

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/1160 of 5 January 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	HUS4 Bonded screw
Product family to which the construction product belongs	Bonded screw fastener for use in concrete
Manufacturer	HILTI Corporation Feldkircherstraße 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Plants
This European Technical Assessment contains	20 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 332795-00-0601 Edition 12/2021

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-18/1160 English translation prepared by DIBt

Page 2 of 20 | 5 January 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 5 January 2022

European Technical Assessment ETA-18/1160 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HUS4 Bonded screw consists of a foil capsule HUS4-MAX and a steel element HUS4 according to Annex A1. The anchor made of galvanized steel is screwed into a predrilled cylindrical drill hole, filled with a mortar capsule HUS4-MAX. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2
Characteristic resistance for simplified design	No performance assessed
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance and displacements for seismic performance category C1	See Annex C3
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.3 Aspects of durability linked with the basic works requirements

See Annex B1.

European Technical Assessment ETA-18/1160

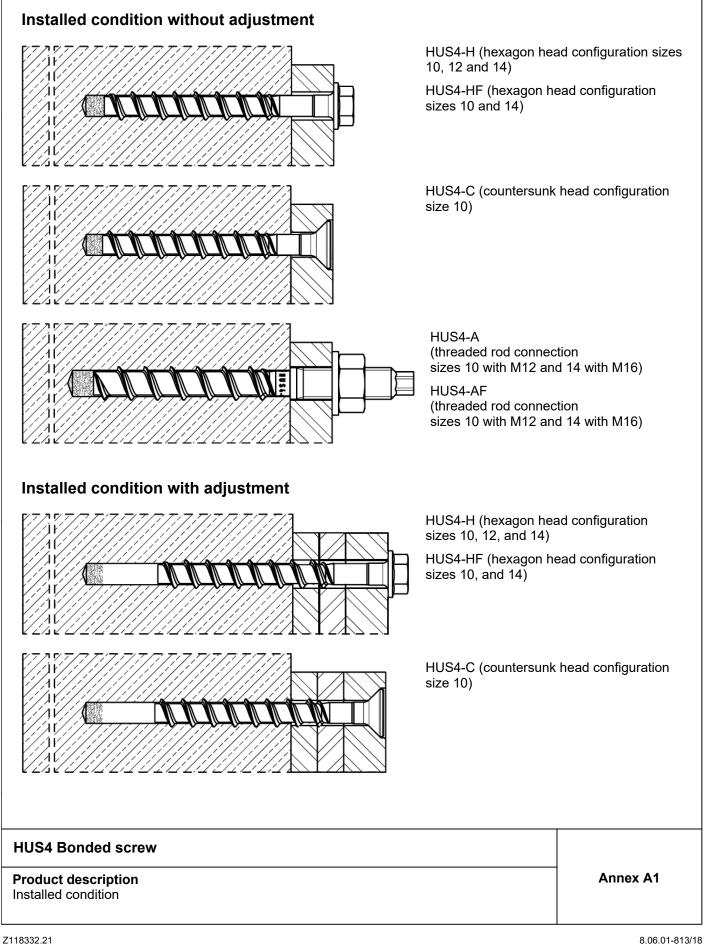
Page 4 of 20 | 5 January 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332795-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 5 January 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Lange

Product description: Foil capsule and steel elements Foil capsule HUS4-MAX size10 to 14: resin and hardener	
Marking: HUS4-MAX size Expiry date mm/yyyy	
Table A1: Screw types Hilti HUS4-H, sizes 10, 12 and 14, hexagonal head configuration, galvanized	
Hilti HUS4-HF, sizes 10 and 14, hexagonal head configuration, multilayer coating	
Hilti HUS4-C, size 10, countersunk head configuration, galvanized	
Cumuland	
Hilti HUS4-A, size 10 with external thread M12 and size 14 with external thread M16, gale Hilti HUS4-AF, size 10 with external thread M12 and size 14 with external thread M16, m	
HUS4 Bonded screw	
Product description Foil capsule / Steel elements	Annex A2

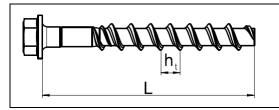
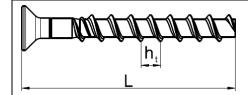


Table A2: Materials

Part	Material
HUS4 screw anchor (all types see Table A1)	Carbon steel Rupture elongation A₅ ≤ 8%

