

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0533 of 16 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Chemical Anchor VZ

Bonded anchor for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Plant 1, D

22 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601 Edition 04/2020

ETA-20/0533 issued on 17 April 2021

European Technical Assessment ETA-20/0533

Page 2 of 22 | 16 December 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z100972.22 8.06.01-191/22

European Technical Assessment ETA-20/0533

Page 3 of 22 | 16 December 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Chemical Anchor VZ" is a bonded fastener consisting of a resin anchor capsule VZ-P and an anchor rod V-A or an internally threaded anchor rod VZ-IG.

The resin anchor capsule VZ-P is placed in the hole and the anchor rod V-A or the internally threaded anchor rod VZ-IG is driven by machine as specified in Annex B6 and B7.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1, C2, C5, B2 to B3			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C3, C6			
Displacements under short-term and long-term loading	See Annex C7			
Characteristic resistance for seismic performance categories C1	See Annex C4			
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z100972.22 8.06.01-191/22

European Technical Assessment ETA-20/0533

Page 4 of 22 | 16 December 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

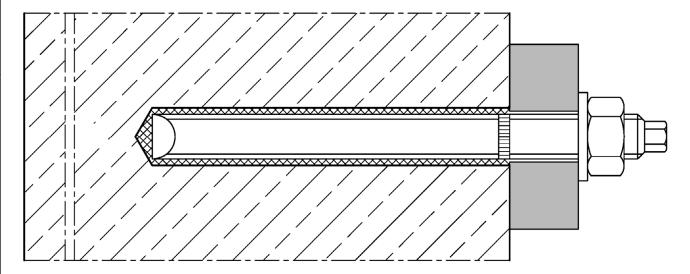
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

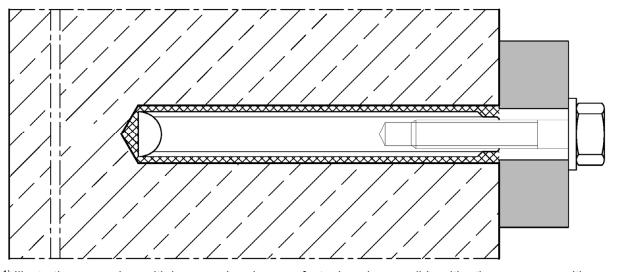
Issued in Berlin on 16 December 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

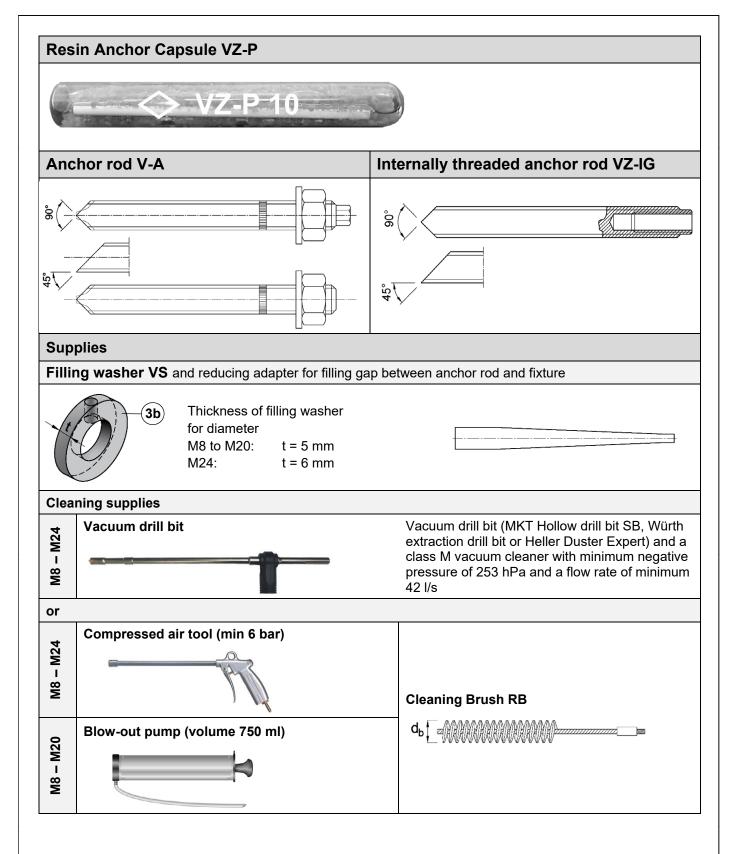

beglaubigt:

Stiller


Z100972.22 8.06.01-191/22

Installation situation Chemical Anchor VZ with anchor rod V-A (optional annular gap filled with mortar)

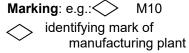
Installation situation Chemical Anchor VZ with Internally threaded anchor rod VZ-IG ¹⁾ (optional annular gap filled with mortar)


1) Illustration exemplary with hexagon head screw; fastening also possible with other screws or with threaded rods.

