



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



### European Technical Assessment

#### ETA-17/0854 of 25 October 2022

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

SCELL-IT X-BRID for rebar connection

Systems for post-installed rebar connections with mortar

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

Scell-it Plant 1 Germany

23 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-17/0854 issued on 11 January 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



#### European Technical Assessment ETA-17/0854 English translation prepared by DIBt

Page 2 of 23 | 25 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 23 | 25 October 2022

#### Specific Part

#### 1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "SCELL-IT X-BRID for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter  $\phi$  from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar X-BRID are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                        | Performance           |
|-----------------------------------------------------------------|-----------------------|
| Characteristic resistance under static and quasi-static loading | See Annex C 1         |
| Characteristic resistance under seismic loading                 | See Annex B 4 and C 2 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance           |
|--------------------------|-----------------------|
| Reaction to fire         | Class A1              |
| Resistance to fire       | See Annex C 3 and C 4 |



## European Technical Assessment ETA-17/0854

#### Page 4 of 23 | 25 October 2022

English translation prepared by DIBt

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

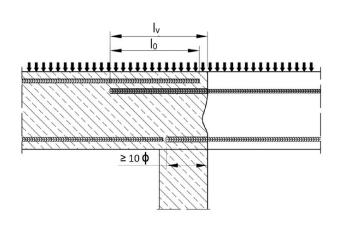
The system to be applied is: 1

## 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 25 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider


## Page 5 of European Technical Assessment ETA-17/0854 of 25 October 2022

English translation prepared by DIBt

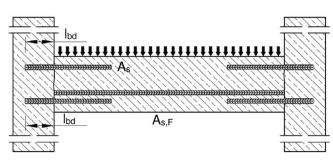
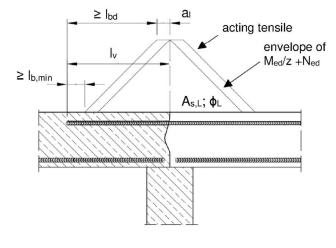


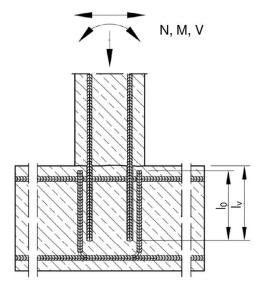
#### Installation post installed rebar

Figure A1: Overlapping joint for rebar connections of slabs and beams

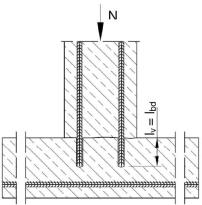


**Figure A3:** End anchoring of slabs or beams (e.g. designed as simply supported)



Figure A5: Anchoring of reinforcement to cover the line of acting tensile force




#### SCELL-IT X-BRID for rebar connection

#### **Product description** Installed condition and examples of use for rebars

**Figure A2:** Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

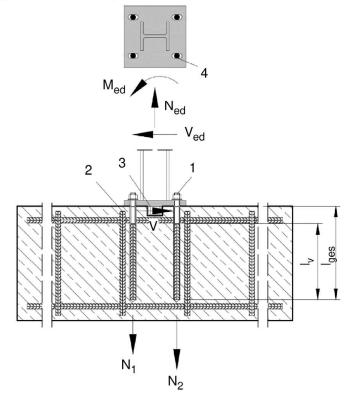


**Figure A4:** Rebar connection for components stressed primarily in compression. The rebars are stressed in compression



#### Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.


Preparing of joints according to Annex B 2

Annex A 1



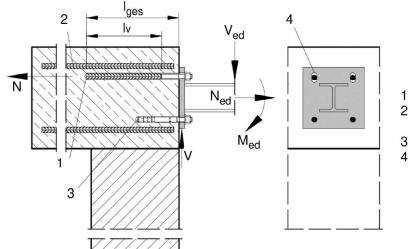
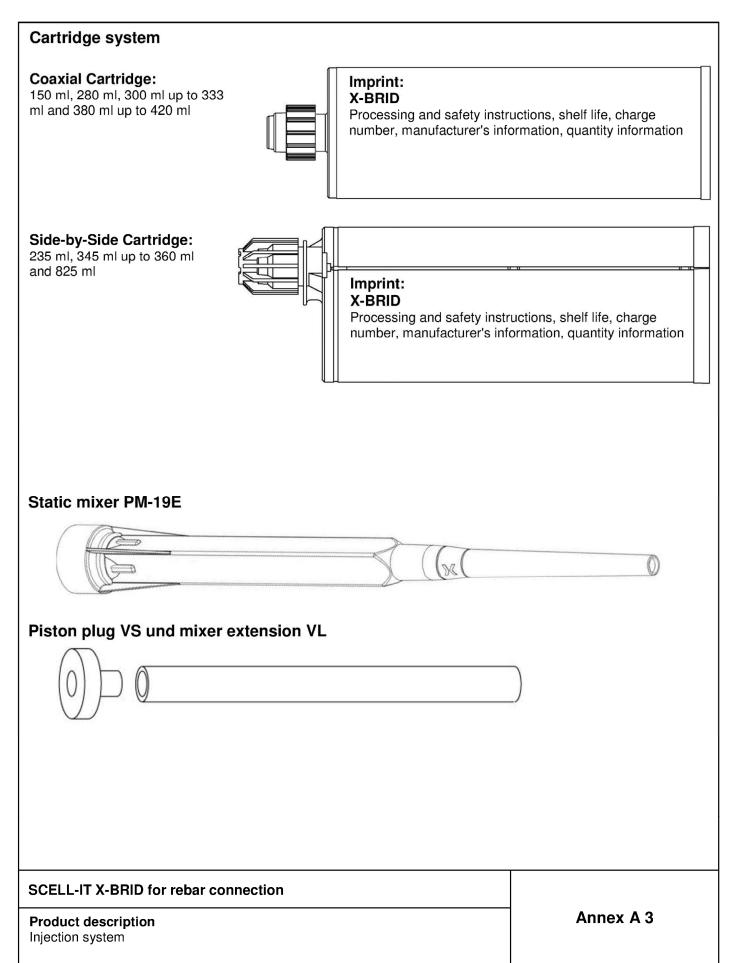

#### Installation tension anchor ZA

Figure A6: Anchorage of column to foundation with tension anchor ZA.



