

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0229 of 26 January 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Würth Fixanchor W-FAZ PRO Product family Mechanical fasteners for use in concrete to which the construction product belongs Manufacturer Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND Werk W1 Manufacturing plant This European Technical Assessment 23 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330232-01-0601, Edition 05/2021 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-20/0229 issued on 3 April 2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-20/0229 English translation prepared by DIBt

Page 2 of 23 | 26 January 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 26 January 2022

Specific Part

1 Technical description of the product

The Würth Fixanchor W-FAZ PRO is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	see Annex B3, C1, C2
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C3
Displacements	see Annex C8 and C9
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C4, C5, C8 and C9

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C6 and C7

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

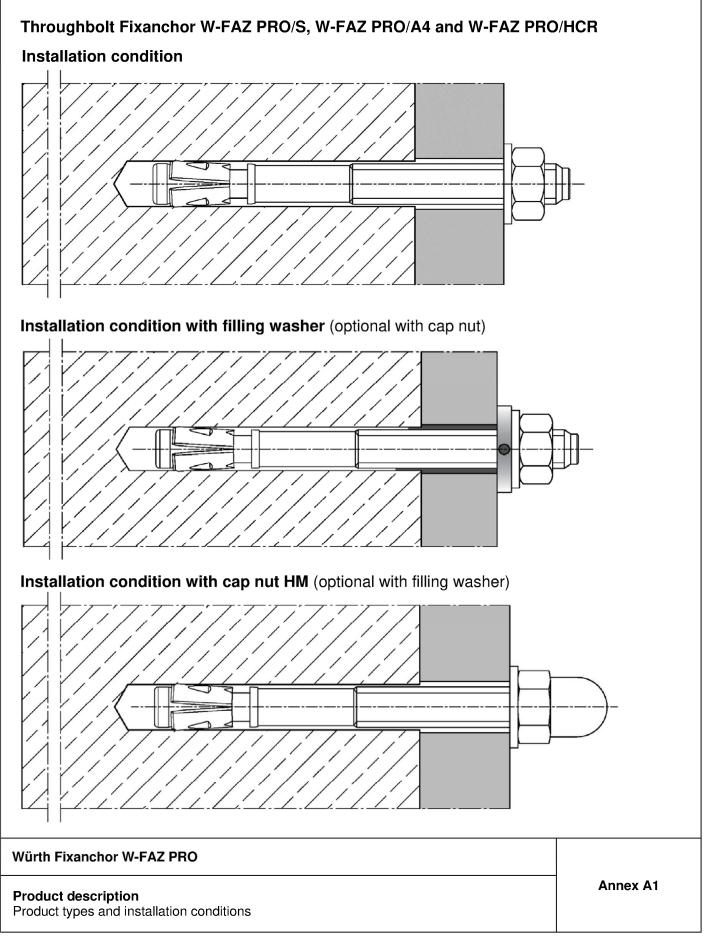
European Technical Assessment ETA-20/0229 English translation prepared by DIBt

Page 4 of 23 | 26 January 2022

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: 1996/582/EC.

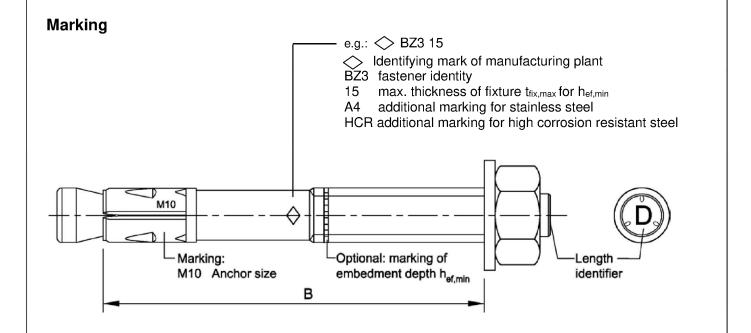
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 26 January 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider



Page 6 of European Technical Assessment ETA-20/0229 of 26 January 2022

English translation prepared by DIBt

Usable length: $\mathbf{B} = \mathbf{h}_{ef} + \mathbf{t}_{fix}$

hef: (existing) effective anchorage depth

t_{fix}: fixture thickness (including e.g. levelling layers or other non-load-bearing layers or additional filling washer)