Chemical Anchor VZ

Product description
Installation situation

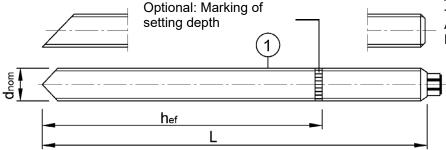
Annex A1

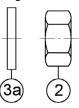


Chemical Anchor VZ Product description Resin Anchor Capsule, anchor rods and supplies Annex A2

Anchor rod V-A

M8, M10, M12, M16, M20, M24

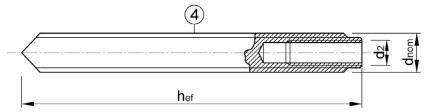



M10 anchor size

additional marking:

-8 property class 8.8A4 stainless steel

HC high corrosion resistant steel



Anchor rod V-A			M8	M10	M12	M16	M20	M24
Outer diameter	d=d _{nom}	[mm]	8	10	12	16	20	24
Length	L≥	[mm]	90	101	125	145	192	235
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Hexagon nut	wrench size	[mm]	13	17	19	24	30	36

Internally threaded anchor rod VZ-IG

VZ-IG M6, VZ-IG M8, VZ-IG M10, VZ-IG M12, VZ-IG M16

Marking e.g.: <> M8

identifying mark of manufacturing plant

M8 size of internal thread

additional marking:

-8 property class 8.8 A4 stainless steel

HCR high corrosion resistant steel

Internally threaded anchor rod VZ-IG	}		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16
Outer diameter of threaded rod 1)	d=d _{nom}	[mm]	10	12	16	20	24
Inner diameter of threaded rod	d_2	[mm]	6	8	10	12	16
Minimum screw in-depth	lıg	[mm]	8	8	10	12	16
Effective anchorage depth	h _{ef}	[mm]	90	110	125	170	210

¹⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Requirements for screws or threaded rods (incl. nut and washer):

These must at least correspond to the material and strength class of the internally threaded anchor rod used.

Material:

- Steel, zinc plated: Minimum property class 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
- Stainless steel A4: Minimum property class 70 according to EN ISO 3506:2020
- High corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506:2020