- Tension anchor ZA (tension only) 1
- 2 Existing stirrup / reinforcement for overlap (lap splice)
- 3 Shear lug (or fastener loaded in shear)
- Slotted hole with axial direction to the shear 4 force

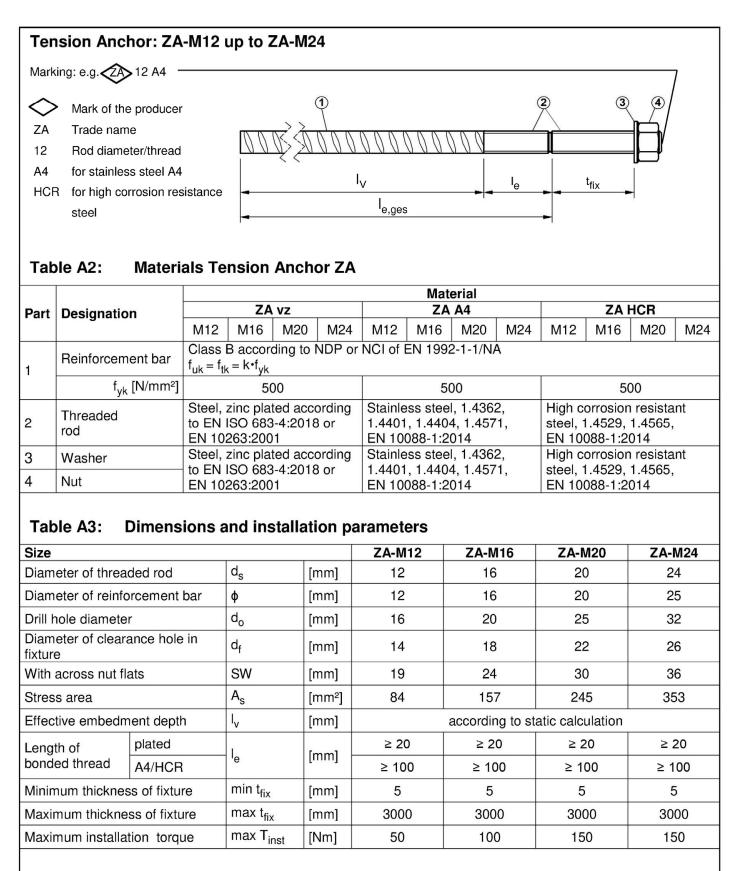

Figure A7: Anchorage of guardrail posts or cantilevered building components with tension anchor ZA and fastner.



- Tension anchor ZA (tension only)
- Existing stirrup / reinforcement for overlap (lap splice)
- Fastener (or shear lug loaded in shear)
- Slotted hole with axial direction to the shear force

| Note to Figure A6 and A7: In the Figures no transverse reinforcement is plotted, shall comply with EN 1992-1-1:2004+AC:2010. The tension anchor may be only us tensile force must be transferred by lab to the existing reinforcement of the building has to be ensured by suitable measures, e.g. by means of shear lugs or anchors v Assessment (ETA). Generals construction rules see Annex B 3 | sed for axial tensile force. The<br>g. The transfer of the shear force |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| SCELL-IT X-BRID for rebar connection                                                                                                                                                                                                                                                                                                                                                               |                                                                        |
| Product description<br>Installed condition and examples of use for tension anchors ZA                                                                                                                                                                                                                                                                                                              | Annex A 2                                                              |








| Reinforcing bar (rebar): ø8 up to ø32                                                                                                      |                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                                                                            |                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Minimum value of related rip area f <sub>R,min</sub> accordin                                                                              | g to EN 1992-1-1:2004+AC:2010                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>Rib height of the bar shall be in the range 0,05φ :<br/>(φ: Nominal diameter of the bar; h<sub>rib</sub>: Rib height c</li> </ul> |                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Table A1: Materials Rebar                                                                                                                  |                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Designation                                                                                                                                | Material                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
| Rebar EN 1992-1-1:2004+AC:2010, Annex C                                                                                                    | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |  |  |  |  |  |  |  |  |  |  |

**Product description** Specifications Rebar Annex A 4





#### SCELL-IT X-BRID for rebar connection

**Product description** Specifications Tension Anchor ZA

Annex A 5



| Specification of the intended use             |                                                                                             |                               |                               |  |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--|--|--|--|--|--|
| Anchorages subject to:                        |                                                                                             | working life 50 years         | working life 100 years        |  |  |  |  |  |  |
| HD: Hammer drilling                           | Static and quasi-<br>static loads                                                           |                               |                               |  |  |  |  |  |  |
| HDB: Hammer drilling with<br>hollow drill bit | Seismic action                                                                              | Ø10 to Ø32                    | Ø10 to Ø32                    |  |  |  |  |  |  |
| CD: Compressed air drilling                   | Fire exposure                                                                               | Ø8 to Ø32<br>ZA-M12 to ZA-M24 | Ø8 to Ø32<br>ZA-M12 to ZA-M24 |  |  |  |  |  |  |
| Temperature Range:                            | - 40°C to +80°C<br>(max long-term temperature +50 °C and max short-term temperature +80 °C) |                               |                               |  |  |  |  |  |  |

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of  $\phi$  + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

#### Use conditions (Environmental conditions) with tension anchor ZA:

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
  - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
  - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

#### **Design:**

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

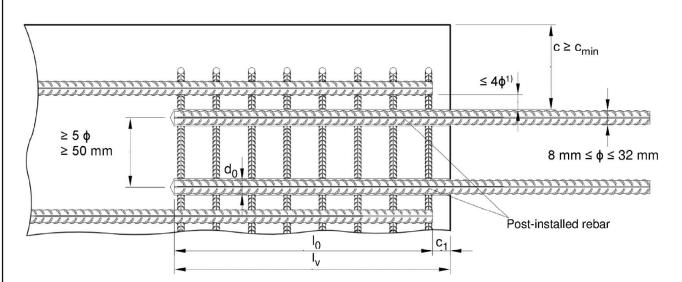
#### Installation:

