

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/1160 of 29 April 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

HUS4 Bonded screw

Bonded screw fastener for use in concrete

HILTI Corporation Feldkircherstraße 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke Hilti Plants

21 pages including 3 annexes which form an integral part of this assessment

EAD 332795-00-0601 Edition 12/2021

ETA-18/1160 issued on 5 January 2022

European Technical Assessment ETA-18/1160

Page 2 of 21 | 29 April 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z30148.22 8.06.01-18/22

European Technical Assessment ETA-18/1160

Page 3 of 21 | 29 April 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HUS4 Bonded screw consists of a foil capsule HUS4-MAX and a steel element HUS4 according to Annex A1. The anchor made of galvanized steel is screwed into a predrilled cylindrical drill hole, filled with a mortar capsule HUS4-MAX. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1	
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2	
Characteristic resistance for simplified design	No performance assessed	
Displacements (static and quasi-static loading)	See Annex C6	
Characteristic resistance and displacements for seismic performance category C1	See Annex C3	
Characteristic resistance and displacements for seismic performance category C2	See Annex C4, C6	

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C5

3.3 Aspects of durability linked with the basic works requirements

See Annex B1.

Z30148.22 8.06.01-18/22

European Technical Assessment ETA-18/1160

Page 4 of 21 | 29 April 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332795-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

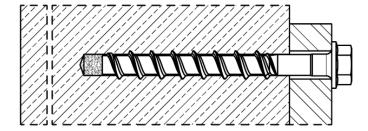
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 29 April 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

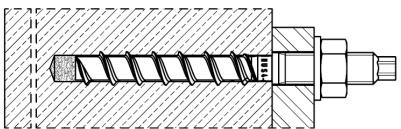
Head of Section


beglaubigt:

Lange

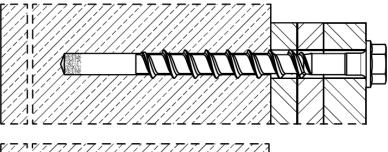
Z30148.22 8.06.01-18/22

Installed condition without adjustment

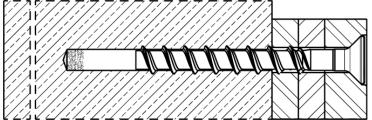


HUS4-H (hexagon head configuration sizes 10, 12 and 14)

HUS4-HF (hexagon head configuration sizes 10 and 14)


HUS4-C (countersunk head configuration size 10)

HUS4-A (threaded rod connection sizes 10 with M12 and 14 with M16)


HUS4-AF (threaded rod connection sizes 10 with M12 and 14 with M16)

Installed condition with adjustment

HUS4-H (hexagon head configuration sizes 10, 12, and 14)

HUS4-HF (hexagon head configuration sizes 10 and 14)

HUS4-C (countersunk head configuration size 10)

HUS4 Bonded screw

Product description Installed condition

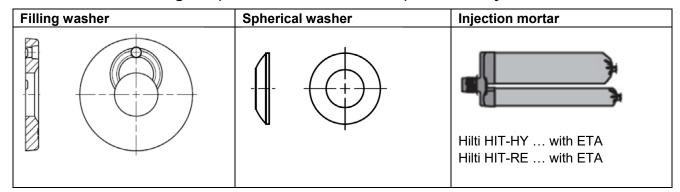
Annex A1

Product description: Foil capsule and steel elements

Foil capsule HUS4-MAX size10 to 14: resin and hardener

Table A1: Screw types

Hilti HUS4-H, sizes 10, 12 and 14, hexagonal head configuration, galvanized **Hilti HUS4-HF**, sizes 10 and 14, hexagonal head configuration, multilayer coating


Hilti HUS4-C, size 10, countersunk head configuration, galvanized

Hilti HUS4-A, size 10 with external thread M12 and size 14 with external thread M16, galvanized **Hilti HUS4-AF**, size 10 with external thread M12 and size 14 with external thread M16, multilayer coating