Table A3: Fastener dimensions and marking HUS4-H(F)

Fastener size HUS4-			H(F) 10	H 12	H(F) 14
Nominal fastener diameter	d	[mm]	10	12	14
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	85	100	115
Effective embedment depth	h _{ef}	[mm]	85	100	115
Length of screw (min / max)	L	[mm]	90 / 305	130 / 150	130 / 150



HUS4: Hilti Universal Screw 4th generation
Hexagonal head, galvanized
HF: Hexagonal head, multilayer coating
10: Nominal screw diameter d [mm]
100: Length of screw [mm]

Table A4: Fastener dimensions and marking HUS4-C

Fastener size HUS4-			C 10
Nominal fastener diameter	d	[mm]	10
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	85
Effective embedment depth	h _{ef}	[mm]	85
Length of screw (min / max)	L	[mm]	100 / 120

- HUS4: Hilti Universal Screw 4th generation
 Countersunk head, galvanized
 Nominal screw diameter d [mm
- 10: Nominal screw diameter d [mr100: Length of screw [mm]

HUS4 Bonded screw

Product description Materials and fastener dimensions

Annex A3

Table A5: Fastener dimensions and marking HUS4-A (AF)

Fastener size HUS4-A			A(F) 10	A(F) 14
Nominal fastener diameter	d	[mm]	10	14
Metric thread conection			M12	M16
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	85	115
Effective embedment depth	h _{ef}	[mm]	85	115
Length of screw (min / max)	L	[mm]	140 / 165	185 / 205

<u>h</u> <u>L</u> E.g. HUS4-A 10x165	ВК	A: T AF: T coating 10: M 165: L 8: (Hilti Universa Thread connec Thread connec Nominal screw Length of scre Carbon steel Length identific	ction, galvan ction, multila v diameter d w	ized yer
		I	К	L	Ν
		10x140) 10x165	14x185	14x205

HUS4 Bonded screw

Product description Fastener dimensions Annex A4

Specifications of intended use

Fastenings subject to:

- Static and quasi static loading
- Seismic performance category C1
- Fire exposure

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 +A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2010+A1:2016.
- · Cracked or uncracked concrete.

Temperature in the base material:

- at installation
 - -10 °C to +40 °C
- in-service

Temperature range I: -40 °C to +120 °C (max. long term temperature +72 °C and max. short term temperature +120 °C)

Use conditions (Environmental conditions):

· Fastenings subject to dry internal conditions.

Design:

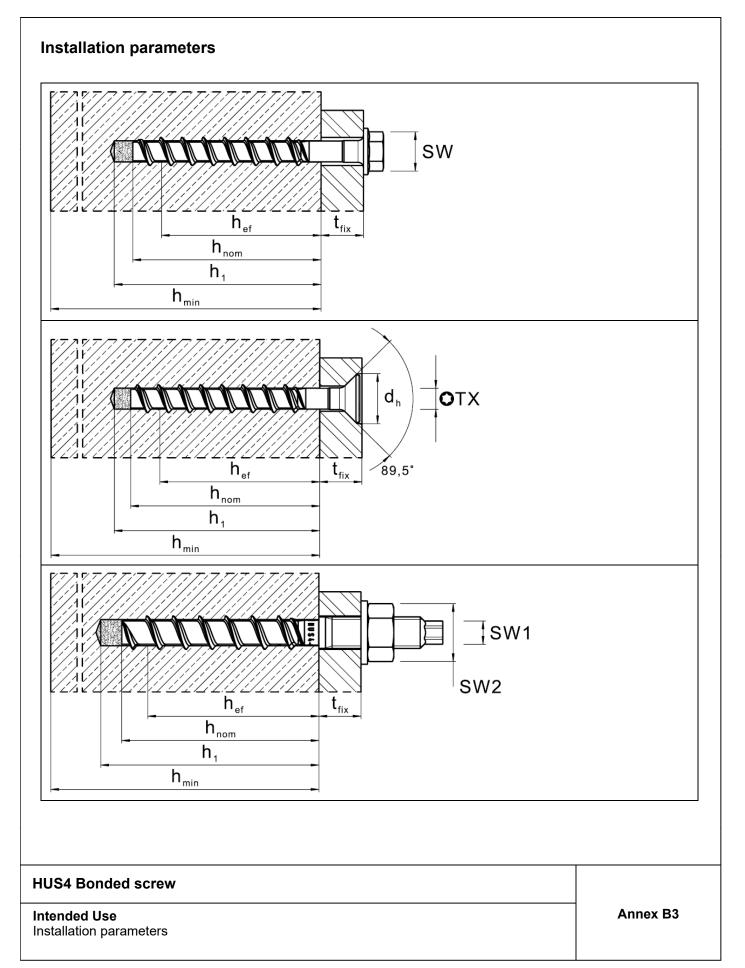
- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to
 reinforcement or to supports, etc.).
- The fastenings are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 075:2021.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- Concrete Condition I1: dry or wet concrete (not in flooded holes)
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener (HUS4-H and HUS4-C) must be supported on the fixture and is not damaged.