- Dry or wet concrete. It must not be installed in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

#### SCELL-IT X-BRID for rebar connection

#### Intended use

Annex B 1


Specifications

8.06.01-237/22



#### Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

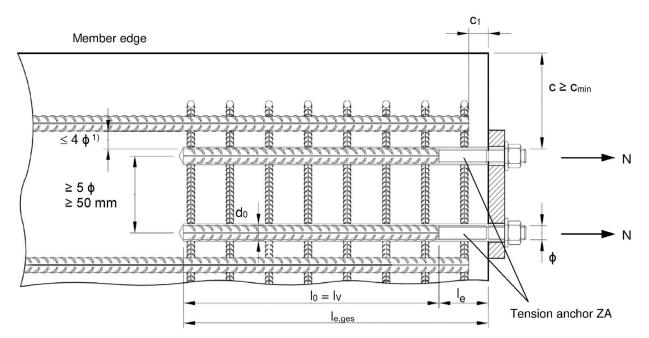


<sup>1)</sup> If the clear distance between lapped bars exceeds  $4\phi$ , then the lap length shall be increased by the difference between the clear bar distance and  $4\phi$ .

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- c<sub>min</sub> minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
- φ diameter of post-installed rebar
- Iap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- $I_v$  effective embedment depth,  $\ge I_0 + c_1$
- d<sub>0</sub> nominal drill bit diameter, see Annex B 5

#### SCELL-IT X-BRID for rebar connection


#### Intended use

General construction rules for post-installed rebars



#### Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage.
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA.
- The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.



1) If the clear distance between lapped bars exceeds 4¢, then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B2:

- concrete cover of tension anchor ZA С
- concrete cover at end-face of existing rebar с<sub>1</sub>
- minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2 Cmin diameter of tension anchor
  - lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- I<sub>0</sub> effective embedment depth I,
- length of bonded thread ۱<sub>e</sub>
- overall embedment depth,  $\geq I_0 + c_2$ l<sub>e,ges</sub>
- nominal drill bit diameter, see Annex B 5 d

#### SCELL-IT X-BRID for rebar connection

#### Intended use

General construction rules for tension anchors

Annex B 3

φ



|                                  |                                                                                                  |                                                | Irilling method                             |                    |                               |                     |                      |
|----------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------|-------------------------------|---------------------|----------------------|
| D                                | rilling method                                                                                   | Rebar<br>diameter                              | Without drilling                            | aid                | v                             | Vith dri            | lling aid            |
| HD:                              | Hammer drilling                                                                                  | < 25 mm                                        | 30 mm + 0,06 · I <sub>v</sub> ≥             | 2 q                | 30 mm + 0,02 · I <sub>v</sub> | ≥ 2 ¢               | Drilling aid         |
| HDB:                             | Hammer drilling<br>with hollow drill bit                                                         | ≥ 25 mm                                        | 40 mm + 0,06 · I <sub>v</sub> ≥             | 2 ¢                | 40 mm + 0,02 · I <sub>v</sub> | ≥ 2 ¢               |                      |
| CD:                              | Compressed air                                                                                   | < 25 mm                                        | 50 mm + 0,08 · I <sub>v</sub>               |                    | 50 mm + 0,02 · I <sub>v</sub> |                     |                      |
|                                  | drilling                                                                                         | ≥ 25 mm                                        | 60 mm + 0,08 · I <sub>v</sub> ≥             | ≥2¢                | 60 mm + 0,02 · I <sub>v</sub> | ≥2 ¢                |                      |
| Comm<br>For th                   | Annex B 2, Figure B1 a<br>nents: The minimum co<br>le minimum concrete co<br>le <b>B2: Minim</b> | oncrete cover<br>over c <sub>min,seis</sub> in | r acc. EN 1992-1-1:200                      | on, see            |                               | ved.                |                      |
|                                  | Drilling method                                                                                  |                                                | Design conditions                           |                    | Distance to 1st e             | dge                 | Distance to 2nd edge |
| HD:                              | Hammer drilling<br>Hammer drilling                                                               |                                                | Edge                                        |                    | ≥ 2 ¢                         | - <u>g</u> -        | ≥ 2 ¢                |
|                                  | with hollow drill bit<br>Compressed air drill                                                    | ing                                            | Corner                                      |                    | ≥ 2 <b>φ</b>                  |                     | ≥ 2 <b>φ</b>         |
| Tabl                             | le B3: Disper                                                                                    | nsing too                                      | ls                                          | I                  |                               |                     |                      |
| Ca                               | artridge type/size                                                                               |                                                | Han                                         | d too              | 1                             |                     | Pneumatic tool       |
|                                  | Coaxial cartridges<br>150, 280,<br>300 up to 333 ml                                              |                                                |                                             |                    |                               |                     | ~~~~                 |
|                                  |                                                                                                  |                                                | e.g. Type H                                 | e.g. Type TS 492 X |                               |                     |                      |
|                                  | Coaxial cartridges<br>380 up to 420 ml                                                           | e.g. T                                         | e.g. Type CCM 380/10 e.g. Type H 285 or H24 |                    |                               | 4C                  | e.g. Type TS 485 LX  |
| Sid                              | e-by-side cartridges<br>235, 345 ml                                                              |                                                | Type CBM 330A                               |                    | e.g. Type H 260               |                     |                      |
| Side-by-side cartridge<br>825 ml |                                                                                                  |                                                | -                                           | -                  |                               | e.g. Type TS 477 LX |                      |
|                                  | rtridade could also be a                                                                         |                                                | battony tool                                |                    |                               |                     | e.g. Type TS 498X    |
|                                  | rtridges could also be e                                                                         |                                                |                                             |                    |                               |                     |                      |
| <b>Inten</b><br>Minin            | nded use<br>num concrete cover<br>ensing, cleaning and                                           |                                                |                                             |                    |                               |                     | Annex B 4            |

