

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0854 vom 25. Oktober 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

SCELL-IT X-BRID für Bewehrungsanschlüsse

Systeme für nachträglich eingemörtelte Bewehrungsanschlüsse

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

Scell-it Plant 1 Germany

23 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330087-01-0601, Edition 06/2021

ETA-17/0854 vom 11. Januar 2018

Europäische Technische Bewertung ETA-17/0854

Seite 2 von 23 | 25. Oktober 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0854

Seite 3 von 23 | 25. Oktober 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl mit dem "SCELL-IT X-BRID für Bewehrungsanschlüsse" durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss wird Betonstahl mit einem Durchmesser ϕ von 8 bis 32 mm oder der Zuganker ZA in den Größen M12 bis M24 entsprechend Anhang A und dem Injektionsmörtel X-BRID verwendet. Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Bewehrungsanschluss entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Bewehrungsanschlusses von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter statischen und quasi-statische Lasten	Siehe Anhang C 1
Charakteristischer Widerstand unter Erdbebenbeanspruchung	Siehe Anhang B 4 und C 2

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung	
Brandverhalten	Klasse A1	
Feuerwiderstand	Siehe Anhang C 3 und C 4	

Europäische Technische Bewertung ETA-17/0854

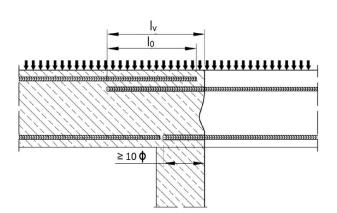
Seite 4 von 23 | 25. Oktober 2022

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

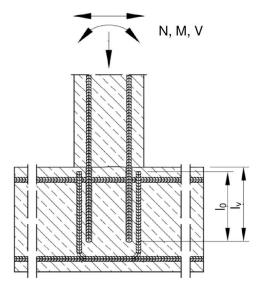
Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330087-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 25. Oktober 2022 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

Installation für nachträglichen Bewehrungsanschluss

Bild A1: Übergreifungsstoß für Bewehrungsanschlüsse von Platten und Balken

Bild A2: Übergreifungsstoß einer Stütze oder Wand an ein Fundament; Bewehrungsstäbe auf Zug beansprucht

Bild A3: Endverankerung von Platten oder Balken (z.B. gelenkig gelagert bemessen)

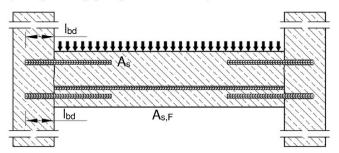
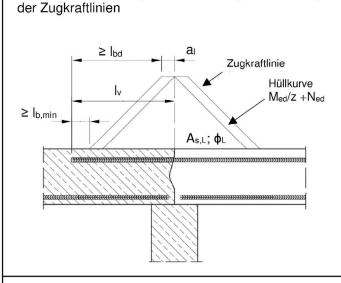
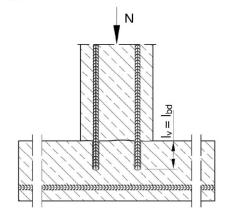




Bild A5: Verankerung von Bewehrung zur Deckung

Bild A4: Bewehrungsanschlüsse überwiegend auf Druck beanspruchter Bauteile; Bewehrungsstäbe auf Druck beansprucht

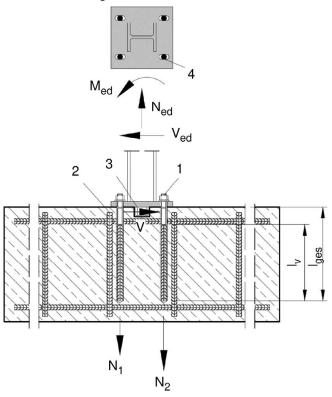
Anmerkung zu Bild A1 bis A5:

In den Bildern ist keine Querbewehrung dargestellt; die nach EN 1992-1-1:2004+AC:2010 erforderliche Querbewehrung muss vorhanden sein.

Vorbereitung der Fugen gemäß Anhang B 2

SCELL-IT X-BRID für Bewehrungsanschlüsse

Produktbeschreibung


Einbauzustand und Anwendungsbeispiele für Bewehrungsanschlüsse mit Betonstahl

Anhang A 1

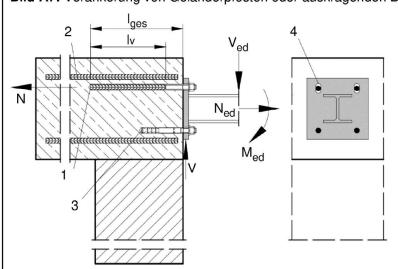

Installation Zuganker ZA

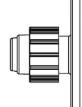
Bild A6: Verankerung einer Stütze an ein Fundament mit Zuganker ZA.