Table A2: Hilti filling set (for HUS4-H and HUS4-A) and Hilti injection mortar

HUS4 Bonded screw

Product description

Foil capsule / Steel elements

Annex A2

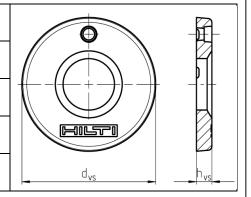
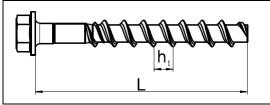


Table A3: Materials

Part	Material
HUS4 screw anchor (all types see Table A1)	Carbon steel Rupture elongation A₅ ≤ 8%


Table A4: Filling set dimensions

Filling set size			M12	M16
Diameter	d _{vs}	[mm]	44	52
Thickness	h _{vs}	[mm]	5	6
HUS4-H	Þ		10	12 + 14
HUS4-A			10	14

Table A5: Fastener dimensions and marking HUS4-H(F)

Fastener size HUS4-			H(F) 10	H 12	H(F) 14
Nominal fastener diameter	d	[mm]	10	12	14
Nominal embedment depth	h _{nom}	[mm]	85	100	115
Effective embedment depth	h _{ef}	[mm]	85	100	115
Length of screw (min / max)	L	[mm]	90 / 305	130 / 150	130 / 150

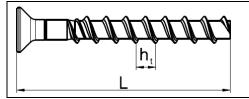
HUS4: Hilti Universal Screw 4th generation

H: Hexagonal head, galvanized

HF: Hexagonal head, multilayer coating

Annex A3

10: Nominal screw diameter d [mm]

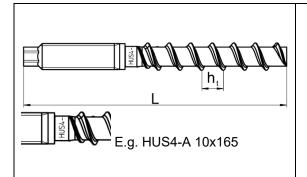

100: Length of screw L [mm]

HUS4 Bonded screw	
Product description	
Materials and fastener dimensions	

Table A6: Fastener dimensions and marking HUS4-C

Fastener size HUS4-			C 10
Nominal fastener diameter	d	[mm]	10
Nominal embedment depth	h _{nom}	[mm]	85
Effective embedment depth	h _{ef}	[mm]	85
Length of screw (min / max)	L	[mm]	100 / 120

HUS4: Hilti Universal Screw 4th generation


C: Countersunk head, galvanized

10: Nominal screw diameter d [mm]

100: Length of screw L [mm]

Table A7: Fastener dimensions and marking HUS4-A (AF)

Fastener size HUS4-A			A(F) 10	A(F) 14
Nominal fastener diameter	d	[mm]	10	14
Metric thread conection			M12	M16
Nominal embedment depth	h_{nom}	[mm]	85	115
Effective embedment depth	h _{ef}	[mm]	85	115
Length of screw (min / max)	L	[mm]	140 / 165	185 / 205

HUS4: Hilti Universal Screw 4th generation

A: Thread connection, galvanized

AF: Thread connection, multilayer coating

10: Nominal screw diameter d [mm]

165: Length of screw L [mm]

8: Carbon steel

K: Length identification HUS4-A 10x165

I	K	L	N
10x140	10x165	14x185	14x205

HUS4 Bonded screw	
Product description Fastener dimensions	Annex A4

Specifications of intended use

Anchorages subject to:

- · Static and quasi static loading
- Seismic performance category C1 and C2
- Fire exposure

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 +A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2010+A1:2016.
- Cracked or uncracked concrete.

Temperature in the base material:

- · at installation
 - -10 °C to +40 °C
- in-service

Temperature range I: -40 °C to +120 °C (max. long term temperature +72 °C and max. short term temperature +120 °C)

Use conditions (Environmental conditions):

Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 075, Edition 10/2020.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- · Concrete condition I1: installation in dry or wet (water saturated) concrete and use in service in dry concrete.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener (HUS4-H and HUS4-C) must be supported on the fixture and is not damaged.
- Hilti filling set is suitable for HUS4-H and HUS4-A.