Г

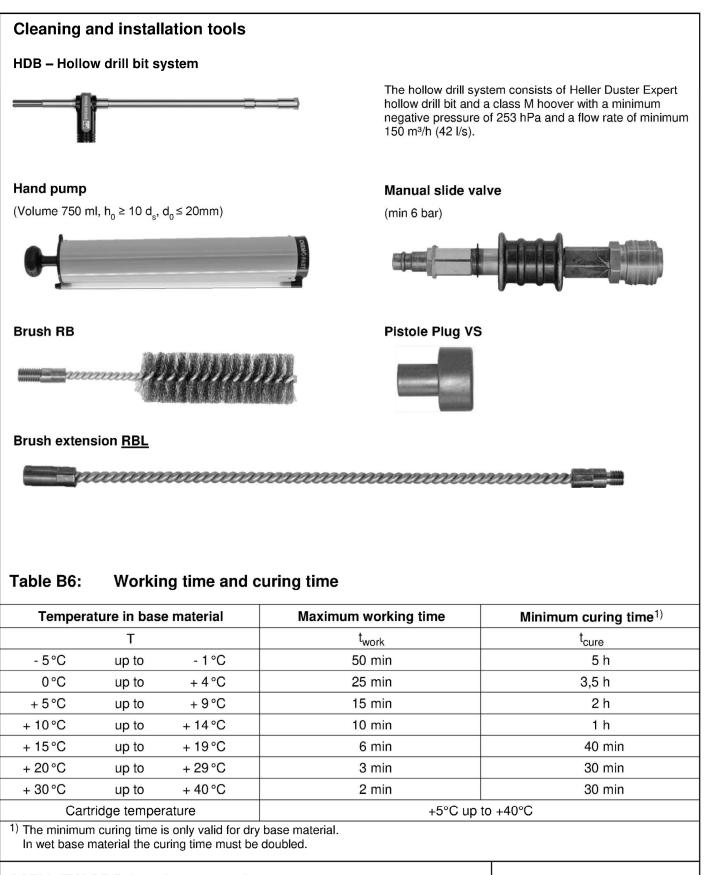


| Tab                      | le B4:            |          |        |                 |      | lugs, n<br>sed ai   |                | 10 20402-0002-007       |                    | and mi             | xer exten          | sion, ł            | nammer             |  |
|--------------------------|-------------------|----------|--------|-----------------|------|---------------------|----------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
|                          |                   | Dr       | rill   |                 |      | d <sub>b.min</sub>  |                |                         | Cartridge          | : All siz          | es                 | Cartrid            | lge: 825 ml        |  |
| Bar<br>size              | Tension<br>anchor | on bit-Ø |        | d₀<br>Brush - Ø |      | d <sub>b</sub> min. | Piston<br>plug | Hand or<br>battery tool |                    | Pneumatic tool     |                    | Pneumatic tool     |                    |  |
| φ                        | φ                 | HD       | CD     |                 |      | ø                   | plug           | l <sub>v,max</sub>      | Mixer<br>extension | l <sub>v,max</sub> | Mixer<br>extension | I <sub>v,max</sub> | Mixer<br>extension |  |
| [mm]                     | [mm]              | [m       | m]     |                 | [mm] | [mm]                |                | [mm]                    |                    | [mm]               |                    | [mm]               |                    |  |
| 8                        | -                 | 10       |        | RB10            | 11,5 | 10,5                | -              | 250                     |                    | 250                |                    | 250                |                    |  |
| 0                        | -                 | 10 -     | RB12   | 10 5            | 10.5 |                     | 700            |                         | 800                |                    | 800                | VL10/0,75          |                    |  |
| 10                       | -                 | 12       |        | ND12            | 13,5 | 12,5                | -              | 250                     |                    | 250                |                    | 250                | or                 |  |
| 10                       | -                 | 12       | -      | RB14            | 15,5 | 14,5                | VS14           | 700                     |                    | 1000               |                    | 1000               | VL16/1,8           |  |
| 12                       | ZA-M12            | 14       | I      | ND14            | 15,5 | 14,5                | V314           | 250                     |                    | 250                |                    | 250                |                    |  |
| 12                       |                   | 16       |        | <b>RB16</b>     | 17,5 | 16,5                | VS16           |                         |                    |                    |                    | 1200               |                    |  |
| 14                       | -                 | 1        | 8      | RB18            | 20,0 | 18,5                | VS18           | 700                     | VL10/0,75          | 1000               | VL10/0,75          | 1400               |                    |  |
| 16                       | ZA-M16            | 2        | 0      | RB20            | 22,0 | 20,5                | VS20           |                         | or                 |                    | or                 | 1600               |                    |  |
| 20                       | ZA-M20            | 74 1400  | 25     | -               | RB25 | 27,0                | 25,5           | VS25                    | -                  | VL16/1,8           |                    | VL16/1,8           |                    |  |
| 20                       |                   |          | 26     | RB26            | 28,0 | 26,5                | VS25           |                         |                    | 700                |                    |                    | VL16/1,8           |  |
| 22                       | -                 | 2        | 8      | RB28            | 30,0 | 28,5                | VS28           |                         |                    |                    |                    |                    | VL10/1,0           |  |
| 24/25                    | 74-1424           | 70-M24   | ZA-M24 | 24 30 RB30      | 32,0 | 30,5                | VS30           | 500                     |                    |                    |                    | 2000               | 0                  |  |
| 10-04 - 9828 0 - 6868 64 |                   | 3        |        | RB32            | 34,0 | 32,5                | VS32           |                         |                    | 500                |                    |                    |                    |  |
| 28                       | -                 | 3        | 5      | RB35            | 37,0 | 35,5                | VS35           |                         |                    | 500                |                    |                    |                    |  |
| 32                       | -                 | 4        | 0      | RB40            | 43,5 | 40,5                | VS40           |                         |                    |                    |                    |                    |                    |  |