Chemical Anchor VZ	
Product description Marking	Annex A3

Table A1: Materials

Part	Designation		Materials							
Steel, zinc plated electroplated ≥ 5 µm according to EN ISO 4042:2018 hot-dip galvanized ≥ 50 µm average coating thickness according to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 sherardized ≥ 45 µm according to EN ISO 17668:2016										
	Property characteristic ultimate characteristic yield strength						fracture elongation			
1	Anchor rod	5.8	£ [N]//////22 21	500	f _{yk}	400	A ₅ > 8 %			
		8.8	f _{uk} [N/mm²]	800	[N/mm²]	640	A ₅ > 12 %			
2	Havagan nut	5	for class 5.8	anchor rods	;					
2	Hexagon nut	8	for class 5.8	for class 5.8, 8.8 anchor rods						
3a	Washer		steel, zinc p	lated						
3b	Filling washer		steel, zinc p	lated						
	Internally threaded	5.8					A ₅ > 8 %			
4	anchor rod steel, electroplated or sherardized				F					
4			steel, electr	opiated of Sil	craraizea		A ₅ > 8 %			
Stain High		8.8	CRC	III acc. to EN	l 1993-1-4:2	006+A1:2015 006+A1:2015	A ₅ > 8 %			
Stain High acc. t	anchor rod less steel A4 corrosion resistant to EN 10088:2014	8.8	R CRC	III acc. to EN	1993-1-4:2 1993-1-4:20 characteris		A ₅ > 8 % fracture elongation			
Stain High	anchor rod less steel A4 corrosion resistant	8.8 steel HC	CRC CRC Characteris	III acc. to EN V acc. to EN	1993-1-4:2 1993-1-4:20 characteris	006+A1:2015				
Stain High acc. t	anchor rod less steel A4 corrosion resistant to EN 10088:2014	8.8 t steel HC Property class	R CRC	III acc. to EN V acc. to EN stic ultimate	1993-1-4:2 1993-1-4:20 characterisi stre	tic steel yield	fracture elongation			
Stain High acc. t	anchor rod less steel A4 corrosion resistant to EN 10088:2014 Anchor rod	8.8 Property class 70	characteris stre	III acc. to EN V acc. to EN stic ultimate ngth 700	1993-1-4:2 1993-1-4:20 characterisi stre	tic steel yield ength	fracture elongation A ₅ > 12 %			
Stain High acc. t	anchor rod less steel A4 corrosion resistant to EN 10088:2014	8.8 Property class 70 80 70	characteris stre	III acc. to EN V acc. to EN etic ultimate ngth 700 800	1993-1-4:2 1993-1-4:20 characterisi stre f _{yk} [N/mm²]	tic steel yield ength	fracture elongation A ₅ > 12 %			
Stain High acc. t	anchor rod less steel A4 corrosion resistant to EN 10088:2014 Anchor rod	8.8 Property class 70 80 70	characteris stre fuk [N/mm²] for class 70 for class 70 stainless ste	III acc. to EN V acc. to EN etic ultimate ngth 700 800 anchor rods , 80 anchor re	1993-1-4:2 1993-1-4:20 characterisi stre f _{yk} [N/mm²]	tic steel yield ength	fracture elongation A ₅ > 12 %			
Stain High acc. t	anchor rod less steel A4 corrosion resistant to EN 10088:2014 Anchor rod Hexagon nut	8.8 Property class 70 80 70	characteris stre fuk [N/mm²] for class 70 for class 70 stainless ste high corrosi	III acc. to EN V acc. to EN etic ultimate ngth 700 800 anchor rods , 80 anchor re eel A4; on resistant s	characterist stre f _{yk} [N/mm²]	tic steel yield ength	fracture elongation A ₅ > 12 %			
Stain High acc. t	anchor rod less steel A4 corrosion resistant o EN 10088:2014 Anchor rod Hexagon nut Washer	8.8 Property class 70 80 70	characteris stre fuk [N/mm²] for class 70 for class 70 stainless ste high corrosi stainless ste high corrosi	III acc. to EN V acc. to EN tic ultimate ngth 700 800 anchor rods , 80 anchor rods eel A4; on resistant seel A4;	characterist street f _{yk}	tic steel yield ength	fracture elongation A ₅ > 12 %			
Stain High acc. t	anchor rod less steel A4 corrosion resistant o EN 10088:2014 Anchor rod Hexagon nut Washer Filling washer Internally threaded	8.8 restricted HC Property class 70 80 70 80	characteris stre fuk [N/mm²] for class 70 for class 70 stainless ste high corrosi stainless ste high corrosi	III acc. to EN V acc. to EN victic ultimate ngth 700 800 anchor rods , 80 anchor rods eel A4; on resistant seel A4;	characterist street f _{yk}	tic steel yield ength	fracture elongation A ₅ > 12 % A ₅ > 12 %			

Chemical Anchor VZ	
Product description Material	Annex A4

Specifications of intended use

Chemical Anchor VZ with	Anchor rod V-A	Internally threaded anchor rod VZ-IG					
Static or quasi-static action	M8 to M24	IG-M6 to IG-M16					
Seismic action, performance category C1	M8 to M24	no performance assessed					
	· '	nforced normal weight concrete EN 206:2013+A1:2016					
Base materials	strength classes C20/25 to C50/60, acc. to EN 206:2013+A1:2016						
	cracked or unci	acked concrete					
Temperature range I -40°C to +40°C	max long-term temperature +24°C; max short-term temperature +40°C						
Temperature range II -40°C to +80°C	max long-term temperature +50°C;	max short-term temperature +80°C					

Use conditions (Environmental conditions):

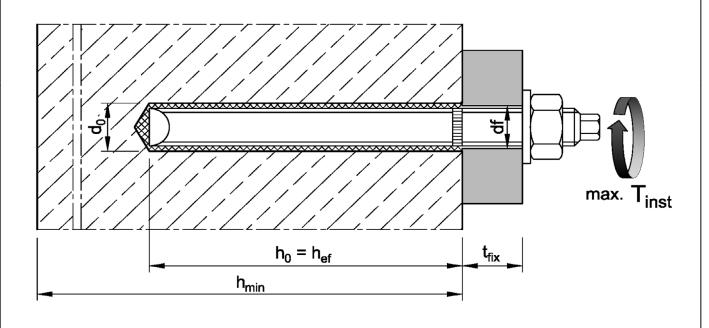
- · Structures subject to dry internal conditions: all versions
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2015, Annex A, Table A1:

- V-A A4: CRC III - V-A HCR: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

Installation:


- Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- · Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation
- Optionally, the annular gap between anchor rod and attachment can be backfilled. In this case, the
 washer is replaced by the filling washer (Part 3b, Annex A2). MKT injection mortars VMH, VMU plus, VMZ
 or other high-strength injection mortars with a compressive strength ≥ 40N/mm² can be used for
 backfilling.
- <u>Internally threaded anchor rods</u>: Bolts or threaded rod (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod that is used.

Chemical Anchor VZ	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for anchor rods V-A

Anchor rod V-A			М8	M10	M12	M16	M20	M24
Resin Anchor Capsule			VZ-P 8	VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20	VZ-P 24
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20	24
Nominal diameter of drill hole	d_0	[mm]	10	12	14	18	22	28
Depth of drill hole	h ₀	[mm]	80	90	110	125	170	210
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26
Cleaning Brush		[-]	RB 10	RB 12	RB 14	RB 18	RB 22	RB 28
Diameter of Cleaning Brush	d₀≥	[mm]	10,5	12,5	14,5	18,5	22,5	28,5
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	150	200
Minimum member thickness	h _{min}	[mm]	110	120	140	160	220	270
Minimum edge distance	C _{min}	[mm]	40	45	45	50	55	60
Minimum spacing	Smin	[mm]	40	50	60	75	90	115

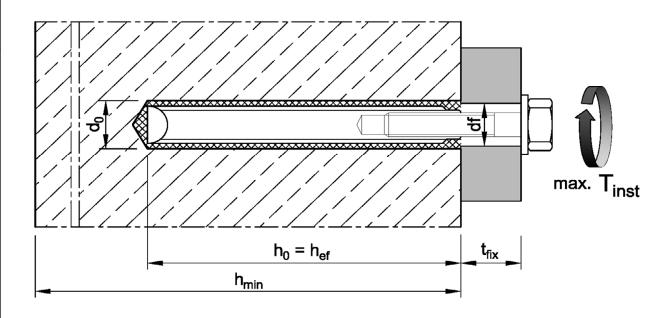

Chemical Anchor VZ	
Intended Use Installation parameters – Anchor rod V-A	Annex B2

Table B2: Installation parameters for internally threaded anchor rods VZ-IG

Internally threaded anchor rod VZ-IG			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16
Resin Anchor Capsule			VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20	VZ-P 24
Outer diameter of threaded rod 1)	d=d _{nom}	[mm]	10	12	16	20	24
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28
Depth of drill hole	h ₀	[mm]	90	110	125	170	210
Effective anchorage depth	h _{ef}	[mm]	90	110	125	170	210
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18
Cleaning Brush		[-]	RB 12	RB 14	RB 18	RB 22	RB 28
Diameter of Cleaning Brush	d _b ≥	[mm]	12,5	14,5	18,5	22,5	28,5
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60
Minimum member thickness	h_{min}	[mm]	120	140	160	220	270
Minimum edge distance	C _{min}	[mm]	45	45	50	55	60
Minimum spacing	Smin	[mm]	50	60	75	90	115

¹⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

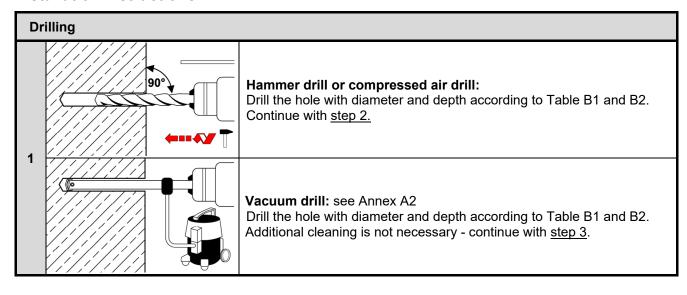

Chemical Anchor VZ	
Intended Use Installation parameters – Internally threaded anchor rod VZ-IG	Annex B3