HUS4 Bonded screw

Intended Use Specifications

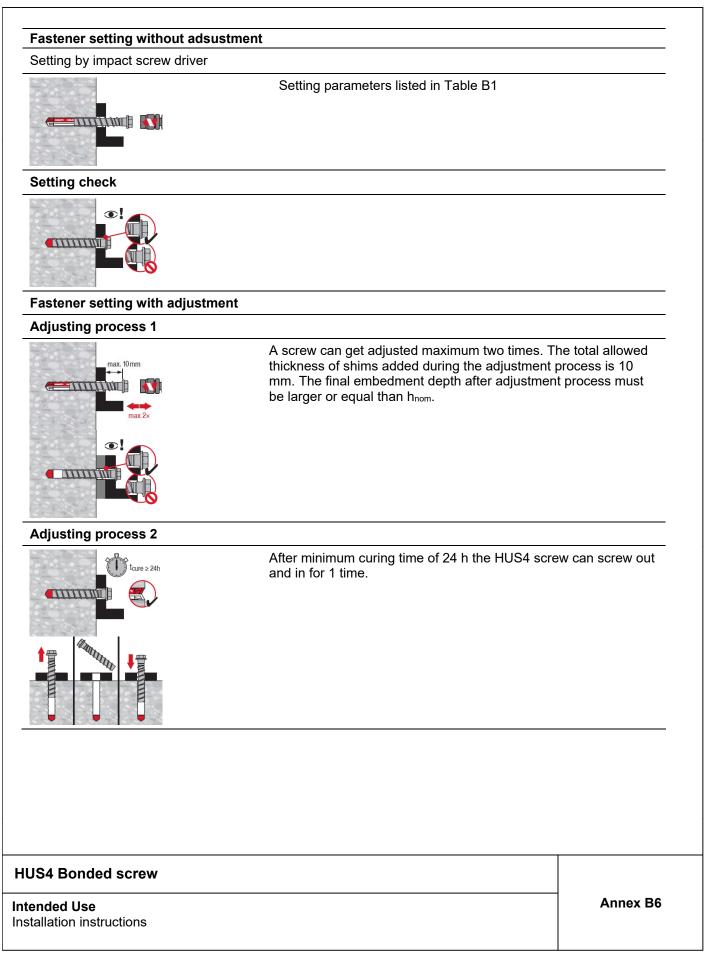

Annex B1

HUS4		Fastener size
Uncracked or cracked	d concrete	
Hammer drilling (HD) ¹⁾	cleaned	sizes 10 to 14
	not cleanded	SIZES 10 10 14
Hammer drilling with H TE-CD or TE-YD (HDE		sizes 12 and 14
Adjustment is possible	e for sizes 10 to 14	
able B2: Seismic	c performance category C1	
HUS4		Fastener size
Hommor drilling (HD) ¹)	cleaned	sizes 10 to 14
Hammer drilling (HD) ¹⁾	not cleanded	SIZES TO TO TA
Hammer drilling with H TE-CD or TE-YD (HDE		sizes 12 and 14
⁾ Adjustment is possible	e for sizes 10 to 14	
Table B3: Static a	nd quasi static loading under fir	e exposure
US4		Fastener size
	cleaned	
Hammer drilling (HD) ¹⁾ not cleanded sizes 10 to		sizes 10 to 14
ammer drilling (HD) ¹⁾		
ammer drilling with Hilti	i hollow drill bit 🛛 🚛 🕞	sizes 12 and 14
lammer drilling (HD) ¹⁾ lammer drilling with Hilti E-CD or TE-YD (HDB) ⁷	i hollow drill bit	sizes 12 and 14
lammer drilling with Hilti E-CD or TE-YD (HDB)	i hollow drill bit	sizes 12 and 14
ammer drilling with Hilti E-CD or TE-YD (HDB)	i hollow drill bit	sizes 12 and 14
ammer drilling with Hilti E-CD or TE-YD (HDB)	i hollow drill bit	sizes 12 and 14
lammer drilling with Hilti E-CD or TE-YD (HDB)	i hollow drill bit	sizes 12 and 14