## Table B5:Brushes, piston plugs, max anchorage depth and mixer extension, hammer<br/>drilling with hollow drill bit system (HDB)

| Bor              |                   |      |                             | the second |                | Cartridge:<br>All sizes |                    |                    |                    | Cartridge:<br>825 ml |                    |  |
|------------------|-------------------|------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--|
| Bar<br>size      | Tension<br>anchor |      | d <sub>⊳</sub><br>Brush - Ø |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Piston<br>plug |                         | or battery<br>tool | Pneu               | matic tool         | Pneur                | matic tool         |  |
| ф                | φ                 | HDB  |                             | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | I <sub>v,max</sub>      | Mixer<br>extension | I <sub>v,max</sub> | Mixer<br>extension | I <sub>v,max</sub>   | Mixer<br>extension |  |
| [mm]             | [mm]              | [mm] |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | [mm]                    |                    | [mm]               |                    | [mm]                 |                    |  |
| 8                | -                 | 10   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 250                     |                    | 250                |                    | 250                  |                    |  |
| 0                | -                 | 12   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -              | 700                     |                    | 800                |                    | 800                  | VL10/0,75          |  |
| 10               | -                 | 12   |                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 250                     |                    | 250                | or                 |                      |                    |  |
|                  | -                 | 14   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS14           | 700                     |                    | 1000               |                    | 1000                 | VL16/1,8           |  |
| 12               | ZA-M12            | 14   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V014           | 250                     |                    | 250                |                    | 250                  |                    |  |
| 12               | ZA-IVITZ          | 16   | No cleanin                  | No cleaning<br>required VS18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No clooning    | VS16                    |                    | VL10/0,75          |                    | VL10/0,75            |                    |  |
| 14               | -                 | 18   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 700            | or                      | 1000               | or                 |                    |                      |                    |  |
| 16               | ZA-M16            | 20   | iequiet                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VS20           |                         | VL 16/1,8          |                    | VL16/1,8           |                      |                    |  |
| 20               | ZA-M20            | 25   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS25           |                         | , .                | 700                | , . , .            |                      |                    |  |
| 22               |                   | 28   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS28           |                         |                    | 700                |                    | 1000                 | VL16/1,8           |  |
| 24/25            | ZA-M24            | 30   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS30           | 500                     |                    |                    |                    |                      |                    |  |
| 1-17 17215-1544C |                   | 32   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS32           | 500                     |                    | 500                |                    |                      |                    |  |
| 28               | -                 | 35   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS35           |                         |                    | 000                |                    |                      |                    |  |
| 32               | -                 | 40   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VS40           |                         |                    |                    |                    |                      |                    |  |
|                  |                   |      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                         |                    |                    |                    |                      |                    |  |