HUS4 Bonded screw	
Intended Use Specifications	Annex B1

Z30526.22 8.06.01-18/22

Electronic copy of the ETA by DIBt: ETA-18/1160

Specifications of intended use: Drilling and cleaning

Table B1: Static and quasi static loading

HUS4			Fastener size
Uncracked or cracked concrete			
Hammer drilling (HD) ¹⁾	cleaned not cleanded		sizes 10 to 14
Hammer drilling with Hilt TE-CD or TE-YD (HDB)			sizes 12 and 14

¹⁾ Adjustment is possible for sizes 10 to 14

Table B2: Seismic performance category C1

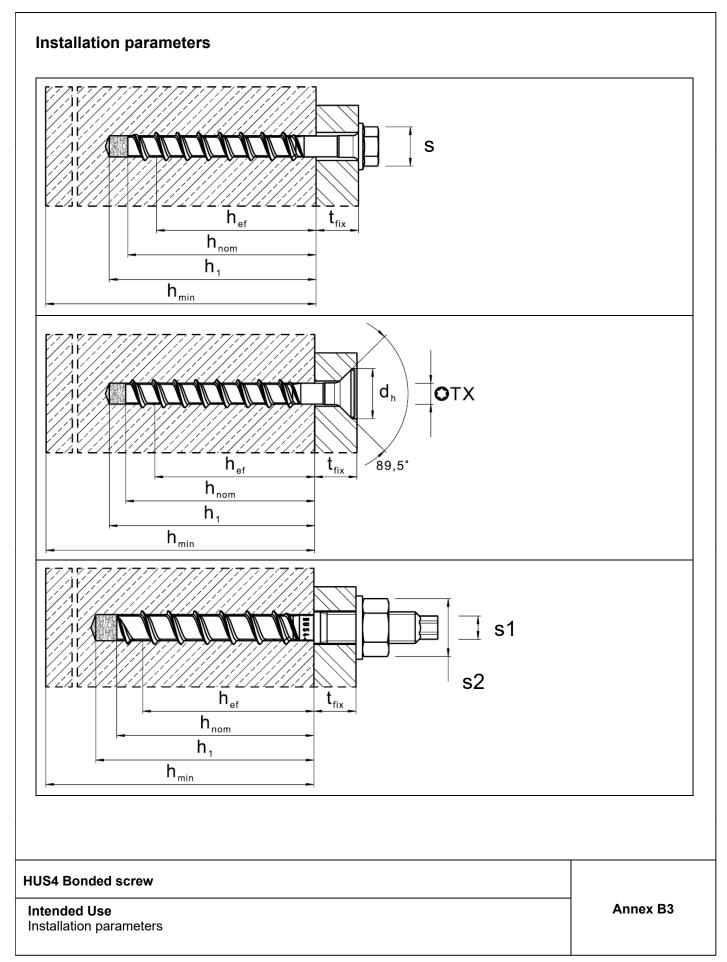
HUS4		Fastener size	
Hommor drilling (HD)1)	cleaned	~~~~	oizoo 10 to 14
Hammer drilling (HD) ¹⁾	not cleanded		sizes 10 to 14
Hammer drilling with Hilt TE-CD or TE-YD (HDB)	i hollow drill bit		sizes 12 and 14

¹⁾ Adjustment is possible for sizes 10 to 14

Table B3: Seismic performance category C2

HUS4		Fastener size
11 (11D)1)	cleaned	oizos 10 to 14
Hammer drilling (HD) ¹⁾	not cleanded	sizes 10 to 14

¹⁾ Adjustment is possible for sizes 10 to 14


Table B4: Static and quasi static loading under fire exposure

HUS4		Fastener size	
Hammer drilling (HD\1)	cleaned	~~~~	sizes 10 to 14
Hammer drilling (HD) ¹⁾	not cleanded		SIZES 10 to 14
Hammer drilling with Hilt TE-CD or TE-YD (HDB)	i hollow drill bit		sizes 12 and 14

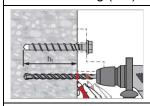
¹⁾ Adjustment is possible for sizes 10 to 14

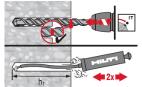
HUS4 Bonded screw Intended Use Specifications Annex B2