- 1 Zuganker ZA (nur Zug)
- 2 Vorhandenen Bügelbewehrung / Bewehrung zur Übergeifung (Übergreifungsstoß)
- 3 Schubknagge (oder Dübel) zur Querkraftübertragung
- 4 Langloch in axialer Richtung zur Querkraft

Bild A7: Verankerung von Geländerpfosten oder auskragenden Bauteilen mit Zuganker und Dübel

- 1 Zuganker ZA (nur Zug)
- Vorhandenen Bügelbewehrung / Bewehrung zur Übergeifung (Übergreifungsstoß)
- 3 Dübel (oder Schubknagge) zur Querkraftübertragung
- 4 Langloch in axialer Richtung zur Querkraft

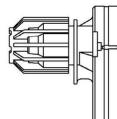
Anmerkung zu Bild A6 und A7: In den Bildern ist keine Querbewehrung dargestellt; die nach EN 1992-1-1:2004+AC:2010 erforderliche Querbewehrung muss vorhanden sein. Mit dem Zuganker dürfen nur Zugkräfte in Richtung der Stabachse übertragen werden. Die Zugkraft muss über einen Übergreifungsstoß durch die im Bauteil vorhandenen Bewehrung weitergeleitet werden. Der Querlastabtrag ist durch geeignete Maßnahmen sicherzustellen, z.B. durch Schubknaggen oder durch Dübel mit einer Europäisch Technischen Bewertung (ETA). Allgemeine Konstruktionsregeln siehe Anhang B 3


SCELL-IT X-BRID für Bewehrungsanschlüsse Produktbeschreibung Einbauzustand und Anwendungsbeispiele für Bewehrungsanschlüsse mit Zugankern ZA Anhang A 2

Kartuschensystem

Koaxial Kartusche:

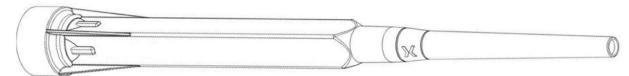
150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml

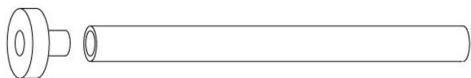

Aufdruck:

X-BRID

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:


235 ml, 345 ml bis 360 ml und 825 ml

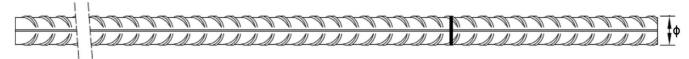

Aufdruck : X-BRID

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Statikmischer PM-19E

Verfüllstutzen VS und Mischerverlängerung VL

SCELL-IT X-BRID für Bewehrungsanschlüsse


Produktbeschreibung

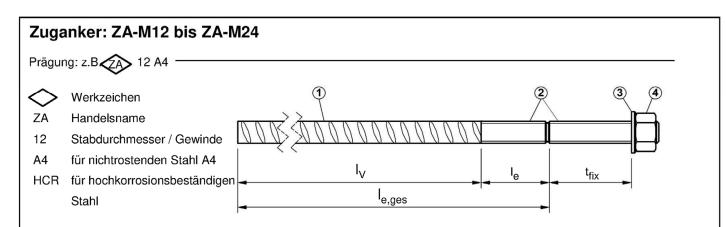
Injektionssystem

Anhang A 3

Betonstahl: ø8 bis ø32

- Mindestwerte der bezogenen Rippenfläche f_{R.min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05φ ≤ h_{rib} ≤ 0,07φ betragen
 (φ: Nomineller Durchmesser des Betonstahls; h_{rib}: Rippenhöhe des Betonstahls)

Tabelle A1: Werkstoffe


Benennung	Werkstoff
I Anhana (:	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

SCELL-IT X-BRID für Bewehrungsanschlüsse

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 4

Tabelle A2: Werkstoffe Zuganker ZA

		Werkstoff											
Teil	Bezeichnung	ZA vz			ZA A4			ZA HCR					
0 (5.55)	3	M12	M16	M20	M24	M12	M16	M20	M24	M12	M16	M20	M24
1	Betonstabstahl		Klasse B gemäß NDP oder NCI gemäß EN 1992-1-1/NA f _{uk} = f _{tk} = k•f _{vk}										
	f _{yk} [N/mm²]		500			500			500				
2	Gewindestab	Stahl, verzinkt gemäß EN ISO 683-4:2018 oder EN 10263:2001			nichtrostender Stahl, 1.4362, 1.4401, 1.4404, 1.4571, EN 10088-1:2014 EN 10088-1:2014			1.4565,					
3	Unterlegscheibe	Stahl, verzinkt gemäß			nichtrostender Stahl,		hochkorrosionsbeständiger						
4	Mutter	and an arranged in Consideration	EN ISO 683-4:2018 oder EN 10263:2001			1.4362, 1.4401, 1.4404, 1.4571, EN 10088-1:2014		Stahl, 1.4529, 1.4565, EN 10088-1:2014					

Tabelle A3: Abmessungen und Installationsparameter

Größe			_	ZA-M12	ZA-M16	ZA-M20	ZA-M24
Gewindedurchmesser		d _s	[mm]	12	16	20	24
Betonstahldurchm	nesser	ф	[mm]	12	16	20	25
Bohrernenndurch	messer	d _o	[mm]	16	20	25	32
Durchgangsloch i anzuschließender		d _f	[mm]	14	18	22	26
Schlüsselweite	Schlüsselweite		[mm]	19	24	30	36
Spannungsquerso	Spannungsquerschnitt		[mm ²]	84	157	245	353
Wirksame Setztie	fe	I _v	[mm]	entsprechend statischer Berechnung			
Länge des	verzinkt	T	[]	≥ 20	≥ 20	≥ 20	≥ 20
eingemörtelten Gewindes	A4/HCR	e 'e	[mm]	≥ 100	≥ 100	≥ 100	≥ 100
Min. Anbauteildicke		min t _{fix}	[mm]	5	5	5	5
Max. Anbauteildicke		max t _{fix}	[mm]	3000	3000	3000	3000
Max. Installations	moment	max T _{inst}	[Nm]	50	100	150	150