Table B3: Curing time

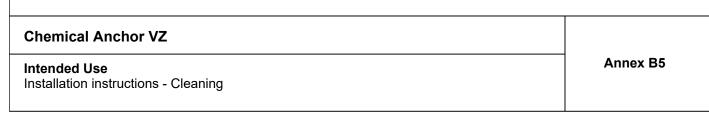
Concrete	Concrete temperature		Minimum curing time
-20°C	to	-16°C	17 h
-15°C	to	-11°C	7 h
-10°C	to	-6°C	4 h
-5°C	to	-1°C	3 h
0°C	to	+4°C	50 min
+5°C	to	+9°C	25 min
+10°C	to	+19°C	15 min
+20°C	to	+29°C	6 min
+30°C	to	+40°C	6 min
Capsule temperature			-15°C to +40°C

Installation instructions

Chemical Anchor VZ	
Intended Use Curing time / Installation instruction - drilling	Annex B4

2

2c



Installation instructions - continuation

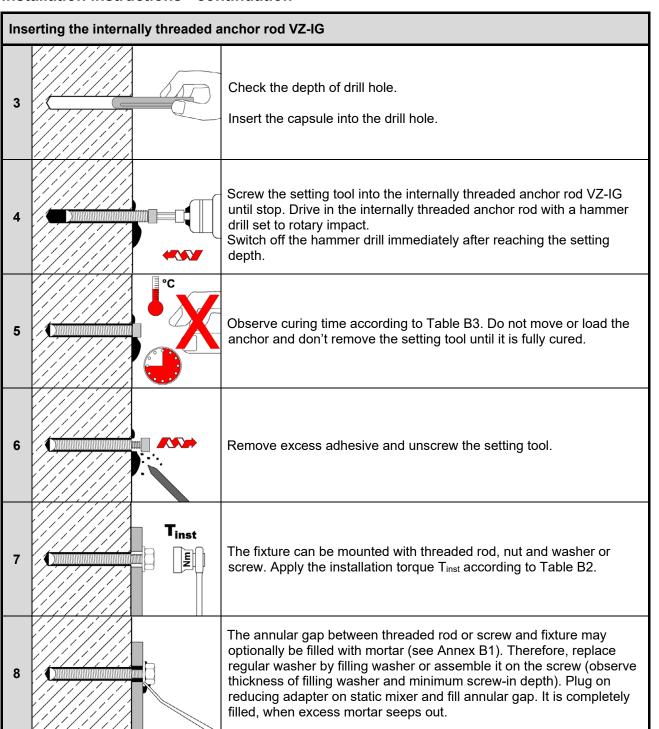
Cleaning with compressed air

Cleaning - Drill hole must be cleaned directly before installation of the anchor, or it must be protected against recontamination in a suitable manner until installation of the anchor.

Sizes M8 to M24 min. 6 bar Blow out the drill hole completely at least 2x from the bottom of 2a the drill hole with compressed air. Brush the drill hole 2x with Cleaning Brush RB (Table B1 or B2). Observe and check brush diameter d_{b,min}. When inserting the 2b brush into the drill hole, a clear resistance must be noticeable. Otherwise use a new Cleaning Brush. min. 6 bar Blow out the drill hole completely at least 2x from the bottom of 2c the drill hole with compressed air. Manual cleaning Sizes M8 to M20 Blow out the drill hole completely at least 2x from the bottom of 2a the drill hole with blow-out pump. Brush the drill hole **2x** with Cleaning Brush RB (Table B1 or B2). Observe and check brush diameter d_{b,min}. When inserting the 2b brush into the drill hole, a clear resistance must be noticeable. Otherwise use a new Cleaning Brush.

the drill hole with blow-out pump.

Blow out the drill hole completely at least 2x from the bottom of


Installation instructions - continuation

	nearting the anchor red V A										
Ins	erting the anchor rod V-A										
3		Check the depth of drill hole. If necessary, mark anchoring depth on the anchor rods. Insert the capsule into the drill hole.									
4		Drive in the anchor rod using a hammer drill set on rotary impact. Stop immediately after reaching the setting depth.									
5	°C	Observe curing time according to Table B3. Do not move or load the anchor until it is fully cured.									
6		Remove excess adhesive.									
7	T _{inst}	Install fixture and apply installation torque T _{inst} according to Table B1.									
8		The annular gap between anchor rod and fixture may optionally be filled with mortar (see Annex B1). Therefore, replace regular washer by filling washer (note thickness of the filling washer) and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.									