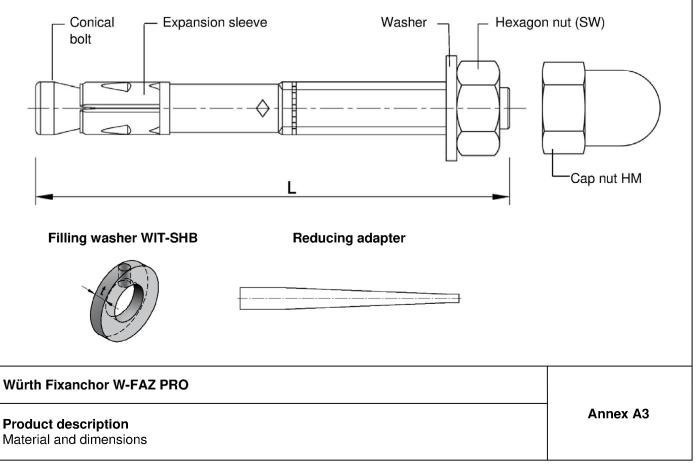
Table A1: Length identification

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	5 80 85 90 95 100) 105
	Y Z AA BB CC	DD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50 160 170 180 190 200	210

Length identifier	EE	FF	GG	нн	Ш	JJ	КК	LL	
Usable ≥ length B	220	230	240	250	260	270	280	290	Dimensions in mm

Würth Fixanchor W-FAZ PRO

Product description Marking


Annex A2

	W-FAZ PRO/S	W-FAZ PRO/A4	W-FAZ PRO/HCR		
Part	Steel, zinc plated	Stainless steel CRC III	High corrosion resistant steel CRC V		
Conical bolt	Steel, galvanized $\geq 5 \ \mu m$, fracture elongation A ₅ $\geq 8\%$	Stainless steel, fracture elongation $A_5 \ge 8\%$	High corrosion resistant steel, fracture elongation $A_5 \ge 8\%$		
Expansion sleeve	Stainless steel	Stainless steel	Stainless steel		
Washer					
Filling washer	Steel, galvanized	Stainless steel	High corrosion resistant		
Hexagon nut	≥ 5 µm	Stanness steel	steel		
Cap nut					

Table A3: Fastener dimensions

Fastener size			W-FAZ PRO/S, W-FAZ PRO/A4, W-FAZ PRO/HCR						
			M8	M10	M12	M16			
Width across hexagon nut / cap nut	SW	[mm]	13	17	19	24			
Length of fastener	L	[mm]	h _{ef} + t _{fix} + 18,0	h _{ef} + t _{fix} + 21,5	h _{ef} + t _{fix} + 26,0	h _{ef} + t _{fix} + 33,0			
Thickness of filling washer	t	[mm]		Į	5				

Specifications of intended use

Fixanchor	W-FAZ PF	W-FAZ PRO/S, W-FAZ PRO/A4, W-FAZ PRO/HCR						
Fixanchor	M8	M10	M12	M16				
Static or quasi-static action		✓						
Seismic performance categories C1 and C2		✓						
Fire exposure		R30 / R60 / R90 / R120						
Variable, effective anchorage depth	35 mm to 90 mm	40 mm to 100 mm	50 mm to 125 mm	65 mm to 160 mm				

Base materials:

- Cracked or uncracked concrete
- Reinforced or unreinforced normal weight concrete without fibers according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions according to EN 1993-1-2006 + A1:2015-10, corresponding to corrosion resistance classes CRC according to Annex A3, Table A2:

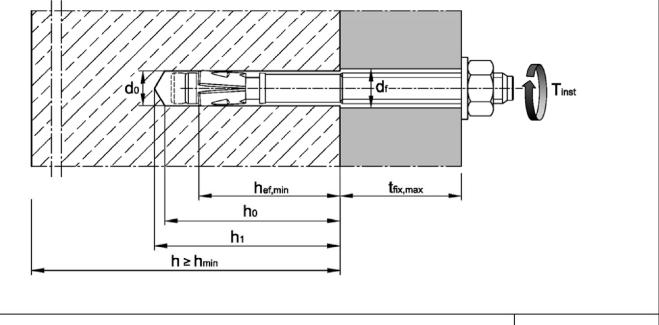
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
- The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018 and Technical Report TR 055:2018

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener (exception: when using the cap nut HM)
- The anchor can be set in pre- or through-setting installation.
- Optionally, the annular gap between fixture and stud of W-FAZ PRO can be filled to reduce the hole clearance. For this purpose, the filling washer (Annex A3) must be used in addition to the supplied washer. For filling use Würth Injection Adhesive WIT-UM 300, WIT-VM 250, WIT-PE 1000, WIT-VIZ or other high-strength injection mortar with compressive strength ≥ 40N/mm².