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Produktbeschreibung Werkstoffe Zuganker ZA	Anhang A 5

Spezifizierung des Verwendungszwecks						
Beanspruchung der Verankerung: Nutzungsdauer 50 Jahre Nutzungsdauer 100 Jahre						
HD: Hammerbohren	Statische und quasi- statische Lasten	Ø8 bis Ø32 ZA-M12 bis ZA-M24	Ø8 bis Ø32 ZA-M12 bis ZA-M24			
HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	Seismische Einwirkung	Ø10 bis Ø32	Ø10 bis Ø32			
	Brandbeanspruchung	Ø8 bis Ø32 ZA-M12 bis ZA-M24	Ø8 bis Ø32 ZA-M12 bis ZA-M24-M24			
Temperaturbereich:	reich: - 40°C bis +80°C (max. Langzeit-Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)					

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206: 2013 + A1:2016.
- Maximal zulässiger Chloridgehalt im Beton von 0.40 % (CL 0.40) bezogen auf den Zementgehalt gemäß EN 206: 2013 + A1:2016.
- Nicht karbonisiertem Beton.

Anmerkung: Bei einer karbonatisierten Oberfläche des bestehenden Betons ist die karbonatisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von ϕ + 60 mm zu entfernen.

Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992 1 1:2004+AC:2010 entsprechen.

Dies entfällt bei neuen, nicht karbonatisierten Bauteilen und bei Bauteilen in trockener Umgebung.

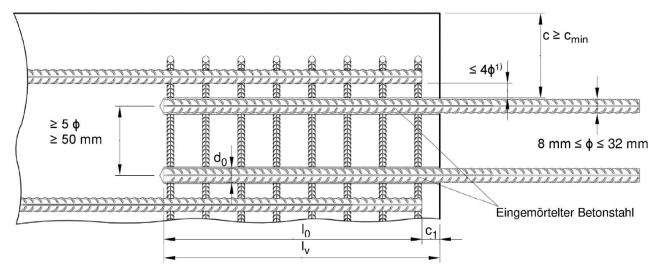
Anwendungsbedingungen (Umweltbedingungen) mit Zuganker ZA:

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Bemessung gemäß EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 und Anhang B 2 und B 3.
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen.

Einbau:


- Trockener oder nasser Beton. Installation in wassergefüllte Bohrlöcher ist nicht erlaubt.
- Überkopfanwendungen erlaubt.
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) oder Pressluftbohrer (CD).
- Der Einbau von nachträglich eingemörtelten Bewehrungsstäben ist durch entsprechend geschultes Personal und unter Überwachung auf der Baustelle vorzunehmen; die Bedingungen für die entsprechende Schulung des Baustellenpersonals und für die Überwachung auf der Baustelle obliegt den Mitgliedstaaten, in denen der Einbau vorgenommen wird.
- Überprüfung der Lage der vorhandenen Bewehrung (wenn die Lage der vorhandenen Bewehrungsstäbe nicht ersichtlich ist, müssen diese mittels dafür geeigneter Bewehrungssuchgeräte auf Grundlage der Baudokumentation festgestellt und für die Übergreifungsstöße am Bauteil markiert werden).

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Verwendungszweck Spezifikationen	Anhang B 1

Bild B1: Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl

- Bewehrungsanschlüsse dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist gemäß
- EN 1992-1-1:2004+AC:2010 nachzuweisen.
- Die Betonierfugen sind mindestens derart aufzurauen, dass die Zuschlagstoffe herausragen.

¹⁾ Ist der lichte Abstand der gestoßenen Stäbe größer als 4φ, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Stababstand und 4φ vergrößert werden.

Folgende Abkürzungen und Hinweise gelten für Abbildung B1:

c Betondeckung des eingemörtelten Betonstahl

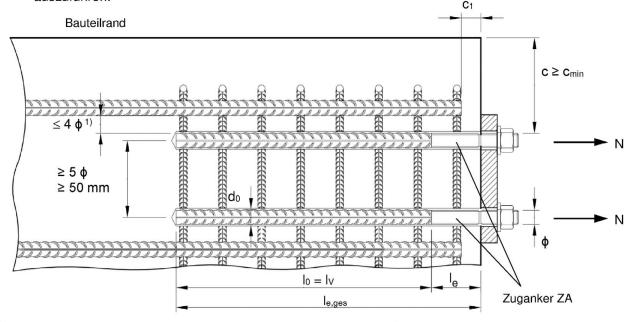
c₁ Betonabdeckung an der Stirnseite des einbetonieren Stabes

c_{min} Mindestbetondeckung gemäß Tabelle B1 und EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2

φ Durchmesser des eingemörtelten Betonstahls

Länge des Übergreifungsstoßes gemäß der EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3

 l_v wirksame Setztiefe, $\geq l_0 + c_1$


 d_0 Bohrernenndurchmesser, siehe Anhang B 5

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Verwendungszweck Allgemeine Konstruktionsregeln für eingemörtelten Betonstahl	Anhang B 2