Page 11 of European Technical Assessment ETA-18/1160 of 5 January 2022

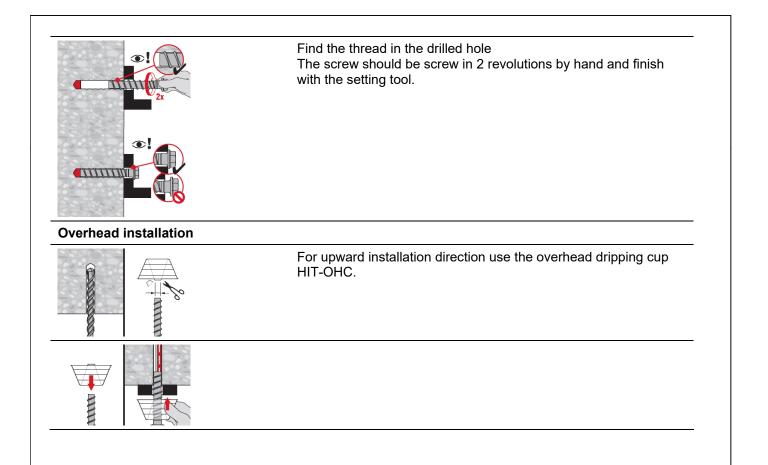
Table B1: Installation parameters HUS4 Bonded screw **Fastener size HUS4** 10 12 14 H, C, A н Η, Α Type 85 100 115 Nominal embedmenth depth h_{nom} [mm] Nominal drill hole diameter 10 12 14 d_0 [mm] Cutting diameter of drill bit d_{cut}≤ 12,50 14,50 [mm] 10,45 14 16 18 Clearance hole diameter through setting d_f ≤ [mm] Clearance hole diameter pre setting (Ad_f ≤ [mm] 14 18 _ type) Wrench size (H, HF-type) 15 21 [mm] 17 s Wrench size for hex head (A-type) 12 s1 [mm] 8 -Wrench size (A-type) s2 [mm] 19 24 -Maximum torque (A-type) [Nm] 20 80 max Tinst -Torx size (C-type) TΧ 50 _ Diameter of countersunk head 21 dh [mm] -(h_{nom} + 10 mm) Depth of drill hole for cleaned hole or [mm] h1 = for uncleaned hole when drilling upwards 95 110 125 Depth of drill hole for $(h_{nom} + 10 \text{ mm}) + 2 * d_0$ uncleanded hole hammer drilling in wall $h_1 =$ [mm] 115 134 153 and floor position Depth of drill hole (with adjustability) $(h_{nom} + 20 mm)$ cleaned hole or h1 = [mm] 105 120 135 for uncleaned hole when drilling upwards Depth of drill hole (with adjustability) for $(h_{nom} + 20 \text{ mm}) + 2 * d_0$ uncleaned hole hammer drilling in wall h₁ = [mm] 125 144 163 and floor position $(h_1 + 30 \text{ mm})$ Minimum thickness of concrete member [mm] h_{min} ≥ 140 160 200 Minimum spacing 40 50 60 [mm] S_{min} ≥ Minimum edge distance 40 50 60 C_{min} ≥ [mm] SIW 22T-A SIW 22T-A SIW 6 AT-A22 SIW 6.2 AT-A22 Setting tool 1) SIW 6.2 AT-A22 SIW 8.1 AT SIW 8.1 AT gear 1 SIW 9-A22 SIW 9-A22 ¹⁾ Installation with other impact screw driver of equivalent power is possible.