Würth Fixanchor W-FAZ PRO


Intended use Specifications

Deutsches Institut für Bautechnik

Table B1: Installation parameters

Anchor size	W-FAZ PRO/S, W-FAZ PRO/A4, W-FAZ PRO/HCR						
				M8	M10	M12	M16
Nominal drill hole d	iameter	d_0	[mm]	8	10	12	16
Cutting diameter of	drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5
Minimum effective a	anchorage depth	h _{ef,min}	[mm]	35	40	50	65
Maximum effective	anchorage depth	h _{ef,max}	[mm]	90	100	125	160
		h₀≥	[mm]	h _{ef} + 8	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14
Depth of drill hole		h₁≥	[mm]	h _{ef} + 10	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17
Diameter of clearar	Diameter of clearance hole in the fixture ¹⁾		[mm]	9	12	14	18
Projection after anchor has been inserted for installing with cap nut HM		С	[mm]	10,5	12,5	16,0	19,5
(according to Anne:	x B6, Figure 3)						
W-FAZ PRO/S		T _{inst}	[Nm]	15	40	60	110
Installation torque	W-FAZ PRO/A4 W-FAZ PRO/HCR	Tinst	[Nm]	15	40	55	100

¹⁾ For larger diameters of clearance hole in the fixture, see EN 1992-4:2018, chapter 6.2.2.2

Würth Fixanchor W-FAZ PRO

Intended use

Installation parameters

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances

Anchor size	W-FAZ PRO/S, W-FAZ PRO/A4, W-FAZ PRO/HCR					
Anchor Size	M8	M10	M12	M16		
Minimum member thickness depending on h_{ef}	h _{min} ≥	[mm]	max (1,5	5·h _{ef} ; 80)	max (1,5·h _{ef} ;100)	max (1,5·h _{ef} ;120)
Minimum edge distances and spacing	<u>js</u>					
Minimum odro distance	Cmin	[mm]	40	45	55	65
Minimum edge distance	for s ≥	[mm]		see Ta	able B4	
Minimum spacings	Smin	[mm]	35	40	50	65
	for c ≥	[mm]	see Table B4			

The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness:

$A_{sp,req} \leq A_{sp,ef}$

Required splitting area A_{sp,req} and idealized splitting area A_{sp,ef} according to Table B4.

Table B3: Applicable concrete thickness hsp and area Asp to determine characteristic edge distance cor,sp

Anchor size	9		M8	M10	M12	M16		
Applicable concrete thickness	W-FAZ PRO/S W-FAZ PRO/A4 W-FAZ PRO/ HCR	h _{sp}	[mm]	$\min(h; h_{ef} + 1, 5 \cdot c \cdot \sqrt{2})$				
Area to determine	W-FAZ PRO/S	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 - 2,573}{0,000436}$	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$	
C _{cr,sp} ¹⁾	W-FAZ PRO/A4 W-FAZ PRO/HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 4,177}{0,000862}$	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,415}{0,000742}$	

 $^{1)}$ with $N^{0}{}_{\mathsf{Rk},\mathsf{sp}}$ in kN

Würth Fixanchor W-FAZ PRO

Intended use

Minimum spacings and edge distances Required area and applicable concrete thickness