Bild B2: Allgemeine Konstruktionsregeln für Zuganker ZA

- · Die Länge des eingemörtelten Gewindes darf nicht zur Verankerungslänge hinzugerechnet werden.
- Bewehrungsanschlüsse mit dem Zuganker ZA dürfen nur für die Übertragung von Zugkräften in Richtung der Stabachse verwendet werden.
- Die Zugkraft muss über einen Übergreifungsstoß in die im Bauteil vorhandene Bewehrung weitergeleitet werden.
- Der Querlastabtrag ist durch geeignete zusätzliche Maßnahmen sicher zu stellen, z.B. durch Schubknaggen oder durch Dübel mit einer europäischen technischen Bewertung.
- In der Ankerplatte sind die Durchgangslöcher für den Zuganker als Langlöcher in Richtung der Querkraft auszuführen.

1) Ist der lichte Abstand der gestoßenen Stäbe größer als 4φ, so muss die Übergreifungslänge um die Differenz zwischen dem vorhandenen lichten Stababstand und 4φ vergrößert werden.

Folgende Abkürzungen und Hinweise gelten für Abbildung B2:

- c Betondeckung des Zuganker ZA
- c₁ Betonabdeckung an der Stirnseite des einbetonierten Stabes
- c_{min} Mindestbetondeckung gemäß Tabelle B1 und EN 1992-1-1:2004+AC:2010, Abschnitt 4.4.1.2
- φ Durchmesser des eingemörtelten Betonstahls
- Länge des Übergreifungsstoßes gemäß der EN 1992-1-1:2004+AC:2010, Abschnitt 8.7.3
- l, wirksame Setztiefe
- l_e Länge des eingemörtelten Gewindes
- $I_{e,ges}$ gesamte Setztiefe, $\ge I_0 + c_2$
- d₀ Bohrernenndurchmesser, siehe Anhang B 5

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Verwendungszweck Allgemeine Konstruktionsregeln für Zuganker ZA	Anhang B 3

Mindestbetondeckung $c_{\text{min}}^{1)}$ des eingemörtelten Bewehrungsstabes und Tabelle B1: Zuganker ZA in Abhängigkeit vom Bohrverfahren

Bohrverfahren	Stabdurch- messer	Ohne Bohrhilfe	Mit Bohrhilfe		
HD: Hammerbohren HDB: Hammerbohren	< 25 mm	30 mm + 0,06 · l _v ≥ 2 φ	30 mm + 0,02 · I_v ≥ 2 ϕ	Bohrhilfe	
mit Hohlbohrern	≥ 25 mm	40 mm + 0,06 · l _v ≥ 2 φ	40 mm + 0,02 · l _v ≥ 2 φ		
CD: Proceluftbahran	< 25 mm	50 mm + 0,08 · l _v	50 mm + 0,02 · l _v		
CD: Pressluftbohren	≥ 25 mm	60 mm + 0,08 · l _v ≥ 2 φ	60 mm + 0,02 · l _v ≥ 2 φ		

1) siehe Anhang B 2, Bild B1 oder Anhang B 3, Bild B2 Anmerkung: Die Mindestbetondeckung gemäß EN 1992-1-1:2004+AC:2010 ist einzuhalten. Für die Mindestbetondeckung c_{min,seis} in Falle einer seismischen Einwirkung siehe Tabelle B2.

Mindestbetondeckung $c_{\text{min,seis}}$ Tabelle B2:

Bohrverfahren	Bemessungsbedingungen	Abstand zum 1. Rand	Abstand zum 2. Rand
HD: Hammerbohren HDB: Hammerbohren mit	Rand	≥ 2 ф	≥ 2 ф
Hohlbohrer CD: Pressluftbohren	Ecke	≥ 2 φ	≥ 2 φ

Tabelle B3: Auspressgeräte

Kartusche Typ/Größe	М	Druckluftbetrieben	
Koaxial Kartusche 150, 280, 300 bis 333 ml	z.B. Typ	z.B. Typ TS 492 X	
Koaxial Kartusche 380 bis 420 ml	z.B. Typ CCM 380/10	z.B. Typ H 285 or H244C	z.B. Typ TS 485 LX
Side-by-side Kartusche 235, 345 ml	z.B. Typ CBM 330A	z.B. Typ H 260	z.B. Typ TS 477 LX
Side-by-side Kartusche 825 ml	-	-	z.B. Typ TS 498X

Alle Kartuschen können ebenso mit einem Akkugerät ausgepresst werden.