#### SCELL-IT X-BRID for rebar connection


#### Intended Use

Parameter brushes, piston plugs, max anchorage depth and mixer extension

## Page 15 of European Technical Assessment ETA-17/0854 of 25 October 2022

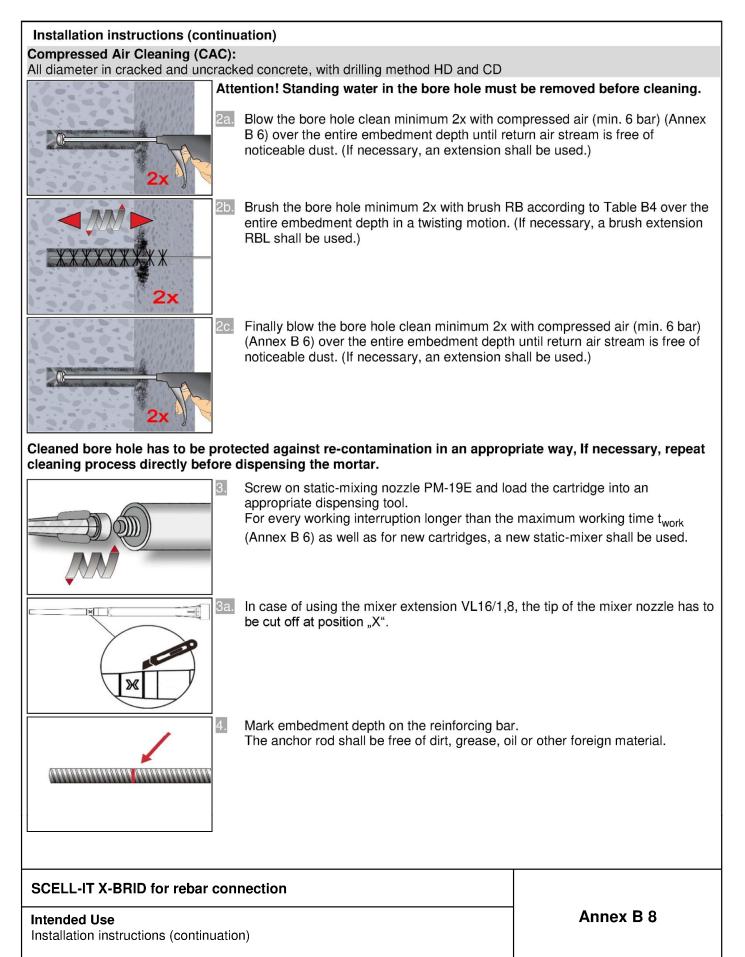
English translation prepared by DIBt



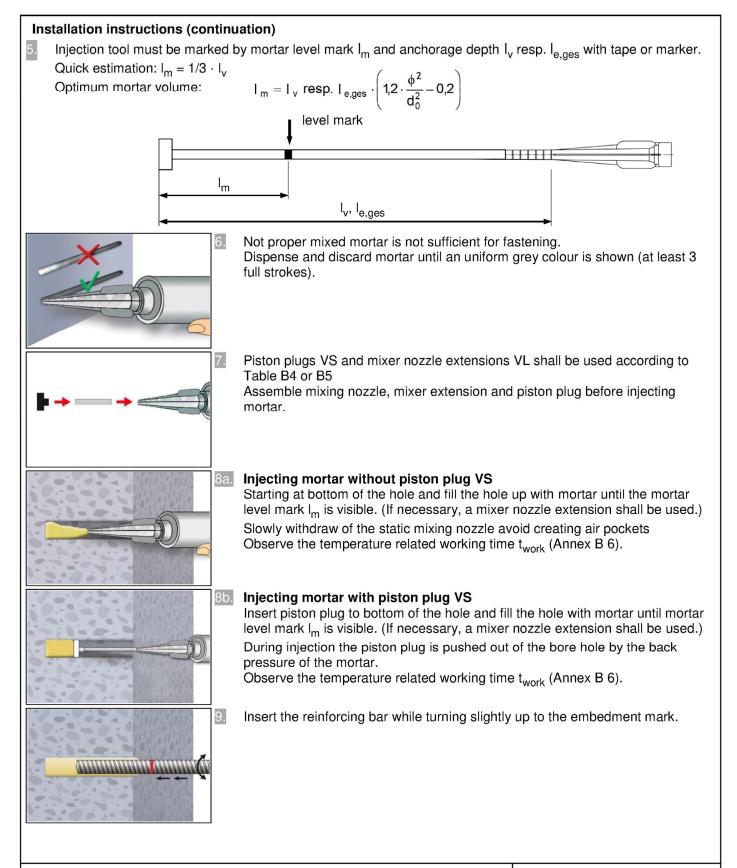


#### SCELL-IT X-BRID for rebar connection

#### Intended Use


Cleaning and installation tools Working time and curing time



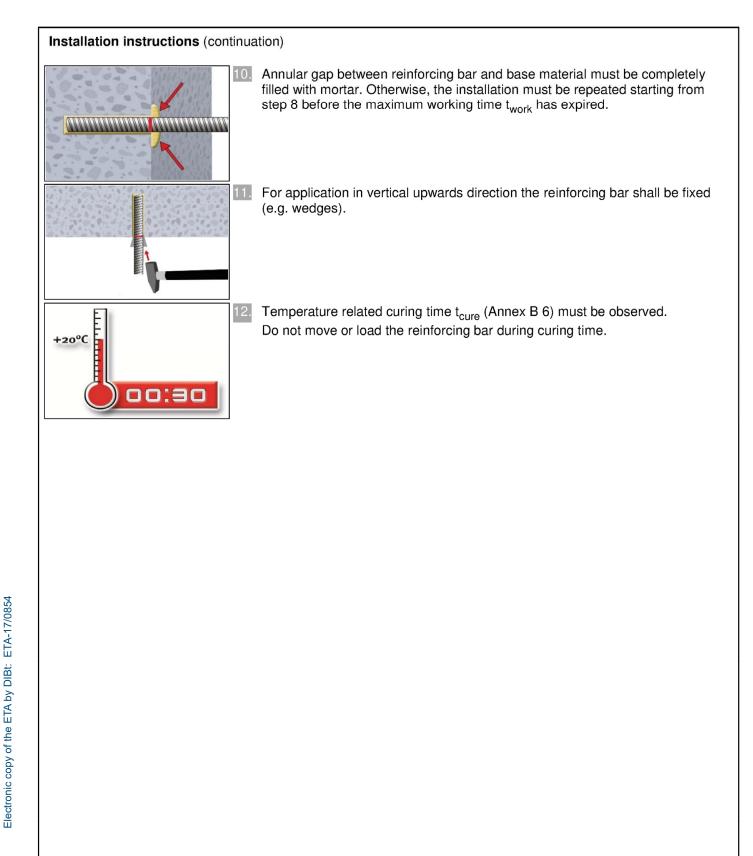

## Installation instructions Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B1) Aborted drill holes shall be filled with mortar. Drilling of the bore hole 1a. Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole to the required embedment depth. Drill bit diameter according to Table B4. Proceed with Step 2 (MAC or CAC). Hollow drill bit system (HDB) (see Annex B 6) 1b. Drill a hole to the required embedment depth. Drill bit diameter according to Table B5. Proceed with Step 3. Manual Air Cleaning (MAC) for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d $\phi$ , with drilling method HD and CD Attention! Standing water in the bore hole must be removed before cleaning. Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 6). Brush the bore hole minimum 4x with brush RB according to Table B4 over the 2b. entire embedment depth in a twisting motion (if necessary, use a brush extension RBL). 2c. Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 6). SCELL-IT X-BRID for rebar connection Annex B 7 Intended Use

Installation instruction










#### SCELL-IT X-BRID for rebar connection

#### Intended Use

Installation instructions (continuation)