Anchor size			W-FAZ PRO/S, W-FAZ PRO/A4, W-FAZ PRO/HCR				
			M8	M10	M12	M16	
The following equa during installation				rage depth a	-		e distance
Idealized splitting a The edge distances		l be selec	ted or rou	nded in steps	s of 5 mm.		
Member thickness							
Single anchor or and							
Effective anch	norage depth	h _{ef} < 1,5 ⋅	с	A _{sp,ef} =	(6·c) · (1,5·c +	h _{ef})	[mm²]
Effective anch	norage depth	h _{ef} ≥ 1,5 ·	C	A _{sp,ef} =	(6·c) · (3·c)		[mm²]
Anchor group (s < 3	·c)						
Effective anchorage depth $h_{ef} < 1,5 \cdot c$				$A_{\text{sp,ef}} =$	ō∙c + h _{ef})	[mm²]	
Effective anch	norage depth	h _{ef} ≥ 1,5 ·	c	$A_{sp,ef}$ =	[mm²]		
Member thickness	: h ≤ h _{ef} + 1,5 ·	с					
Single anchor or and	chor group with s 2	≥ 3·c					
Effective anch	norage depth	h _{ef} < 1,5 ⋅	С	A _{sp,ef} =	(6·c) · h		[mm ²]
Effective anch	norage depth	h _{ef} ≥ 1,5 ·	C	A _{sp,ef} =	[mm²]		
Anchor group (s < 3	·c)						
Effective anch	norage depth	h _{ef} < 1,5 ⋅	C	A _{sp,ef} =	[mm ²]		
Effective anchorage depth $h_{ef} \ge 1,5 \cdot c$			c	A _{sp,ef} =	(3·c + s) · (h -	h _{ef} + 1,5⋅c)	[mm²]
Required splitting	area A _{sp,req}						
N-FAZ PRO/S -	cracked concrete	A _{sp,req}	[mm²]	13 900	23 700	31 500	42 300
	uncracked concrete	A _{sp,req}	[mm²]	22 500	34 700	41 300	50 200
N-FAZ PRO/A4	cracked concrete	A _{sp,req}	[mm²]	16 900	25 900	29 800	44 300
W-FAZ PRO/HCR	uncracked concrete	A _{sp,req}	[mm²]	19 700	35 700	35 300	54 800

Würth Fixanchor W-FAZ PRO

Intended use

Projected effective area to determine spacings and edge distances

Ins	tallation instructions	
1		Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Drive in fastener.
4		Apply installation torque T _{inst} .

Würth Fixanchor W-FAZ PRO

Intended use

Installation instructions

	tallation with cap nut H		
1		Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.	
2		Blow out dust. Alternatively vacuum clean down to th	ne bottom of the hole
3		Check position of nut. Projection C after anchor has Annex B2, Table B1.	been inserted see
4		Drive in fastener.	
5	C C	Remove nut.	
6		Screw on cap nut	
7		Apply installation torque T _{inst} .	
rth F	Fixanchor W-FAZ PRO		
			Annex B6

Inst	allation instructions with	filling of annular gap
1		Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Drive in fastener with additionally mounted filling washer.
4		Apply installation torque T _{inst} .
5		Fill the annular gap between anchor and fixture with injection adhesive (see Annex B1). Use enclosed reducing adapter. The annular gap is completely filled, when excess mortar seeps out.

Würth Fixanchor W-FAZ PRO

Product description
Product types and installation conditions

Annex B7

Electronic copy of the ETA by DIBt: ETA-20/0229

Table C1: Characteristic values for tension loads under static and quasi-static action, W-FAZ PRO/S (steel, zinc plated)

F					W-FAZ	PRO/S			
Fastener	SIZE			M8	M10	M12	M16		
Installation	n factor	γinst	[-]		1	,0			
Steel failu	Jre						-		
Character	istic resistance	N _{Rk,s}	[kN]	19,8	30,4	44,9	79,3		
Partial fac	tor ⁴⁾	γMs	[-]		1	,5			
Pull-out									
	istic resistance in oncrete C20/25	N _{Rk,p,cr}	[kN]	9,5	15 22 $\left(\frac{f_{ck}}{20}\right)^{0,265} \left(\frac{f_{ck}}{20}\right)^{0,5}$		30		
$\frac{\text{Increasing}}{N_{\text{Rk},\text{p,cr}}} = \psi$	g factor /c ∙ N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,439}$	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$		
	istic resistance in d concrete C20/25	N _{Rk,p,ucr}	[kN]	14	24	30	50		
-	ncreasing factor N _{Rk,p,ucr} = ψc • N _{Rk,p,ucr} (C20/25)		[-]	$\left(\frac{f_{ck}}{20}\right)^{0,489}$ $\left(\frac{f_{ck}}{20}\right)^{0,448}$		$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$		
Splitting									
Character	istic resistance	N^0 Rk,sp	[kN]		min (N _{Rk,p}	o;N ⁰ Rk,c ³⁾)			
Character	istic edge distance ²⁾	C cr,sp	[mm]		$\frac{A_{sp} + 0.8 \cdot}{(3.41 \cdot h_{sp} - $	$(h_{sp} - h_{ef})^2 - 0,59 \cdot h_{ef})$			
Character	istic spacing	S cr,sp	[mm]		2 · 0	C _{cr,sp}			
Concrete	cone failure								
Minimum, depth	effective anchorage	h _{ef,min}	[mm]	35 ¹⁾	40	50	65		
Maximum, depth	, effective anchorage	h _{ef,max}	[mm]	90	90 100		160		
Character	istic edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}					
Character	istic spacing	S _{cr,N}	[mm]	2 · c _{cr,N}					
Factor	cracked concrete	k _{cr,N}	[-]	7,7					
racior	uncracked concrete	k ucr,N	[-]		11	1,0			