Table B5: Installation parameters HUS4 Bonded screw

Fastener size HUS4			10	12	14
Туре			Н, С, А	Н	Н, А
Nominal embedmenth depth	h _{nom}	[mm]	85	100	115
Nominal drill hole diameter	d_0	[mm]	10	12	14
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10,45	12,50	14,50
	min	[100,100]	13	15	17
Clearance hole diameter through setting	d _f — max	– [mm]	14	16	18
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]	14	-	18
Wrench size (H, HF-type)	s	[mm]	15	17	21
Wrench size for hex head (A-type)	s1	[mm]	8	-	12
Wrench size (A-type)	s2	[mm]	19	-	24
Maximum torque (A-type)	max T _{inst}	[Nm]	40	-	80
Torx size (C-type)	TX	-	50	-	-
Diameter of countersunk head	dh	[mm]	21	-	-
Depth of drill hole for cleaned hole or	h ₁ =	[100.100]	(h _{nom} + 10 mm)		
for uncleaned hole when drilling upwards		[mm]	95	110	125
Depth of drill hole for			(h _{nom} + 10 mm) + 2 * d ₀		
uncleanded hole hammer drilling in wall and floor position	h ₁ =	[mm]	115	134	153
Depth of drill hole (with adjustability)			(h _{nom} + 20 mm)		
cleaned hole or for uncleaned hole when drilling upwards	h ₁ =	[mm]	105	120	135
Depth of drill hole (with adjustability) for			(h _{nom} -	+ 20 mm) + 2 * d	lo
uncleaned hole hammer drilling in wall and floor position	h ₁ =	[mm]	125	144	163
	1 - 2		(h ₁ + 30 mm)		
Minimum thickness of concrete member	h _{min} ≥	[mm]	140	160	200
Minimum spacing	S _{min} ≥	[mm]	40	50	60
Minimum edge distance	C _{min} ≥	[mm]	40	50	60
Hilti setting tool 1)		SIW 22T-A SIW 6 AT-A22 SIW 6.2 AT-A22 SIW 8.1 AT gear 1 SIW 9-A22	SIW 2 SIW 6.2 SIW 8 SIW 9	AT-A22 3.1 AT	

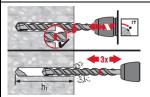
¹⁾ Installation with other impact screw driver of equivalent power is possible.


HUS4 Bonded screw	
Intended Use Installation parameters	Annex B4


Installation

Hole drilling and cleaning

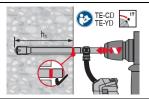
Hammer drilling (HD) all sizes



Mark drilling depth h₁ for drilling with or without fixture in place. Details for drilling depth h₁ see table B5.

Cleaning needed in downward and horizontal installation direction with drill hole depth

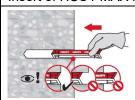
 $h_1 = h_{nom} + 10 \text{ mm}$


No cleaning is allowed in upward installation direction.

No cleaning is allowed in downward and horizontal installation direction when 3x ventilation¹⁾ after drilling is executed.

Drill hole depth $h_1 = h_{nom} + 10 \text{ mm} + 2 * d_0$

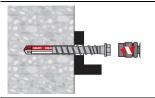
 $^{1)}$ moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h_1 is achieved. This procedure shall be done with both revolution and hammer functions activated in the drilling machine. For more details read the relevant installation instruction (MPII).


Hammer drilling with Hilti hollow drill bit (HDB) TE-CD or TE-YD size 12 and 14.

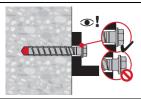
No cleaning needed

 $h_1 = h_{nom} + 10 \text{ mm}$

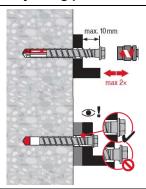
Insert of HUS4-MAX foil capsule



Intended Use Annex B5 Installation instructions


Fastener setting without adsustment

Setting by impact screw driver

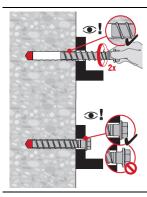

Setting parameters listed in Table B5

Setting check

Fastener setting with adjustment

Adjusting process 1

A screw can get adjusted maximum two times. The total allowed maximum thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .


Adjusting process 2

After minimum curing time of 24 h the HUS4 screw can screw out and in for 1 time.

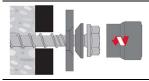
HUS4 Bonded screw

Intended Use Installation instructions Annex B6

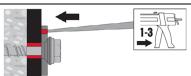
Find the thread in the drilled hole

The screw should be screw in 2 revolutions by hand and finish with the setting tool.

Overhead installation



For upward installation direction use the overhead dripping cup HIT-OHC.



Fastener setting with Hilti filling set

Injection of Hilti HIT mortar and curing time

Fill the annular gap between screw and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY \dots or HIT-RE \dots

Follow the installation instructions supplied with the respective Hilti injection mortar.

After required curing time t_{cure} the fastening can be loaded.

HUS4 Bonded screw

Intended Use

Installation instructions

Annex B7

Z30526.22

Electronic copy of the ETA by DIBt: ETA-18/1160

Table C1: Essential characteristics for HUS4 Bonded screw under tension load in case of static and quasi static loading

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)	
Nominal embedment depth	h_{nom}	[mm]	85	100	115	
Installation factor	γinst	[-]		1,0		
Adjustment						
Total max. thickness of adjustment layers	t _{adj}	[mm]		10		
Max. number of adjustments	na	[-]		2		
Steel failure						
Characteristic resistance	$N_{Rk,s}$	[kN]	55,0	79,0	101,5	
Partial factor	γ _{Ms,N} 1)	[-]		1,5		
Combined pull-out and concrete failure						
Uncracked concrete						
Temperature range I:	$N_{Rk,p,ucr}$	[kN]	38,0	55,0	70,0	
Increasing factor for $N_{Rk,p,ucr} = N_{Rk,p,ucr(C20/25)} * \psi_c$	Ψο	[-]		(f _{ck} /20) ^{0,30}		
Cracked concrete						
Temperature range I:	N _{Rk,p,cr}	[kN]	24,0	36,0	42,0	
Increasing factor for $N_{Rk,p,cr} = N_{Rk,p,cr(C20/25)} * \psi_c$	Ψο	[-]		$(f_{ck}/20)^{0.50}$		
Sustained load factor	ψ^0 sus	[-]		0,94		
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	85	100	115	
Factor for uncracked concrete	k _{ucr,N}	[-]		11,0		
Factor for cracked concrete	k _{cr,N}	[-]		7,7		
Increasing factor for N _{Rk,c} = N _{Rk,c} (C20/25) * ψ _c	Ψc	[-]		(f _{ck} /20) ^{0,50}		
Edge distance	C _{cr,N}	[mm]		1,5 h _{ef}		
Spacing	S _{cr,N}	[mm]		3 h _{ef}		
Splitting failure						
Characteristic resistance	N^0 Rk,sp	[kN]		= N _{Rk,p}		
Edge distance	C _{cr,sp}	[mm]	1,6 h _{ef}	1,7 h _{ef}	1,85 h _{ef}	
Spacing	S _{cr,sp}	[mm]	3,2 h _{ef}	3,4 h _{ef}	3,7 h _{ef}	

¹⁾ In absence of other national regulations.

HUS4 Bonded screw	
Performances Essential characteristics under tension loads in case of static and quasi-static loading	Annex C1

Table C2: Essential characteristics for HUS4 Bonded screw under shear load in case of static and quasi static loading

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)
Nominal embedment depth	h _{nom}	[mm]	85	100	115
Steel failure for shear load					
Characteristic resistance	V^0 Rk,s	[kN]	32,0	44,9	62
Partial factor	$\gamma_{Ms,N}^{1)}$	[-]		1,25	
Ductility factor	k ₇	[-]		0,8	
Characteristic resistance	M^0 Rk,s	[Nm]	64	125	186
Concrete pry-out failure					•
Pry-out factor	k ₈	[-]		2,0	
Concrete edge failure					
Effective length of fastener	lf	[mm]	85	100	115
Diameter of fastener	d	[mm]	10	12	14

¹⁾ In absence of other national regulations.

