: Betonkantenbruch								
Produktfaktor k ₁₂	gerissener Beton	k _{cr,V}	6,1 7,5					
Troduktidiktor k ₁₂	ungeriss. Beton $k_{ucr,V}$		8,5 10,5					
Teilsicherheitsbeiwert								

¹⁾ Sofern andere nationale Regelungen fehlen

HALFEN Ankerschienen HZA-PS	
Leistung Charakteristische Widerstände und Verschiebungen unter Querlast	Anhang C3

 $^{^{2)}}$ Ohne Zusatzbewehrung. Bei vorhandener Zusatzbewehrung muss der Faktor k_8 mit 0,75 multipliziert werden.

Tabelle C7: Verschiebung unter Querlast

Ankerschiene			HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44
Querlast	Vy	[kN]	9,1	17,4	21,3	31,2	62,0
Kurzzeitverschiebung	δ_{V0}	[mm]	0,9	0,7	0,9	0,9	1,9
Langzeitverschiebung	δν∞	[mm]	1,4	1,0	1,4	1,4	2,85
Querlast	V _x	[kN]	5,0	8,4	10,6	19,5	28,4
Kurzzeitverschiebung	δ_{VO}	[mm]	0,4	0,2	0,2	0,3	0,9
Langzeitverschiebung	δν∞	[mm]	0,6	0,3	0,3	0,5	1,4

Tabelle C8: Charakt. Widerstände unter Querlast – Stahlversagen HALFEN Zahnschrauben

HALFEN Zahnschrauben Gewindedu	M12	M16	M20	M24		
Stahlversagen						
Charakteristischer Widerstand	$V_{Rk,s}$	[kN]	33,7	62,8	98,0	141,2
Charakteristischer Biegewiderstand	M ⁰ _{Rk,s} [Nm]		105	266	519	898
Teilsicherheitsbeiwert	¥⋈s	1)		1	,25	

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle C9: Charakteristische Widerstände unter kombinierter Zug- und Querlast

Ankerschiene		HZA-PS 29/20	HZA-PS 38/23	HZA-PS 41/27	HZA-PS 53/34	HZA-PS 64/44	
Stahlversagen: Aufbiegen der Schienenlippen und Biegung der Ankerschiene							
Produktfaktor k ₁₃ Werte gemäß EN 1992-4:2018, Abschnitt 7.4.3.1						3.1	
Stahlversagen: Versage	n des Anke	kers und der Verbindung zwischen Anker und Schiene					
Produktfaktor	k ₁₄	Werte gemäß EN 1992-4:2018, Abschnitt 7.4.3.1					

HALFEN Ankerschienen HZA-PS

Leistung
Verschiebung unter Querlast, char. Widerstand der HALFEN Zahnschraube unter
Querlast, kombinierte Zug- und Querlast

Anhang C4