¹⁾ Fastenings with anchorage depth h_{ef} < 40mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$ according to Table B3 ³⁾ $N^0_{Rk,c}$ according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

Würth Fixanchor W-FAZ PRO

Performance

Characteristic values for tension loads, W-FAZ PRO/S (Steel, zinc plated)

Table C2: Characteristic values for tension loads under static or quasi-static action, W-FAZ PRO/A4 and W-FAZ PRO/HCR

Footonor				W-1	FAZ PRO/A4,	W-FAZ PRO/H	CR		
Fastener	SIZE			M8	M10	M12	M16		
Installation	n factor	γinst	[-]		1	,0			
Steel failu	Ire				-		-		
Characteri	istic resistance	N _{Rk,s}	[kN]	19,8	30,4	44,9	74,6		
Partial fact	tor ⁴⁾	γMs	[-]		1	,5			
Pull-out									
	istic resistance in oncrete C20/25	N _{Rk,p,cr}	[kN]	9,5	17	22	35		
$\frac{\text{Increasing}}{N_{\text{Rk,p,cr}}} = \psi$	l factor rc • N _{Rk,p,cr} (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,488}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,35}$		
	istic resistance in I concrete C20/25	N _{Rk,p,ucr}	[kN]	20	25	42	50		
Increasing N _{Rk,p,ucr} = v	∣factor J/c • N _{Rk,p,ucr} (C20/25)			$\left(\frac{f_{ck}}{20}\right)^{0,240}$	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,190}$		
Splitting						·			
Characteri	istic resistance	N ⁰ Rk,sp	[kN]		min (N _{Rk,p}	ь ; N ⁰ Rk,с ³⁾)			
Characteri	istic edge distance 2)	Ccr,sp	[mm]		$\frac{A_{sp} + 0.8 \cdot}{(3.41 \cdot h_{sp} - $	$\frac{(h_{sp} - h_{ef})^2}{-0,59 \cdot h_{ef})}$			
Characteri	istic spacing	S cr,sp	[mm]		2 · 0	C _{cr,sp}			
Concrete	cone failure								
Minimum, depth	effective anchorage	h _{ef,min}	[mm]	35 ¹⁾	40	50	65		
Maximum, depth	effective anchorage	h _{ef,max}	[mm]	90	100	125	160		
Characteri	istic edge distance	Ccr,N	[mm]	1,5 · h _{ef}					
Characteri	istic spacing	Scr,N	[mm]		2 ·	C cr,N			
cracked concrete		k _{cr,N}	[-]	7,7					
Factor	uncracked concrete	kucr,N	[-]		11	1,0			

 $^{1)}$ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} according to Table B3 to determine characteristic edge distance $c_{cr,sp}$ ³⁾ $N^0_{Bk,c}$ according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