HUS4 Bonded screw	
Performances Essential characteristics under shear load in case of static and quasi static loading	Annex C2

Table C3: Essential characteristics for HUS4 Bonded screw seismic performance category C1 in concrete

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)
Nominal embedment depth	h _{nom}	[mm]	85	100	115
Adjustment					
Total max. thickness of adjustment layers	t _{adj}	[mm]		10	
Max. number of adjustments	na	[-]		2	
Steel failure for tension and shear load					
Characteristic resistance	$N_{\text{Rk,s,C1}}$	[kN]	55,0	79,0	101,5
Partial factor	γ _{Ms,N} 1)	[-]		1,5	
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	26,7	38,9	34,5
Partial factor	γ _{Ms,V} 1)	[-]		1,25	
Reduction factor acc. to EN 1992-4:2018 annular gap unfilled	$lpha_{\sf gap}$	[-]		0,5	
Reduction factor acc. to EN 1992-4:2018 annular gap filled	$lpha_{\sf gap}$	[-]	1,0		
Combined pullout and concrete cone fail	ure Cracke	ed conc	rete C20/25		
Temperature range I	$N_{Rk,p,C1}$	[kN]	24,0	36,0	42,0
Concrete cone failure					
Effective embedment depth	h _{ef}	[mm]	85	100	115
Edge distance	C _{cr} ,N	[mm]		1,5 h _{ef}	
Spacing	S _{cr,N}	[mm]		3 h _{ef}	
Installation factor	γinst	[-]		1,0	
Concrete pry-out failure					
Pry-out factor	k ₈	[-]		2,0	
Concrete edge failure					
Effective length of fastener	I _f = h _{ef}	[mm]	85	100	115
Outside diameter of fastener	d _{nom}	[mm]	10	12	14

¹⁾ In absence of other national regulations.

HUS4 Bonded screw	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C3

Table C4: Essential characteristics for HUS4 Bonded screw seismic performance category C2 in concrete

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)
Nominal embedment depth	h _{nom}	[mm]	85	100	115
Adjustment					
Total max. thickness of adjustment layers	t _{adj}	[mm]		10	
Max. number of adjustments	na	[-]		2	
Steel failure for tension					
Characteristic resistance	$N_{\text{Rk,s,C2}}$	[kN]	55,0	79,0	101,5
Partial factor	γ _{Ms,N} 1)	[-]		1,5	
Steel failure shear load					
Partial factor	γ _{Ms,V} 1)	[-]		1,25	
Installation with Hilti filling set (HUS4-H and	HUS4-A)	u u			
Characteristic resistance	V _{Rk,s,C2}	[kN]	21,5	27,2	46,5
Reduction factor acc. to EN 1992-4:2018 annular gap filled	$lpha_{\sf gap}$	[-]		1,0	
Installation without Hilti filling set					
Characteristic resistance	V _{Rk,s,C2}	[kN]	13,7	22,5	34,4
Reduction factor acc. to EN 1992-4:2018 annular gap unfilled	Одар	[-]		0,5	
Combined pullout and concrete cone fail	ure Cracke	ed conc	rete C20/25		
Temperature range I	N _{Rk,p,C2}	[kN]	10,7	17,2	18,2
Concrete cone failure					
Effective embedment depth	h _{ef}	[mm]	85	100	115
Edge distance	C _{cr} ,N	[mm]		1,5 h _{ef}	
Spacing	S _{cr,N}	[mm]		3 h _{ef}	
Installation factor	γinst	[-]		1,0	
Concrete pry-out failure					
Pry-out factor	k ₈	[-]		2,0	
Concrete edge failure					
Effective length of fastener	$I_f = h_{ef}$	[mm]	85	100	115
Outside diameter of fastener	d _{nom}	[mm]	10	12	14

¹⁾ In absence of other national regulations.