Chemical Anchor VZ	
Intended Use Installation instructions – Inserting anchor rod V-A	Annex B6

Installation instructions - continuation

Chemical Anchor VZ	
Intended Use Installation instructions – Inserting internally threaded anchor rod VZ-IG	Annex B7

Table C1: Characteristic steel resistance under tension load for anchor rods V-A

Anchor rod V-A	Anchor rod V-A					M12	M16	M20	M24
Steel failure									
Characteristic resistanc	e under tension load								
Steel,	Property class 5.8	$N_{\text{Rk,s}}$	[kN]	18	29	42	79	123	176
zinc plated	Property class 8.8	$N_{\text{Rk,s}}$	[kN]	29	46	67	126	196	282
Stainless steel /	Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
High corrosion resistant steel	Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial factor 1)									
Steel,	Property class 5.8	γMs,N	[-]			1,	5		
zinc plated	Property class 8.8	γMs,N	[-]	1,5					
Stainless steel / High corrosion resistant	Property class 70	γMs,N	[-]	1,5					
steel	Property class 80	γMs,N	[-]			1,	6		

¹⁾ In absence of other national regulations

Table C2: Characteristic steel resistance under shear load for anchor rods V-A

Anchor rod V-A	Anchor rod V-A				M10	M12	M16	M20	M24
Characteristic resistance	s under shear load								
Steel failure without leve	r arm								
Steel,	Property class 5.8	$V^0_{Rk,s}$	[kN]	11	17	25	47	73	106
zinc plated	Property class 8.8	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141
Stainless steel / High corrosion resistant	Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	123
steel	Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141
Steel failure with lever ar	m								
Steel,	Property class 5.8	M^0 _{Rk,s}	[Nm]	19	37	65	166	325	561
zinc plated	Property class 8.8	M^0 Rk,s	[Nm]	30	60	105	266	519	898
Stainless steel / High corrosion resistant	Property class 70	M^0 _{Rk,s}	[Nm]	26	52	92	233	454	785
steel	Property class 80	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	898
Partial factor 1)									
Steel,	Property class 5.8	γMs,V	[-]			1,2	25		
zinc plated	Property class 8.8	γMs,V	[-]	1,25					
Stainless steel /	Property class 70	γMs,V	[-]			1,2	<u></u>		
High corrosion resistant steel	Property class 80	γMs,V	[-]			1,3	33		

¹⁾ In absence of other national regulations

Chemical Anchor VZ	
Performance Characteristic steel resistance under tension and shear load for anchor rods V-A	Annex C1

English translation prepared by DIBt

Table C3: Characteristic values of tension loads for anchor rods V-A

Anchor rod V-A				M8	M10	M12	M16	M20	M24	
Steel failure										
Characteristic resista	nce under tension lo	ad								
Characteristic tension r	esistance	$N_{Rk,s}$	[kN]			see Ta	ble C1			
Partial factor		γMs,N	[-]	see Table C1						
Combined pull-out an	d concrete failure									
Characteristic bond re	esistance in <u>uncrack</u>	<u>ed</u> conc	rete C20/2	5						
Temperature range I:	+24°C / +40°C	τ Rk,ucr	[N/mm²]	10,0	13,0	13,0	13,0	13,0	13,0	
Temperature range II:	+50°C / +80°C	τ _{Rk,ucr}	[N/mm²]	8,5	11,0	11,0	11,0	11,0	11,0	
Increasing factors for $\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr}(C20)$		Ψc,ucr	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,17}$						
Characteristic bond re	esistance in <u>cracked</u>	concret	e C20/25							
Temperature range I:	+24°C / +40°C	τ Rk,cr	[N/mm²]	5,0	6,5	7,0	7,5	7,5	7,5	
Temperature range II:	+50°C / +80°C	$ au_{Rk,cr}$	[N/mm²]	4,5	5,5	6,0	6,0	6,0	6,5	
Increasing factors for $\tau_{Rk,cr} = \psi_{c,cr} \cdot \tau_{Rk,cr} (C20/2)$		ψ с,сг	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,14}$						
Reduction factor ψ ⁰ sus	in concrete C20/25									
Temperature range I:	+24°C / +40°C	ψ^0 sus	[-]			0,	64			
Temperature range II:	+50°C / +80°C	ψ^0_{sus}	[-]			0,	63			
Concrete cone failure										
Factor for	uncracked concrete	k _{ucr,N}	[-]			11	,0			
racioi ioi	cracked concrete	k _{cr,N}	[-]			7	,7			
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}						
Spacing		S _{cr,N}	[mm]			3	h _{ef}			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 · h _{ef} (2,5 - h / h _{ef})						
	h/h _{ef} ≤ 1,3			2,4 h _{ef}						
Spacing		Scr,sp	[mm]	2 Ccr,sp						
Installation factor		γ inst	[-]			1	,2			