Würth Fixanchor W-FAZ PRO

Performance

Characteristic values for tension loads, W-FAZ PRO/A4 and W-FAZ PRO/HCR

Fastener size				W-F		W-FAZ PRO PRO/HCR	/A4,		
				M8	M10	M12	M16		
Installation factor	r	γinst	[-]		1,0				
Steel failure wit	<u>hout</u> lever arm								
Characteristic	W-FAZ PRO/S	V ⁰ Rk,s	[kN]	15,7	26,8	38,3	60,0		
resistance	W-FAZ PRO/A4 W-FAZ PRO/HCR	V ⁰ Rk,s	[kN]	16,8	27,8	39,8	60,0 69,5 240 223		
Partial factor ²⁾		γMs	[-]		1,	1,25			
Ductility factor		k 7	[-]		1	,0			
Steel failure wit	<u>h</u> lever arm								
Characteristic	W-FAZ PRO/S	M ⁰ Rk,s	[Nm]	30	60	105	240		
bending resistance	W-FAZ PRO/A4 W-FAZ PRO/HCR	M ⁰ Rk,s	[Nm]	27	55	99	223		
Partial factor ²⁾		γMs	[-]		1,	25			
Concrete pry-ou	ut failure								
	W-FAZ PRO/S	k ₈	[-]	2,8	3,1	3,0	3,6		
Pry-out factor	W-FAZ PRO/A4 W-FAZ PRO/HCR	k ₈	[-]	2,7	2,8	3,3	3,4		
Concrete edge	failure								
Effective length of fastener in shear Ir [mm]				h	h _{ef} ¹⁾				
Outside diamete	r of fastener	d _{nom}	[mm]	8	10	12	16		

¹⁾ Fastenings with anchorage depth h_{ef} < 40 mm are restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only.

²⁾ In absence of other national regulations

Performance

Characteristic values for shear loads

Factor for

anchorages

0,5

1,0

Footoner eize				W-F	AZ PR	0/S, W	-FAZ P	RO/A4,	W-FAZ	PRO/H	ICR
Fastener size				N	M8		M10		M12		16
Effective ancho	orage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Tension load											
Installation fac	tor	γinst	[-]				1	,0			
Steel failure											
Characteris- tic resistance	W-FAZ PRO/S	N _{Rk,s,C1}	[kN]	19,8		30,4		44,9		79,3	
	W-FAZ PRO/A4 W-FAZ PRO/HCR	N _{Rk,s,C1}	[kN]	19,8		30,4		44,9		74,6	
Pull-out											
Characteris-	W-FAZ PRO/S	N _{Rk,p,C1}	[kN]	9	,1	15,0		22,0		30,0	
tic resistance	W-FAZ PRO/A4 W-FAZ PRO/HCR	N _{Rk,p,C1}	[kN]	9	9,0		17,0		22,0		,0
Shear load											
Steel failure w	vithout lever arm										
Characteria	W-FAZ PRO/S	V _{Rk,s,C1}	[kN]	11,7	13,4	22,5	24,4	30,0	33,8	48,8	52,
Characteris- tic resistance	W-FAZ PRO/A4 W-FAZ PRO/HCR	V _{Rk,s,C1}	[kN]	11,0	12,7	20,6	22,2	33,2	33,2	61,1	64,
		1									

[-]

[-]

 $lpha_{gap}$

 $lpha_{ ext{gap}}$

Würth Fixanchor W-FAZ PRO

Performance Characteristic resistance for **seismic loading**

with annular gap

without annular gap

Fastener size				W-F	AZ PR	0/S, W-	FAZ PI	RO/A4,	W-FAZ	PRO/H	ICR
Fastener size				Ν	18	M	10	м	12	M	16
Effective ancho	orage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85
Tension load											
Installation fact	tor	γinst	[-]				1,	0			
Steel failure											
Characteris- tic resistance	W-FAZ PRO/S	N _{Rk,s,C2}	[kN]	19,8 30,4),4	44,9		79,3		
	W-FAZ PRO/A4 W-FAZ PRO/HCR	N _{Rk,s,C2}	[kN]	19,8		30,4		44,9		74,6	
Pull-out											
Characteris-	W-FAZ PRO/S	N _{Rk,p,C2}	[kN]	2,8	3,6	7,3	12,5	10,7	19,0	19,8	35,2
tic resistance	W-FAZ PRO/A4 W-FAZ PRO/HCR	N _{Rk,p,C2}	[kN]	2,3	3,2	5,0	7,7	8,0	13,8	19,0	29,4
Shear load											
Steel failure w	ithout lever arm										
Characteris-	W-FAZ PRO/S	V _{Rk,s,C2}	[kN]	7,3	11,3	15,4	19,0	18,3	28,0	39,4	43,3
tic resistance	W-FAZ PRO/A4 W-FAZ PRO/HCR	V _{Rk,s,C2}	[kN]	7,5	8,6	12,5	15,9	22,4	25,6	42,7	46,1
Factor for	with annular gap	$lpha_{ ext{gap}}$	[-]				0,	5			
anchorages	without annular gap	α_{gap}	[-]				1,	0			