#### SCELL-IT X-BRID for rebar connection

#### Intended Use Installation instructions (continuation)



| ension Anchor                                                                                                                                          |                                                                                                                                               |                                                                        |                                                               | M12                    | 2                                          | M16                         | M20                       | )                                     | M24     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|------------------------|--------------------------------------------|-----------------------------|---------------------------|---------------------------------------|---------|--|--|
| Steel, zinc plated (ZA vz)                                                                                                                             |                                                                                                                                               |                                                                        |                                                               |                        | I                                          |                             | 1                         | I                                     |         |  |  |
| Characteristic tension res                                                                                                                             | istance                                                                                                                                       | N <sub>Rk,s</sub>                                                      | 67                                                            |                        | 125                                        | 196                         | ;                         | 282                                   |         |  |  |
| Partial factor                                                                                                                                         |                                                                                                                                               | γ <sub>Ms,N</sub>                                                      | [-]                                                           |                        | I                                          | 1                           | ,4                        |                                       |         |  |  |
| stainless Steel (ZA A4 or                                                                                                                              | ZA HCR)                                                                                                                                       | ,                                                                      |                                                               |                        |                                            |                             |                           |                                       |         |  |  |
| Characteristic tension res                                                                                                                             | istance                                                                                                                                       | N <sub>Rk,s</sub>                                                      | [kN]                                                          | 67                     | 67 125                                     |                             | 171                       |                                       | 247     |  |  |
| artial factor                                                                                                                                          |                                                                                                                                               | γ <sub>Ms,N</sub>                                                      | [-]                                                           |                        | 1,4                                        |                             | 1,3                       |                                       | 1,4     |  |  |
| Minimum anchorage let<br>The minimum anchorage<br>$I_{b,min}$ acc. to Eq. 8.6 and<br>$\alpha_{lb} = \alpha_{lb}$ ,100y according to<br>Fable C2: Ampli | length I <sub>b,m</sub><br>d Eq. 8.7 ar                                                                                                       | <sub>in</sub> and the<br>nd I <sub>0,min</sub> ac                      | minimum l<br>cc. to Eq. 8                                     | ap length<br>11) shall | <sub>0,min</sub> acco<br>be multiply       | rding to E<br>y by the ar   | N 1992-1-<br>nplificatior | n factor                              | C:2010  |  |  |
|                                                                                                                                                        | od; worki                                                                                                                                     |                                                                        | 0 and 10                                                      |                        |                                            |                             | Amı                       | olification                           |         |  |  |
|                                                                                                                                                        |                                                                                                                                               |                                                                        |                                                               |                        |                                            |                             |                           | $\alpha_{\rm lb} = \alpha_{\rm lb,1}$ | 00y     |  |  |
| C12/15 to C50/60                                                                                                                                       |                                                                                                                                               | all drilling                                                           | methods                                                       | z                      | 8 mm to 32 mm<br>ZA-M12 to ZA-M24          |                             |                           | 1,0                                   |         |  |  |
| Rebar                                                                                                                                                  | ng life 50                                                                                                                                    |                                                                        |                                                               | Со                     | ncrete cla                                 | ISS                         |                           |                                       |         |  |  |
| ф                                                                                                                                                      | C12/15                                                                                                                                        | C12/15 C16/20 C20/25 C25/30 C30/37 C35/45                              |                                                               |                        |                                            |                             |                           |                                       | C50/6   |  |  |
| 8 to 32 mm<br>ZA-M12 to ZA-M24                                                                                                                         |                                                                                                                                               | 1,0                                                                    |                                                               |                        |                                            |                             |                           |                                       |         |  |  |
| <b>all dri</b><br>worki<br>f <sub>bd,PIR</sub> =<br>f <sub>bd,PIR,1</sub>                                                                              | n values<br>lling met<br>ng life 50<br>$= k_b \cdot f_{bd}$<br>$_{00y} = k_{b,100}$<br>sign value c<br>er, the drillir<br>by $\eta_1 = 0.7$ ) | hods an<br>and 10<br><sup>by · f</sup> bd<br>of the ultim<br>ng method | <b>d for go</b><br><b>0 years</b><br>ate bond s<br>for good b | od cond                | <b>itions;</b><br>mm² cons<br>tion (for al | idering the                 | e concrete<br>nd conditio | classes, t                            | he reba |  |  |
| diamete<br>values<br>1:2004-                                                                                                                           | AC:2010.                                                                                                                                      | uction foot                                                            | or accordi                                                    | na ta Tabl             | ~ ^ 2                                      |                             |                           |                                       |         |  |  |
| f <sub>bd</sub> : Des<br>diamete<br>values<br>1:2004-<br>k <sub>b</sub> , k <sub>b,10</sub>                                                            |                                                                                                                                               | uction fact                                                            | or accordi                                                    | -                      |                                            |                             |                           |                                       |         |  |  |
| f <sub>bd</sub> : Des<br>diamete<br>values<br>1:2004-<br>k <sub>b</sub> , k <sub>b,10</sub><br><b>Rebar</b>                                            | <sub>0y</sub> : Red                                                                                                                           | 1                                                                      |                                                               | Co                     | ncrete cla                                 |                             | 040/50                    | O AE /EE                              | CENT    |  |  |
| f <sub>bd</sub> : Des<br>diamete<br>values<br>1:2004-<br>k <sub>b</sub> , k <sub>b,10</sub>                                                            |                                                                                                                                               | uction fact<br>C16/20<br>2,0                                           | C20/25<br>2,3                                                 | -                      |                                            | <b>ISS</b><br>C35/45<br>3,4 | C40/50<br>3,7             | C45/55<br>4,0                         | C50/6   |  |  |



#### Minimum anchorage length and minimum lap length under seismic action

The minimum anchorage length  $I_{b,min}$  and the minimum lap length  $I_{0,min}$  according to EN 1992-1-1:2004+AC:2010 ( $I_{b,min}$  acc. to Eq. 8.6 and Eq. 8.7 and  $I_{0,min}$  acc. to Eq. 8.11) shall be multiply by the amplification factor  $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$  according to Table C5.

## Table C5:Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ related to concrete class and drilling<br/>method; working life 50 and 100 years

| Concrete class   | Drilling method      | Bar size       | Amplification factor<br>$\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ |
|------------------|----------------------|----------------|--------------------------------------------------------------------|
| C16/20 to C50/60 | all drilling methods | 10 mm to 32 mm | 1,0                                                                |

# Table C6:Reduction factor $k_{b,seis} = k_{b,seis,100y}$ for all drilling methods;working life 50 and 100 years

| Rebar       |                               | Concrete classes |        |        |        |        |        |        |        |  |  |  |
|-------------|-------------------------------|------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| ф           | C12/15                        | C16/20           | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |  |  |  |
| 10 to 32 mm | No<br>performance<br>assessed |                  |        |        | 1      | ,0     |        |        |        |  |  |  |

# Table C7:Design values of the ultimate bond stress $f_{bd,PIR,seis}$ and $f_{bd,PIR,seis,100y}$ in N/mm²for all drilling methods and for good conditions;working life 50 and 100 years

 $f_{bd,PIR,seis} = k_{b,seis \cdot fbd}$ 

 $f_{bd,PIR,seis,100y} = k_{b,seis,100y \cdot fbd}$ 

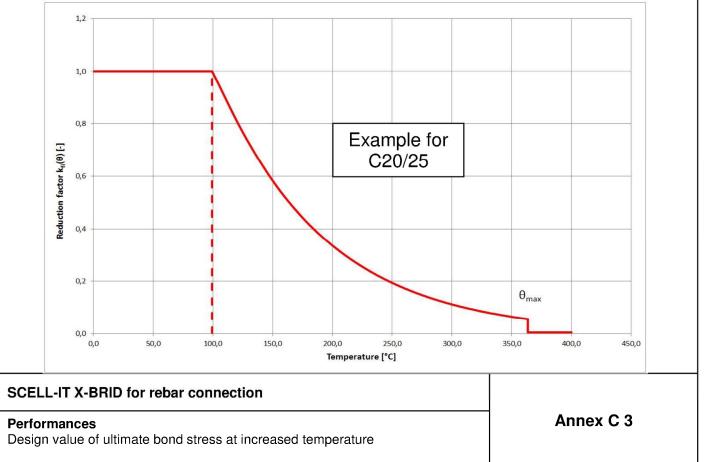
mit

 $f_{bd}$ : Bemessungswert der Verbundspannung in N/mm<sup>2</sup>, in Abhängigkeit von der Betonfestigkeitsklasse und dem Stabdurchmesser für gute Verbundbedingungen (für alle anderen Verbundbedingungen sind die Werte mit  $\eta_1 = 0,7$  zu multiplizieren) und einem empfohlenen Teilsicherheitsbeiwert  $\gamma_c = 1,5$  gemäß EN 1992-1-1:2004+AC:2010.