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Verwendungszweck Mindestbetondeckung Auspressgeräte	Anhang B 4

Tabelle B4: Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung, Hammer- (HD) und Druckluftbohren (CD)

		Bohi	. <i>C</i>			$\mathbf{d}_{b,min}$		Kartusche: Alle Größen				rtusche: 825 ml	
Stab- Φ	Zug- anker-	БОП	- 2	d Bürste		min. Bürsten	Verfüll- stutzen		oder Akku- gerät	Druck	luftpistole	Druckluftpistole	
Ψ	ф	HD	CD			-Ø		$\mathbf{I}_{\text{v,max}}$	Mischerver- längerung	$\mathbf{I}_{\mathrm{v,max}}$	Mischerver -längerung	I _{v,max}	Mischerver- längerung
[mm]	[mm]	[m	m]		[mm]	[mm]		[mm]		[mm]		[mm]	
8	-	10	_	RB10	11,5	10,5	-:	250		250		250	
	-	10		RB12	13,5	12,5	_	700		800		800	VL10/0,75
10	_	12	_	11012	10,0	12,0		250]	250		250	oder
1.0	-	12		RB14	15,5	14,5	VS14	700]	1000		1000	VL16/1,8
12	ZA-M12	14	-				2000-2000-10-10-0	250	<u> </u>	250		250	
12	Z/\-\\\\\\	1	6	RB16	17,5	16,5	VS16					1200	
14	-	1	88	RB18	20,0	18,5	VS18	700	VL10/0,75	1000	VL10/0,75	1400	
16	ZA-M16	2	0	RB20	22,0	20,5	VS20		oder		oder	1600	
20	ZA-M20	25		RB25	27,0	25,5	VS25		VL16/1,8		VL16/1,8		
	ZA-IVIZU	-	26	RB26	28,0	26,5	VS25			700			VL16/1,8
22	-	2	8	RB28	30,0	28,5	VS28						VL10/1,0
24/25	ZA-M24	3	0	RB30	32,0	30,5	VS30	500				2000	
24/25	ZA-1VIZ4	3	2	RB32	34,0	32,5	VS32			E00			
28	-	3	5	RB35	37,0	35,5	VS35			500			
32	-	4	0	RB40	43,5	40,5	VS40						

Tabelle B5: Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung, Hammerbohren mit Hohlbohrersystem (HDB)

		D - ~	d	d _{b,min}		Kartusche: Alle Größen					tusche: 25 ml		
Stab-	Zug- anker-	Bohr - Ø	Bürsten -	min. Bürsten	Verfüll- stutzen		oder Akku- istole	Druck	luftpistole	Druck	luftpistole		
Ф	ф	HDB	Ø	-ø		I _{v,max}	Ver- längerung	I _{v,max}	Ver- längerung	I _{v,max}	Mixer extension		
[mm]	[mm]	[mm]				[mm]		[mm]		[mm]			
8		10			-	250		250		250			
0	-	12				700		800		800			
10	-	12			-	250		250		250			
	-	14			VS14	700 250		1000		1000			
12	ZA-M12	14			V314		250	250	250		250		250
12	ZA-IVI IZ	16	Koina Da	iniauna	VS16		VI 10/0 75		VI 10/0 75		VI 10/0 75		
14	-	18	Keine Re erforde		VS18	700	VL10/0,75 oder	1000	VL10/0,75 oder		VL10/0,75 oder		
16	ZA-M16	20	enorae	STITOTT	VS20		VL16/1,8		VL16/1,8		VL16/1,8		
20	ZA-M20	25			VS25		V = 10/1,0	700	1210/1,0		1210/1,0		
22		28			VS28			700		1000			
24/25	ZA-M24	30			VS30	500							
24/23	ZA-IVIZ4	32			VS32	300		500					
28		35			VS35			500					
32		40			VS40								

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Verwendungszweck Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung	Anhang B 5

Reinigungs- und Installationszubehör

HDB - Hohlbohrersystem

Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer Durchflussmenge von Minimum 150 m³/h (42 l/s).

Handpumpe

(Volumen 750 ml, $h_0 \ge 10 d_s$, $d_0 \le 20 mm$)

Handschiebeventil

(min 6 bar)

Bürste RB

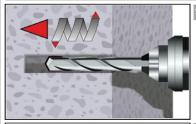
Verfüllstutzen VS

Bürstenverlängerung RBL

Tabelle B6: Verarbeitungs- und Aushärtezeiten

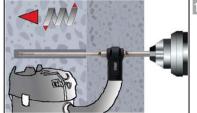
Temperatur	im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾		
	Т		t _{work}	t _{cure}		
- 5°C	bis	- 1 °C	50 min	5 h		
0°C	bis	+ 4 °C	25 min	3,5 h		
+ 5 °C	bis	+ 9 °C	15 min	2 h		
+ 10°C	bis	+ 14°C	10 min	1 h		
+ 15°C	bis	+ 19°C	6 min	40 h		
+ 20 °C	bis	+ 29 °C	3 min	30 min		
+ 30 °C	bis	+ 40 °C	2 min	30 min		
Kartuschentemperatur			+5°C bis	s +40°C		

Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund.
 In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.


SCELL-IT X-BRID für Bewehrungsanschlüsse	
Verwendungszweck Reinigungs-und Installationszubehör Verarbeitungs- und Aushärtezeiten	Anhang B 6

Setzanweisung

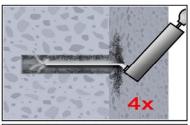
Achtung: Vor dem Bohren, karbonatisierten Beton entfernen und Kontaktfläche reinigen (siehe Anhang B1) Bei Fehlbohrungen ist das Bohrloch zu vermörteln.


Bohrloch erstellen

Hammer (HD) / Druckluftbohren (CD)

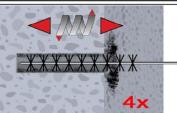
Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B4.