Würth Fixanchor W-FAZ PRO

Performance

Annex C5

Characteristic resistance for seismic loading

-				W-FAZ PRO/S							
Fastener size				M8	M10	M12	M16				
Tension load											
Steel failure											
	R30			1,2	2,6	4,6	7,7				
Characteristic registeres	R60	NI	TLA 11	1,0	1,9	3,3	5,6				
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,7	1,3	2,1	3,5				
	R120			0,6	1,0	1,5	2,5				
Shear load											
Steel failure without leve	er arm										
	R30		[kN]	4,0	7,5	12,3	20,7				
Characteristic resistance	R60	V		2,7	5,1	8,5	14,2				
Characteristic resistance	R90	V _{Rk,s,fi}		1,4	2,7	4,6	7,7				
	R120			0,8	1,6	2,7	4,5				
Steel failure <u>with</u> lever a	'n										
	R30			4,1	9,6	19,1	43,8				
Characteristic resistance	R60	M ⁰ Rk,s,fi	[NIm]	2,8	6,6	13,1	30,1				
Unaracteristic resistance	R90		[Nm]	1,5	3,5	7,2	16,4				
	R120			0,8	2,0	4,2	9,6				

 $N_{\text{Rk},\text{p,fi}}$ and $N_{\text{Rk},\text{c,fi}}$ according to EN 1992-4:2018

Performance

Characteristic values under fire exposure, W-FAZ PRO/S (steel, zinc plated)

Table C7: Characteristic values for tension and shear load under fire exposure, W-FAZ PRO/A4 and W-FAZ PRO/HCR

				W-F	AZ PRO/A4, V	W-FAZ PRO	HCR
Fastener size				M8	M10	M12	M16
Tension load							
Steel failure							
	R30			4,0	6,9	11,0	18,1
Characteristic resistance	R60	NI	[LN]]	2,9	5,0	8,0	13,1
Characteristic resistance	R90	NRk,s,fi	[kN]	1,8	3,1	4,9	8,1
	R120			1,2	2,1	3,4	5,6
Shear load							
Steel failure without leve	er arm						
	R30			8,5	17,6	32,0	52,6
Chavaataviatia vasiatavaa	R60		[LAN]	6,2	12,6	22,6	37,1
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	3,9	7,5	13,1	21,5
	R120			2,8	5,0	8,4	13,8
Steel failure with lever a	rm						
	R30			8,7	22,7	49,8	111,5
	R60	M ⁰ Rk,s,fi	[N.I]	6,3	16,2	35,1	78,6
Characteristic resistance	R90		[Nm]	4,0	9,7	20,4	45,6
	R120			2,8	6,5	13,0	29,2

 $N_{\text{Rk},p,\text{fi}}$ and $N_{\text{Rk},c,\text{fi}}$ according to EN 1992-4:2018

Würth Fixanchor W-FAZ PRO

Performance

Characteristic values under fire exposure, W-FAZ PRO/A4 and W-FAZ PRO/HCR

Table C8: Displacements	under ten	sion loa	d, W-I	FAZ P	RO/S	(steel,	zinc p	ated)			
Fraterral			W-FAZ PRO/S								
Fastener size			Ν	18	М	10	М	12	М	16	
$\begin{array}{l} \textbf{Displacements under static} \\ \delta_{N0} = \delta_{N0^{-}factor} \star N \\ \delta_{N\infty} = \delta_{N\infty^{-}factor} \star N \end{array}$	•	atic action									
Effective anchorage depth	h _{ef} ≥	[mm]	3	5	4	0	5	0	6	5	
Cracked concrete											
Factor for displacement -	$\delta_{\sf N0-factor}$	[mm/kN]	0,	0,13		0,05		0,04		03	
	δN∞-factor	[mm/kN]	0,	0,29		0,20		0,15		11	
Uncracked concrete											
Feeter for displacement	$\delta_{ m N0-}$ factor	[mm/kN]	0,	03	0,	01	0,0)04	0,0	05	
Factor for displacement	δ _{N∞-} factor	[mm/kN]	0,	03	0,	03	0,	03	0,	03	
Displacement under seismi	c action C2										
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	
Displacements for DLS	$\delta_{\text{N},\text{ C2(DLS)}}$	[mm]	3,9	4,9	2,8	4,7	2,4	4,2	2,5	4,5	
Displacements for ULS	$\delta_{\text{N},\text{ C2(ULS)}}$	[mm]	11,3	14,3	9,4	16,1	7,3	12,9	7,2	12,8	