 $k_{b,seis}, k_{b,seis,100y}$ : Reduktionsfaktor gem. Tabelle C6

| Rebar       | Concrete classes           |        |        |        |        |        |        |        |        |
|-------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| φ           | C12/15                     | C16/20 | C20/25 | C25/30 | C30/37 | C35/45 | C40/50 | C45/55 | C50/60 |
| 10 to 32 mm | No performance<br>assessed | 2,0    | 2,3    | 2,7    | 3,0    | 3,4    | 3,7    | 4,0    | 4,3    |

| SCELL-IT X-BRID for rebar connection                                                                                                    |           |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                            | Annex C 2 |
| Minimum anchorage and lap length, Amplification factor, Reduction factor and Design values of ultimate bond stress under seismic action |           |




# Design value of the ultimate bond stress $f_{bd,fi}$ , $f_{bd,fi,100y}$ at increased temperature for concrete classes C12/15 to C50/60, (all drilling methods); working life 50 and 100 years:

The design value of the ultimate bond stress  $f_{bd,fi}$ ,  $f_{bd,fi,100y}$  at increased temperature has to be calculated by the following equation:

| For working life 50                                      | years:       | $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$                                                                    |  |  |  |  |  |
|----------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| with: $\theta \le 364^{\circ}C$                          | :            | $k_{fi}(\theta) = 30.34 \cdot e^{(\theta \cdot -0.011)} / (f_{bd,PIR} \cdot 4.3) \le 1.0$                                                       |  |  |  |  |  |
| θ > 364°C:                                               |              | $k_{fi}(\theta) = 0$                                                                                                                            |  |  |  |  |  |
| For working life 100 years:                              |              | $f_{bd,fi,100y} = k_{fi,100y}(\theta) \cdot f_{bd,PIR,100y} \cdot \gamma_c / \gamma_{M,fi}$                                                     |  |  |  |  |  |
| with: $\theta \le 364^{\circ}C$                          | :            | $k_{fi,100y}(\theta) = 30,34 \cdot e^{(\theta \cdot -0,011)} / (f_{bd,PIR,100y} \cdot 4,3) \le 1,0$                                             |  |  |  |  |  |
| θ > 364°C                                                | :            | $k_{fi,100y}(\theta) = 0$                                                                                                                       |  |  |  |  |  |
| f <sub>bd,fi</sub> , f <sub>bd,fi,100y</sub> Design valu |              | e of the ultimate bond stress at increased temperature in N/mm <sup>2</sup>                                                                     |  |  |  |  |  |
| θ                                                        | Temperatur   | e in °C in the mortar layer.                                                                                                                    |  |  |  |  |  |
| $k_{fi}(\theta), k_{fi,100y}(\theta)$ Reduction factor   |              | actor at increased temperature.                                                                                                                 |  |  |  |  |  |
| f <sub>bd,PIR</sub> , f <sub>bd,PIR</sub> ,100y          | Design valu  | e of the bond stress in N/mm <sup>2</sup> in cold condition according to Table C4 considering                                                   |  |  |  |  |  |
|                                                          |              | e classes, the rebar diameter, the drilling method and the bond conditions according -1-1:2004+AC:2010.                                         |  |  |  |  |  |
| γ <sub>c</sub>                                           | = 1,5, recor | nmended partial factor according to EN 1992-1-1:2004+AC:2010                                                                                    |  |  |  |  |  |
| γ <sub>M,fi</sub>                                        | = 1,0, recor | nmended partial factor according to EN 1992-1-2:2004+AC:2008                                                                                    |  |  |  |  |  |
|                                                          |              | perature the anchorage length shall be calculated according to quation 8.3 using the temperature-dependent design value of ultimate bond stress |  |  |  |  |  |
| f <sub>bd,fi</sub> , f <sub>bd,fi,100y</sub> .           |              |                                                                                                                                                 |  |  |  |  |  |

# Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:





| Table C8:                               | Charac    | teristic te          | nsion res | sistance for te | ension ancho | r ZA under fi | re exposure |
|-----------------------------------------|-----------|----------------------|-----------|-----------------|--------------|---------------|-------------|
| Tension Anchor                          |           |                      |           | M12             | M16          | M20           | M24         |
| Steel, zinc plated                      | (ZA vz)   |                      |           |                 |              |               |             |
| Characteristic<br>tension<br>resistance | R30       |                      | [KN]      | 2,3             | 4,0          | 6,3           | 9,0         |
|                                         | R60       |                      |           | 1,7             | 3,0          | 4,7           | 6,8         |
|                                         | R90       | N <sub>Rk,s,fi</sub> |           | 1,5             | 2,6          | 4,1           | 5,9         |
|                                         | R120      |                      |           | 1,1             | 2,0          | 3,1           | 4,5         |
| Stainless Steel (Z                      | A A4 or Z | A HCR)               |           |                 |              |               |             |
|                                         | R30       |                      | [kN]      | 3,4             | 6,0          | 9,4           | 13,6        |
| Characteristic<br>tension<br>resistance | R60       |                      |           | 2,8             | 5,0          | 7,9           | 11,3        |
|                                         | R90       | N <sub>Rk,s,fi</sub> |           | 2,3             | 4,0          | 6,3           | 9,0         |
|                                         | R120      |                      |           | 1,8             | 3,2          | 5,0           | 7,2         |

#### SCELL-IT X-BRID for rebar connection

#### Performances

Characteristic tension resistance for tension anchor ZA under fire exposure

Annex C 4