Weiter mit Schritt 2 (MAC oder CAC)

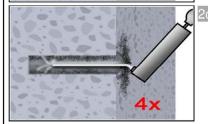

Hammerbohren mit Hohlbohrer (HDB) (siehe Anhang B 5)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B5.

Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch Weiter mit Schritt 3.


Handpumpen-Reinigung (MAC)

für Bohrerdurchmesser d₀ ≤ 20mm und Bohrlochtiefe h₀ ≤ 10 ϕ , mit Bohrmethode HD und CD



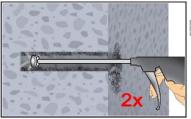
Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 6) ausblasen.

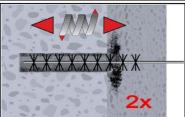
2b. Bohrloch mindestens 4x mit Bürste RB gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.

Abschließend Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 6) ausblasen.

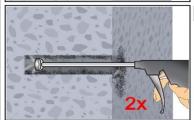
SCELL-IT X-BRID für Bewehrungsanschlüsse


Verwendungszweck Setzanweisung Anhang B 7

Setzanweisung (Fortsetzung)

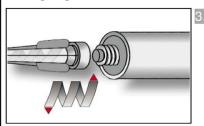

Druckluft-Reinigung (CAC):

Alle Durchmesser mit Bohrmethode HD und CD

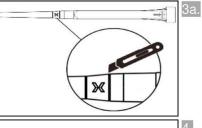


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 6) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.



Bohrloch mindestens 2x mit Bürste RB gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.


Abschließend Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 6) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

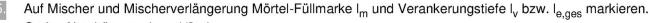
Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen.

Statikmischer PM-19E aufschrauben und Kartusche in geeignetes Auspressgerät einlegen.

Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 6) und bei neuen Kartuschen, neuen Statikmischer verwenden.

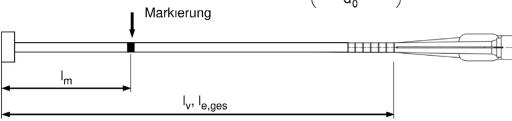
Bei Verwendung der Mischerverlängerung VL16/1,8, muss die Spitze des Mischers an der Position "X" abgeschnitten werden .

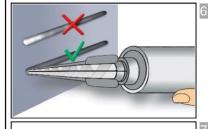
Verankerungstiefe auf dem Bewehrungsstab markieren. Der Bewehrungsstab muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.


SCELL-IT X-BRID für Bewehrungsanschlüsse

Verwendungszweck

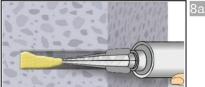
Setzanweisung (Fortsetzung)


Anhang B 8


Setzanweisung (Fortsetzung)

Grobe Abschätzung: $I_m = 1/3 \cdot I_v$ Optimales Mörtelvolumen:

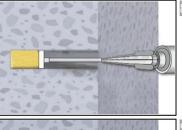
$$I_{m} = I_{v} \text{ resp. } I_{e,ges} \cdot \left(1,2 \cdot \frac{\phi^{2}}{d_{0}^{2}} - 0,2\right)$$



Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe)

Verfüllstutzen VS und Mischerverlängerung VL sind gem. Tabelle B4 oder B5 zu verwenden

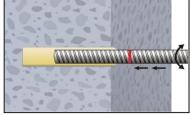
Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.



Injizieren ohne Verfüllstutzen VS:

Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung verwenden) her mit Mörtel befüllen, bis Mörtel-Füllmarke $I_{\rm m}$ sichtbar wird.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.


Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 6) beachten.

8b.. Injizieren mit Verfüllstutzen VS:

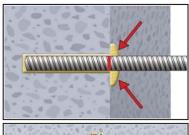
Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch mit Mörtel befüllen, bis Mörtel-Füllmarke I_m sichtbar wird. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt.

Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 6) beachten.

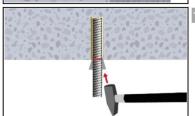
Bewehrungsstab mit leichter Drehbewegung bis zur Markierung einführen.

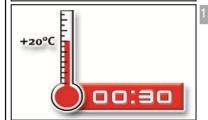
SCELL-IT X-BRID für Bewehrungsanschlüsse

Verwendungszweck


Setzanweisung (Fortsetzung)

Anhang B 9


Z97908.22


Setzanweisung (Fortsetzung)

Ringspalt zwischen Bewehrungsstab und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 8 wiederholen.

11. Bei Anwendungen in vertikaler Richtung nach oben ist der Bewehrungsstab zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 6) muss eingehalten werden. Bewehrungsstab während der Aushärtezeit nicht bewegen oder belasten.

SCELL-IT X-BRID für Bewehrungsanschlüsse

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 10

Tabelle C1: Charakteristische Zugfestigkeit für Zuganker ZA										
Zuganker			M12	M16	M20	M24				
Stahl, verzinkt (ZA vz)										
Charakteristische Zugfestigkeit	Charakteristische Zugfestigkeit N _{Rk,s} [kN] 67 125 196 282									
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]		1	,4					
Nichtrostender Stahl (ZA A4 oder	Nichtrostender Stahl (ZA A4 oder ZA HCR)									
Charakteristische Zugfestigkeit N _{Rk,s} [kN] 67 125 171 247										
Teilsicherheitsbeiwert $\gamma_{Ms,N}$ [-] 1,4 1,3 1,4										

Minimale Verankerungslänge und minimale Übergreifungslänge unter statischer oder quasi-statischer Belastung

Die minimale Verankerungslänge $I_{b,min}$ und die minimale Übergreifungslänge $I_{0,min}$ gemäß EN 1992-1-1:2004+AC:2010 ($I_{b,min}$ nach Gl. 8.6 und Gl. 8.7 und $I_{0,min}$ nach Gl. 8.11) müssen mit dem Erhöhungsfaktor $\alpha_{lb} = \alpha_{lb,100y}$ nach Tabelle C2 multipliziert werden.