Chemical Anchor VZ	
Performance Characteristic values under tension load for anchor rods V-A	Annex C2

Table C4: Characteristic values of shear loads for anchor rods V-A

Anchor rod V-A			М8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance	$V^0_{Rk,s}$	[kN]	see Table C2					
Ductility factor	k ₇	[-]			1	,0		
Partial factor	γMs,V	[-]	see Table C2					
Steel failure with lever arm								
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	see Table C2					
Partial factor	γ̃Ms,V	[-]			see Ta	able C2		
Concrete pry-out failure								
Pry-out factor	k ₈	[-]			2	,0		
Concrete edge failure								
Effective length of anchor	If	[mm]	80	90	110	125	170	210
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24
Installation factor	γinst	[-]			1	,0		

Chemical Anchor VZ	
Performance Characteristic values under shear load for anchor rods V-A	Annex C3

Table C5: Characteristic values of tension loads for anchor rods V-A under seismic action, performance category C1

Anchor rod V-A					M10	M12	M16	M20	M24
Steel failure									
Characteristic resistance	e under tension lo	ad							
Characteristic tension resi	stance	N _{Rk,s,C1}	[kN]	N _{Rk,s} see Table C1					
Partial factor		γMs,N	[-]	see Table C1					
Combined pull-out and o	concrete failure								
Characteristic bond resi	stance in concrete	C20/25	to C50/60						
Temperature range I:	+24°C / +40°C	τ _{Rk,C1}	[N/mm²]	4,5 5,5 6,0 6,0 7,5			7,0		
Temperature range II:	+50°C / +80°C	τ _{Rk,C1}	[N/mm²]	4,0 4,5 5,5 5,0 6,0 5,8				5,5	
Installation factor		γinst	[-]	1,2					

Table C6: Characteristic values of shear loads for anchor rods V-A under seismic action, performance category C1

Anchor rod V-A					M10	M12	M16	M20	M24
Steel failure without lever arm									
Characteristic resist	Characteristic resistance under shear load								
Steel,	Property class 5.8	$V_{Rk,s,C1}$	[kN]	9,0	14,3	20,7	36,3	56,2	81,5
zinc plated	Property class 8.8	$V_{\text{Rk},s,C1}$	[kN]	12,0	19,0	27,7	48,4	75,5	109,3
Stainless steel /	Property class 70	$V_{Rk,s,C1}$	[kN]	10,5	16,6	24,2	42,3	66,0	94,7
High corrosion resistant steel	Property class 80	$V_{Rk,s,C1}$	[kN]	12,0	19,0	27,7	48,4	75,5	108,7
Partial factor		γMs,V	[-]	see Table C2					
Factor for anabarages	with annular gap	αgap	[-]	0,5					
Factor for anchorages	without annular gap	αgap	[-]	1,0					
Installation factor		γinst	[-]	1,0					

Chemical Anchor VZ	
Performance Characteristic values under seismic action, performance category C1 for anchor rods V-A	Annex C4

Table C7: Characteristic steel resistance under tension load for internally threaded anchor rods VZ-IG