Table C9: Displacements under tension load, W-FAZ PRO/A4 and W-FAZ PRO/HCR

Fastener size			W-FAZ PRO/A4, W-FAZ PRO/HCR									
			N	18	M10		M12		M16			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$												
Effective anchorage depth	h _{ef} ≥	[mm]	35		40		50		65			
Cracked concrete												
Factor for displacement	$\delta_{N0-factor}$	[mm/kN]	0,11		0,06		0,05		0,02			
	δ _{N∞-factor}	[mm/kN]	0,27		0,17		0,16		0,08			
Uncracked concrete												
Factor for displacement	$\delta_{ m N0-\ factor}$	[mm/kN]	0,	0,02 0,00		0,001		0,00				
	δN∞- factor	[mm/kN]	0,05		0,05		0,05		0,05			
Displacement under seismi	ic action C2	2										
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85		
Displacements for DLS	$\delta_{\text{N},\text{ C2(DLS)}}$	[mm]	2,0	2,9	2,6	4,1	3,3	5,7	3,3	5,1		
Displacements for ULS	$\delta_{\text{N},\text{ C2(ULS)}}$	[mm]	7,7	11,1	10,8	16,8	10,4	18,0	9,0	13,9		

Würth Fixanchor W-FAZ PRO

Performance

Displacements under tension load

Frateway day		W-FAZ PRO/S									
Fastener size			Ν	M8 M10		M12		M16			
$ \begin{array}{l} \textbf{Displacements under static} \\ \delta_{V0} = \delta_{V0\text{-factor}} \star V \\ \delta_{V\infty} = \delta_{V\infty\text{-factor}} \star V \end{array} $		atic action cting shear									
Effective anchorage depth	h _{ef} ≥	[mm]	35		4	40		50		65	
Factor for displacement	δ V0- factor	[mm/kN]	0,15		0,09		0,09		0,07		
	δv∞- factor	[mm/kN]	0,22		0,13		0,14		0,11		
Displacement under seismie	c action C2	1)									
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	
Displacements for DLS	δ V,C2(DLS)	[mm]	2,8	2,7	3,0	3,1	3,4	3,7	3,4	3,8	
Displacements for ULS	δv,c2(ULS)	[mm]	5,1	5,0	5,0	5,5	6,3	9,9	6,0	9,6	

¹⁾ For anchorages with clearance in the fixture the annular gap must also be considered.

Table C11: Displacements under shear load, W-FAZ PRO/A4 and W-FAZ PRO/HCR

Fastener size			W-FAZ PRO/ A4 / W-FAZ PRO/ HCR								
			N	18	B M10		M12		M16		
$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Effective anchorage depth	h _{ef} ≥	[mm]	35		40		50		65		
Factor for displacement	δ V0- factor	[mm/kN]	0,26		0,14		0,12		0,09		
	δv∞- factor	[mm/kN]	0,39		0,20		0,17		0,14		
Displacement under seismic action C2 ¹⁾											
Effective anchorage depth	h _{ef} ≥	[mm]	40	45	40	60	50	70	65	85	
Displacements for DLS	$\delta_{V,C2(DLS)}$	[mm]	2,8	3,0	3,4	3,5	3,5	4,2	3,8	4,4	
Displacements for ULS	$\delta_{V,C2(ULS)}$	[mm]	5,2	5,1	7,0	8,4	7,5	11,8	7,8	11,1	

¹⁾ For anchorages with clearance in the fixture the annular gap must also be considered.

Würth Fixanchor W-FAZ PRO

Performance

Displacements under tension load