HUS4 Bonded screw


Intended Use Installation parameters Annex B4

Hole drilling and cleaning		
Hammer drilling (HD) all siz	es	
	Mark drilling depth h₁ for drilling with or without fixture in pla Details for drilling depth h₁ see table B4.	ce.
	Cleaning needed in downward and horizontal installation dir hole depth $h_1 = h_{nom} + 10 \text{ mm}$	ection with drill
	No cleaning is required in upward installation direction. No cleaning is allowed in downward and horizontal installati when 3x ventilation ¹⁾ after drilling is executed. Drill hole depth $h_1 = h_{nom} + 10 \text{ mm} + 2 * d_0$ ¹⁾ moving the drill bit in and out of the drill hole 3 times after the recommen- h_1 is achieved. This procedure shall be done with both revolution and ham activated in the drilling machine. For more details read the relevant MPII.	ded drilling depth
Hammer drilling with Hilti ho	bllow drill bit (HDB) TE-CD or TE-YD size 12 and 14.	
h ₁	No cleaning needed h ₁ = h _{nom} + 10 mm	
Insert of HUS4-MAX foil cap	osule	
JS4 Bonded screw		
		Annex B5

Page 14 of European Technical Assessment ETA-18/1160 of 5 January 2022



Page 15 of European Technical Assessment ETA-18/1160 of 5 January 2022

English translation prepared by DIBt

HUS4 Bonded screw

Intended Use Installation instructions Annex B7

Table C1: Essential characteristics for HUS4 Bonded screw under tension load in case of static and quasi static loading

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)	
Nominal embedment depth	h _{nom}	[mm]	85	100	115	
Installation factor	γinst	[-]	1,0	1,0	1,0	
Adjustment						
Total max. thickness of adjustment layers	t _{adj}	[mm]	10	10	10	
Max. number of adjustments	Na	[-]	2	2	2	
Steel failure						
Characteristic resistance	N _{Rk,s}	[kN]	55,0	79,0	101,5	
Partial factor	γ _{Ms,N} 1)	[-]		1,5		
Combined pull-out and concrete failure						
Uncracked concrete						
Temperature range I:	N _{Rk,p,ucr}	[kN]	36,0	55,0	65,0	
Increasing factor for N _{Rk,p,ucr} = N _{Rk,p,ucr(C20/25)} * ψ _c	Ψc	[-]		(f _{ck} /20) ^{0,30}		
Cracked concrete						
Temperature range I:	N _{Rk,p,cr}	[kN]	22,0	34,0	38,0	
Increasing factor for N _{Rk,p,cr} = N _{Rk,p,cr(C20/25)} * ψ _c	Ψc	[-]		(f _{ck} /20) ^{0,50}		
Sustained load factor	Ψ^0 sus	[-]		0,94		
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	85	100	115	
Factor for uncracked concrete	kucr,N	[-]		11,0		
Factor for cracked concrete	k _{cr,N}	[-]		7,7		
Increasing factor for N _{Rk,c} = N _{Rk,c(C20/25)} * ψ _c	Ψc	[-]		(f _{ck} /20) ^{0,50}		
Edge distance	C _{cr,N}	[mm]		1,5 h _{ef}		
Spacing	Scr,N	[mm]		3 h _{ef}		
Splitting failure						
Characteristic resistance	$N^0_{Rk,sp}$	[kN]		= N _{Rk,p}		
Edge distance	Ccr,sp	[mm]	1,6 h _{ef}	1,7 h _{ef}	1,85 h _{ef}	
Spacing	S _{cr,sp}	[mm]	3,2 h _{ef}	3,4 h _{ef}	3,7 h _{ef}	

¹⁾ In absence of other national regulations.

HUS4 Bonded screw

Performances

Essential characteristics under tension loads in case of static and quasi-static loading

Table C2: Essential characteristics for HUS4 Bonded screw under shear load in case of static and quasi static loading

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)
Nominal embedment depth	h _{nom}	[mm]	85	100	115
Steel failure for shear load					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	32,0	44,9	62
Partial factor	$\gamma_{Ms,N}^{1)}$	[-]		1,25	
Ductility factor	k 7	[-]		0,8	
Characteristic resistance	M ⁰ Rk,s	[Nm]	64	125	186
Concrete pry-out failure					
Pry-out factor	k ₈	[-]		2,0	
Concrete edge failure					
Effective length of fastener in shear loading	f	[mm]	85	100	115
Diameter of fastener	d	[mm]	10	12	14

¹⁾ In absence of other national regulations.