Tabelle C2: Erhöhungsfaktor $\alpha_{lb} = \alpha_{lb,100y}$ in Abhängigkeit der Betonfestigkeitsklasse und Bohrverfahren; Nutzungsdauer 50 und 100 Jahre

Betonfestigkeitsklasse	Bohrverfahren	Stabdurchmesser	Erhöhungsfaktor $\alpha_{lb} = \alpha_{lb,100y}$
C12/15 bis C50/60	alle Bohrverfahren	8 mm bis 32 mm ZA-M12 bis ZA-M24	1,0

Tabelle C3: Reduktionsfaktor $k_b = k_{b,100y}$ für alle Bohrverfahren; Nutzungsdauer 50 und 100 Jahre

Stabdurchmesser	Betonfestigkeitsklasse								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 bis 32 mm ZA-M12 bis ZA-M24					1,0				

Tabelle C4: Bemessungswerte der Verbundspannung $f_{bd,PIR}$ und $f_{bd,PIR,100y}$ in N/mm² für alle Bohrverfahren und für gute Verbundbedingungen; Nutzungsdauer 50 und 100 Jahre

 $f_{bd,PIR} = k_b \cdot f_{bd}$

 $f_{bd,PIR,100y} = k_{b,100y} \cdot f_{bd}$

mi

f_{bd}: Bemessungswert der Verbundspannung in N/mm², in Abhängigkeit von der

Betonfestigkeitsklasse und dem Stabdurchmesser für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit η_1 = 0,7 zu multiplizieren) und einem empfohlenen Teilsicherheitsbeiwert γ_c = 1,5 gemäß EN 1992-1-1:2004+AC:2010.

k_b, k_{b,100v}: Reduktionsfaktor gem. Tabelle C3

Stabdurchmesser	Betonfestigungsklasse									
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 to 32 mm 7A-M12 bis 7A-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Leistungen Char. Zugfestigkeit Zuganker, Min. Verankerungs- und Übergreifungslänge, Erhöhungsfaktor, Reduktionsfaktor und Bemessungswert der Verbundspannung	Anhang C 1

Minimale Verankerungslänge und minimale Übergreifungslänge unter seismischer Einwirkung Die minimale Verankerungslänge $I_{b,min}$ und die minimale Übergreifungslänge $I_{0,min}$ gemäß EN 1992-1-1:2004+AC:2010 ($I_{b,min}$ nach Gl. 8.6 und Gl. 8.7 und $I_{0,min}$ nach Gl. 8.11) müssen mit dem Erhöhungsfaktor $\alpha_{lb,seis} = \alpha_{lb,seis,100v}$ nach Tabelle C5 multipliziert werden.

Tabelle C5: Erhöhungsfaktor $\alpha_{\text{lb,seis}} = \alpha_{\text{lb,seis,100y}}$ in Abhängigkeit der Betonfestigkeitsklasse und Bohrverfahren; Nutzungsdauer 50 und 100 Jahre

Betonfestigkeitsklasse	Bohrverfahren	Stabdurchmesser	Erhöhungsfaktor	
Detomestigkertskiusse	Boili verialilen	Otabaaroninesser	$\alpha_{\text{lb,seis}} = \alpha_{\text{lb,seis,100y}}$	
C16/20 bis C50/60	alle Bohrverfahren	10 mm bis 32 mm	1,0	

Tabelle C6: Reduktionsfaktor $k_{b,seis} = k_{b,seis,100y}$ für alle Bohrverfahren;

Nutzungsdauer 50 und 100 Jahre

Stabdurchmesser	Betonfestigkeitsklasse								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 bis 32 mm	Keine Leistung bewertet	1,0							

Tabelle C7: Bemessungswerte der Verbundspannung f_{bd,PIR,seis} und f_{bd,PIR,seis,100y} in N/mm² für alle Bohrverfahren und für gute Verbundbedingungen; Nutzungsdauer 50 und 100 Jahre

 $f_{bd,PIR,seis} = k_{b,seis \cdot fbd}$

 $f_{bd,PIR,seis,100y} = k_{b,seis,100y \cdot fbd}$

mit

 f_{bd} : Bemessungswert der Verbundspannung in N/mm², in Abhängigkeit von der

Betonfestigkeitsklasse und dem Stabdurchmesser für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit $\eta_1 = 0.7$ zu multiplizieren) und einem empfohlenen

Teilsicherheitsbeiwert γ_c = 1,5 gemäß EN 1992-1-1:2004+AC:2010.