HUS4 Bonded screw	
Performances Essential characteristics for seismic performance category C2 in concrete	Annex C4

Table C5: Essential characteristics under fire exposure in concrete for HUS4-Bonded screw

HUS4-MAX with HUS4 screw			10			12	14		
				H(F)	C 10	A(F)	Н	H(F)	A(F)
Nominal embed	dment depth	h _{nom}	[mm]	85	85	85	100	115	115
Steel failure fo	or tension and	d shear loa	ad (F _{Rk,s,}	,fi = N _{Rk,s,fi}	= V _{Rk,s,fi})				
	R30	F _{Rk,s,fi}	[kN]	4,2	1,0	4,2	7,7	10,5	8,4
	R60	$F_{Rk,s,fi}$	[kN]	3,2	0,9	3,3	5,9	8,1	6,8
	R90	$F_{Rk,s,fi}$	[kN]	2,4	0,7	2,5	4,1	5,8	5,1
Characteristic	R120	F _{Rk,s,fi}	[kN]	1,7	0,6	2,1	3,1	4,4	4,3
resistance	R30	M^0 Rk,s,fi	[Nm]	4,9	1,2	4,8	11,6	19,3	15,4
	R60	$M^0_{Rk,s,fi}$	[Nm]	3,7	1,0	3,8	8,9	14,8	12,4
	R90	M^0 Rk,s,fi	[Nm]	2,7	0,8	2,9	6,2	10,7	9,3
	R120	M^0 Rk,s,fi	[Nm]	1,9	0,6	2,4	4,7	8,1	7,8
Pull-out failure	9								
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	4,7		6,1	7,5		
	R120	$N_{\text{Rk},p,fi}$	[kN]	3,7			4,9	6,0	
Edge distance	•								
R30 to R120	R30 to R120								
In case of fire a	attack from mo	re than on	e side, th	ne minimui	m edge dis	tance shall	be ≥ 300 ı	mm	
Fastener space	ing								
R30 to R120 s _{cr,fi} [mm] 2 c _{cr,fi}									
Concrete pry-	out failure								
R30 to R120		k ₈	[-]	-] 2,0					
The anchorage	depth shall be	e increased	for wet	concrete b	y at least 3	30 mm.			

HUS4 Bonded screw	
Performances Essential characteristics under fire exposure in concrete	Annex C5
Essential characteristics under fire exposure in concrete	

Table C6: Displacements under tension load for HUS4 Bonded screw in case of static and quasi static loading

HUS4 MAX with HUS4 screw			10 (H; A; C)		12 (H)		14 (H; A)	
			Uncracked concrete	Cracked concrete	Uncracked concrete	Cracked concrete	Uncracked concrete	Cracked concrete
Temperature range I								
	N	[kN]	17,1	10,5	23,8	16,2	31,0	18,1
Displacement	δηο	[mm]	0,3	0,3	0,4	0,5	0,5	0,6
	δ _{N∞}	[mm]	0,6	0,6	0,6	0,6	0,8	0,8

Table C7: Displacements under shear load for HUS4 Bonded screw in case of static and quasi static loading

HUS4 MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)	
Temperature range I]					
	V	[kN]	18,3	25,7	35,4	
Displacement	δνο	[mm]	1,0	0,9	4,0	
	δν∞	[mm]	1,5	1,4	6,0	

Table C8: Displacements under tension and shear load for HUS4 Bonded screw for seismic category C2

HUS4 MAX with HUS4 screw		10 (H; A)	12 (H)	14 (H; A)			
Temperature range I							
Tension load							
Displacement DLS δ _{N,C2 (DL}	s) [mm]	0,75	0,70	0,77			
Displacement ULS δ _{N,C2 (UL}	s) [mm]	2,07	3,43	4,24			
Shear load with Hilti filling set (HUS4-H and HUS4-A)							
Displacement DLS $\delta_{V,C2(DL}$	s) [mm]	1,72	1,73	2,52			
Displacement ULS δ _{V,C2 (UL}	s) [mm]	6,88	5,62	6,79			
Shear load without Hilti filling set (HUS4-H and HUS4-A)							
Displacement DLS δ _{V,C2 (DL}	s) [mm]	5,02	4,90	4,93			
Displacement ULS $\delta_{V,C2}$ (UL	s) [mm]	8,97	7,00	9,14			

HUS4 Bonded screw	
Performances Displacements	Annex C6