Internally threaded a	nchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	
Steel failure						1			
Characteristic	Property class 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	
resistance, steel, zinc plated	Property class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	
Partial factor 1)		γMs,N	[-]			1,5			
Characteristic resistance, stainless steel A4 / HCR	Property class 70	$N_{Rk,s}$	[kN]	14	26	41	59	110	
Partial factor 1)		γ̃Ms,N	[-]			1,87			
Combined pull-out a	nd concrete failure								
Characteristic bond	resistance in <u>uncrac</u>	ked cor	crete C2	0/25					
Temperature range I:	+24°C / +40°C	τ _{Rk,ucr}	[N/mm²]	13,0	13,0	13,0	13,0	13,0	
Temperature range II:	+50°C / +80°C	τ _{Rk,ucr}	[N/mm²]	11,0	11,0	11,0	11,0	11,0	
Increasing factors for 1 τ _{Rk,ucr} = ψ _{c,ucr} • τ _{Rk,ucr} (C20		Ψc,ucr	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,17}$			
Characteristic bond	resistance in <u>cracked</u>	d concr	ete C20/2	5					
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,5	7,5	
Temperature range II:	+50°C / +80°C	$\tau_{\text{Rk,cr}}$	[N/mm²]	5,5	6,0	6,0	6,0	6,5	
Increasing factors for 1 $\tau_{Rk,cr} = \psi_{c,cr} \cdot \tau_{Rk,cr}$ (C20/25)		ψ с,сг	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,14}$			
Reduction factor ψ ⁰ sι	us in concrete C20/25								
Temperature range I:	+24°C / +40°C	ψ^0 sus	[-]			0,64			
Temperature range II:	+50°C / +80°C	ψ^0 sus	[-]			0,63			
Concrete cone failure	9								
Factor for -	uncracked concrete	k _{ucr,N}	[-]			11,0			
ractor for	cracked concrete	k cr,N	[-]	7,7					
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}					
Spacing		Scr,N	[mm]	3 h _{ef}					
Splitting failure									
	h/h _{ef} ≥ 2,0			1,0 h _{ef}					
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})					
	h/h _{ef} ≤ 1,3			2,4 h _{ef}					
Spacing		S _{cr,sp}	[mm]	2 Ccr,sp					
Installation factor		γinst	[-]			1,2			

¹⁾ In absence of other national regulations

Chemical Anchor VZ	
Performance Characteristic values under tension load for internally threaded anchor rods VZ-IG	Annex C5

Table C8: Characteristic steel resistance under shear load for internally threaded anchor rods VZ-IG

Internally threaded anchor rod					IG-M 8	IG-M 10	IG-M 12	IG-M 16
Steel failure without lever arm 1)								
Steel,	Property class 5.8	$V^0_{Rk,s}$	[kN]	6	10	17	25	45
zinc plated	Property class 8.8	$V^0_{Rk,s}$	[kN]	8	14	23	34	60
Stainless steel A4 / HCR	Property class 70	$V^0_{Rk,s}$	[kN]	7	13	20	30	55
Ductility factor		k ₇	[-]			1,0		
Steel failure with lever a	rm ¹⁾							
Steel,	Property class 5.8	M^0 Rk,s	[Nm]	8	19	37	66	167
zinc plated	Property class 8.8	$M^0_{Rk,s}$	[Nm]	12	30	60	105	267
Stainless steel A4 / HCR	Property class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234
Partial factor 2)								
Steel,	Property class 5.8	γMs,V	[-]			1,25		
zinc plated	Property class 8.8	γMs,V	[-]			1,25		
Stainless steel A4 / HCR	Property class 70	γMs,V	[-]			1,56		
Concrete pry-out failure								
Pry-out factor	k 8	[-]			2,0			
Concrete edge failure								
Effective length of fastener		lf	[mm]	90	110	125	170	210
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24
Installation factor		γinst	[-]			1,0		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Chemical Anchor VZ	
Performance Characteristic values under shear load for internally threaded anchor rods VZ-IG	Annex C6

²⁾ In absence of other national regulations

Table C9: Displacements under tension load

Anchor size		М8	M10 IG-M6	M12 IG-M8	M16 IG-M10	M20 IG-M12	M24 IG-M16	
Displacement factor ¹⁾ for uncracked concrete								
Dianlacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,015	0,031	0,035	0,015	0,046	0,060
Displacement -	δ _{N∞} -factor	[mm/(N/mm²)]	0,085	0,067	0,067	0,067	0,067	0,067
Displacement factor ¹⁾ for cracked concrete								
Dianlacement	δ_{N0} -factor	[mm/(N/mm²)]	0,046	0,038	0,024	0,008	0,024	0,133
Displacement -	δ _{N∞} -factor	[mm/(N/mm²)]	0,192	0,142	0,090	0,104	0,082	0,069

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

Table C10: Displacements under shear load

Anchor size			M8	M10 IG-M6	M12 IG-M8	M16 IG-M10	M20 IG-M12	M24 IG-M16
Displacement factor ¹⁾								
Dianlacement	δ _{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δ _{∨∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: acting shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-factor } \cdot V;$

Chemical Anchor VZ	
Performance Displacements	Annex C7