k_{b,seis}, k_{b,seis,100y}: Reduktionsfaktor gem. Tabelle C6

Stabdurchmesser	Betonfestigkeitsklasse								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 bis 32 mm	Keine Leistung bewertet	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Leistungen Minimale Verankerungs- und Übergreifungslänge, Erhöhungsfaktor, Reduktionsfaktor und Bemessungswert der Verbundspannung unter seismischer Einwirkung	Anhang C 2

Bemessungswert der Verbundspannung f_{bd,fi}, f_{bd,fi,100v} bei erhöhter Temperatur für die Betonfestigkeitsklassen C12/15 bis C50/60, alle Bohrmethoden, Nutzungsdauer 50 und 100 Jahre:

Der Bemessungswert der Verbundspannung fbd fi bei erhöhter Temperatur ist nach der folgenden Gleichung zu berechnen:

 $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$ Nutzungsdauer 50 Jahre:

 $k_{fi}(\theta) = 30.34 \cdot e^{(\theta \cdot -0.011)} / (f_{bd,PIR} \cdot 4.3) \le 1.0$ mit: $\theta \leq 364$ °C:

> $k_{fi}(\theta) = 0$ $\theta > 364^{\circ}C$:

Nutzungsdauer 100 Jahre:

$$\begin{split} f_{bd,fi,100y} &= k_{fi,100y}(\theta) \, \cdot \, f_{bd,PIR,100y} \, \cdot \, \gamma_c \, / \, \gamma_{M,fi} \\ k_{fi,100y}(\theta) &= 30,34 \, \cdot \, e^{(\theta \, \bullet \, -0,011)} \, / \, (f_{bd,PIR,100y} \, \cdot \, 4,3) \leq 1,0 \end{split}$$
mit: $\theta \leq 364$ °C:

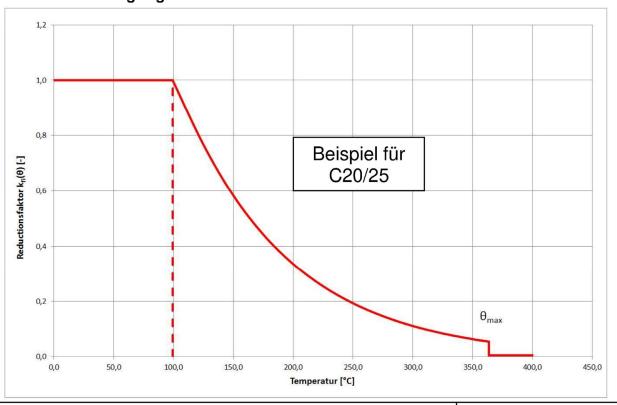
 $\theta > 364^{\circ}C$: $k_{fi,100v}(\theta) = 0$

Bemessungswert der Verbundspannung bei erhöhter Temperatur in N/mm² fbd,fi, fbd,fi,100y

Temperatur in °C in der Mörtelfuge.

 $k_{fi}(\theta), k_{fi,100v}(\theta)$ Abminderungsfaktor bei erhöhter Temperatur.

Bemessungswert der Verbundspannung in N/mm² im kalten Zustand gemäß Tabelle C4 fbd.PIR, fbd.PIR.100v


in Abhängigkeit von der Betonfestigkeitsklasse, dem Stabdurchmesser, dem Bohrverfahren und

dem Verbundbereich entsprechend EN 1992-1-1:2004+AC:2010.

= 1,5, empfohlener Teilsicherheitsbeiwert gemäß EN 1992-1-1:2004+AC:2010 γ_{C} = 1.0, empfohlener Teilsicherheitsbeiwert gemäß EN 1992-1-2:2004+AC:2008 $\gamma_{M,fi}$

Für den Nachweis bei erhöhter Temperatur sind die Verankerungslängen nach EN 1992-1-1:2004+AC:2010 Gleichung 8.3 mit dem temperaturabhängigen Bemessungswert der Verbundspannung f_{bd.fi}, f_{bd.fi.100v} zu ermitteln.

Beispielkurve des Abminderungsfaktor $k_{\text{fi}(\theta),}$ $k_{\text{fi},100\text{v}(\theta)}$ für Betonfestigkeitsklasse C20/25 bei guter Verbundbedingung:

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Leistungen Bemessungswert der Verbundspannung bei erhöhter Temperatur	Anhang C 3

		teristisch eanspruc		ıfähigkeit für	Zuganker ZA	unter	
Zuganker				M12	M16	M20	M24
Stahl, verzinkt (ZA	vz)						
Charakteristische Zugtragfestigkeit	R30			2,3	4,0	6,3	9,0
	R60	N		1,7	3,0	4,7	6,8
	R90	$N_{Rk,s,fi}$	[kN]	1,5	2,6	4,1	5,9
	R120			1,1	2,0	3,1	4,5
Nichtrostender Sta	hl (ZA A	oder ZA H	CR)				
Charakteristische Zugtragfestigkeit	R30		[kN]	3,4	6,0	9,4	13,6
	R60	N		2,8	5,0	7,9	11,3
	R90	$N_{Rk,s,fi}$		2,3	4,0	6,3	9,0
	R120			1,8	3,2	5,0	7,2

SCELL-IT X-BRID für Bewehrungsanschlüsse	
Leistungen Charakteristische Zugtragfähigkeit für Zuganker ZA unter Brandbeanspruchung	Anhang C 4