HUS4 Bonded screw

Essential characteristics under shear load in case of static and quasi static loading

Table C3: Essential characteristics for HUS4 Bonded screw seismic performance category C1 in concrete

HUS4-MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)
Nominal embedment depth	h _{nom}	[mm]	85	100	115
Steel failure for tension and shear load			·		
Characteristic resistance	NRk,s,C1	[kN]	55,0	79,0	101,5
Partial factor	$\gamma_{Ms,N}{}^{1)}$	[-]		1,5	
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	26,7	38,9	34,5
Partial factor	$\gamma_{Ms,V}$ 1)	[-]		1,25	
Reduction factor acc. to EN 1992-4:2018	$lpha_{gap}$	[-]	0,5		
Combined pullout and concrete cone fail	ure Cracke	ed conc	rete C20/25		
Temperature range I	NRk,p,C1	[kN]	20,9	34,0	38,0
Concrete cone failure					
Effective embedment depth	h _{ef}	[mm]	85	100	115
Edge distance	Ccr,N	[mm]		1,5 h _{ef}	
Spacing	Scr,N	[mm]	3 h _{ef}		
Robustness	γinst	[-]	1,0		
Concrete pry-out failure					
Pry-out factor	k ₈	[-]	2,0		
Concrete edge failure					
Effective length of fastener	l _f = h _{ef}	[mm]	85	100	115
Outside diameter of fastener	d _{nom}	[mm]	10	12	14

¹⁾ In absence of other national regulations.

HUS4 Bonded screw

Table C4: Essential characteristics under fire exposure in concrete for **HUS4-Bonded screw** HUS4-MAX with HUS4 screw 10 14 12 H(F) C 10 Н A(F) H(F) A(F) Nominal embedment depth h_{nom} [mm] 85 85 85 100 115 115 Steel failure for tension and shear load (F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}) 4.2 1.0 4,2 7,7 10,5 R30 F_{Rk.s.fi} [kN] 8,4 R60 3,2 3,3 5,9 F_{Rk,s,fi} [kN] 0,9 8,1 6,8 $F_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ R90 [kN] 2,4 0,7 2,5 4,1 5,8 5,1 R120 F_{Rk.s.fi} [kN] 1,7 0.6 2,1 3,1 4,4 4.3 Characteristic resistance R30 M⁰Rk,s,fi 1,2 4,8 11,6 15,4 [Nm] 4,9 19,3 R60 M⁰_{Rk,s,fi} [Nm] 3,7 1,0 3,8 8,9 14.8 12,4 R90 M⁰Rk,s,fi 2,9 2,7 0,8 6,2 10,7 9,3 [Nm] R120 M⁰Rk,s,fi 1.9 0.6 2.4 4.7 7.8 [Nm] 8.1 **Pull-out failure** R30 R60 N⁰Rk,p,fi 5,5 8,5 9.5 [kN] Characteristic R90 resistance N⁰Rk,p,fi 4,4 R120 [kN] 6,8 7,6 **Concrete cone failure** R30 R60 N⁰Rk,c,fi [kN] 11,4 17,2 24,4 Characteristic R90 resistance R120 N⁰Rk,c,fi 13.7 19.5 [kN] 9,1 Edge distance R30 to R120 2 h_{ef} Ccr,fi [mm] In case of fire attack from more than one side, the minimum edge distance shall be \geq 300 mm **Fastener spacing** R30 to R120 [mm] 2 h_{ef} S_{cr.fi} Concrete pry-out failure R30 to R120 k₈ [-] 2.0

The embedment depth shall be increased for wet concrete by at least 30 mm compared to the given value

HUS4 Bonded screw

Performances Essential characteristics under fire exposure in concrete

Table C5: Displacements under tension load ¹⁾ for HUS4 Bonded screw in case of static and quasi static loading

HUS4 MAX with HUS4 screw			10 (H; A; C)		12 (H)		14 (H; A)	
			Uncracked concrete	Cracked concrete	Uncracked concrete	Cracked concrete	Uncracked concrete	Cracked concrete
Displacement	Ν	[kN]	17,1	10,5	23,8	16,2	31,0	18,1
	δ_{N0}	[mm]	0,3	0,3	0,4	0,5	0,5	0,6
	δ _{N∞}	[mm]	0,6	0,6	0,6	0,6	0,8	0,8

Table C6: Displacements under shear load ¹⁾ for HUS4 Bonded screw in case of static and quasi static loading

HUS4 MAX with HUS4 screw			10 (H; A; C)	12 (H)	14 (H; A)	
	V	[kN]	18,3	25,7	35,4	
Displacement	δνο	[mm]	1,0	0,9	4,0	
	δv∞	[mm]	1,5	1,4	6,0	

HUS4 Bonded screw

Performances Displacements