

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0728 of 16 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Rebar connection with injection system FIS V Plus

Systems for post-installed rebar connections with mortar

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

24 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

ETA-20/0728 issued on 13 November 2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-20/0728 English translation prepared by DIBt

Page 2 of 24 | 16 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 24 | 16 December 2022

European Technical Assessment ETA-20/0728 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rebar connection with injection system FIS V Plus" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 28 mm or the fischer rebar anchor FRA or FRA HCR of sizes M12 to M24 according to Annex A and injection mortar FIS V Plus or FIS V Plus Low Speed are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1 and C2
Characteristic resistance under seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 2 and C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-20/0728 English translation prepared by DIBt

Page 4 of 24 | 16 December 2022

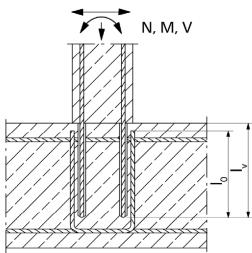
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

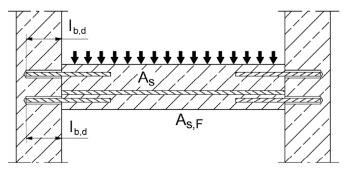
Issued in Berlin on 16 December 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Installation conditions and application examples reinforcing bars, part 1


Figure A1.1:

Overlap joint with existing reinforcement for rebar connections of slabs and beams


Figure A1.2:

Overlap joint with existing reinforcement at a foundation of a column or wall where the rebars are stressed

Figure A1.3:

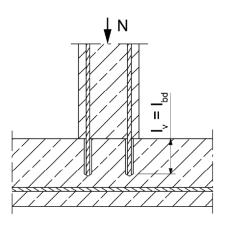
End anchoring of slabs or beams (e.g. designed as simply supported)

Figures not to scale

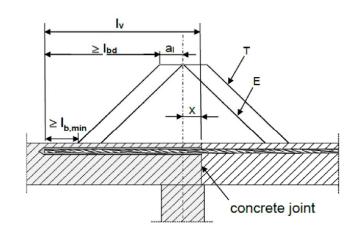
Rebar connection with injection system FIS V Plus

Product description

Installation conditions and application examples reinforcing bars, part 1


Electronic copy of the ETA by DIBt: ETA-20/0728

Installation conditions and application examples reinforcing bars, part 2


Figure A2.1:

Rebar connection for stressed primarily in compression

Figure A2.2:

Anchoring of reinforcement to cover the enveloped line of acting tensile force in the bending member

(only post-installed rebar is plotted)

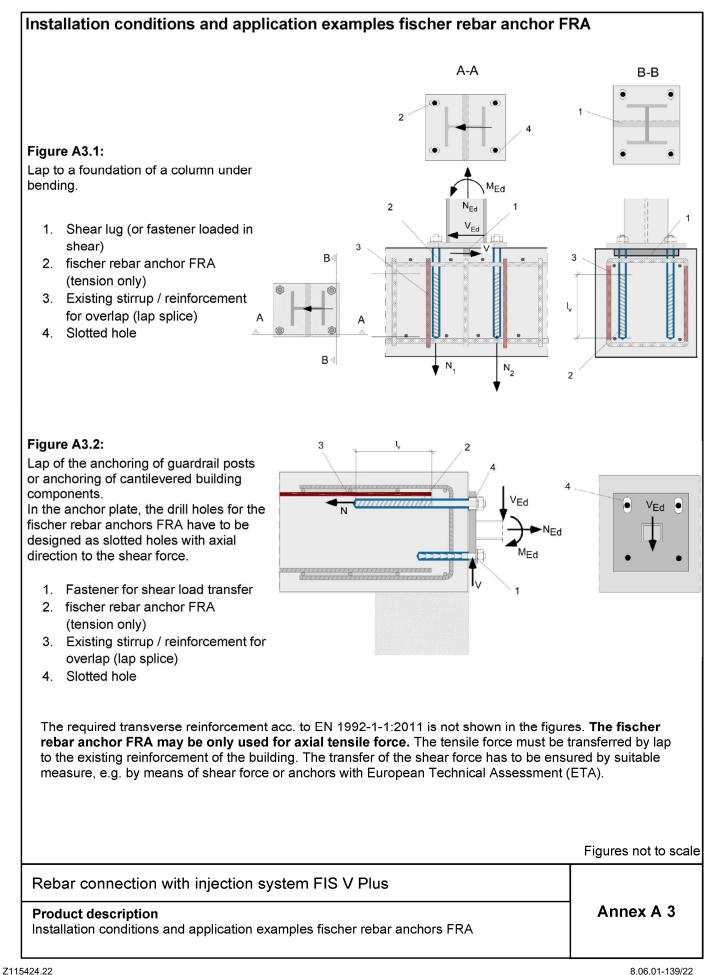
Key to Figure

- T Acting tensile force
- E Envelope of Med / z + Ned (see EN 1992-1-1:2011)
- x Distance between the theoretical point of support and concrete joint

Note to figure A1.1 to A1.3 and figure A2.1 to A2.2

In the figures no traverse reinforcement is plotted, the transverse reinforcement as required by EN 1992-1-1:2011 shall be present.

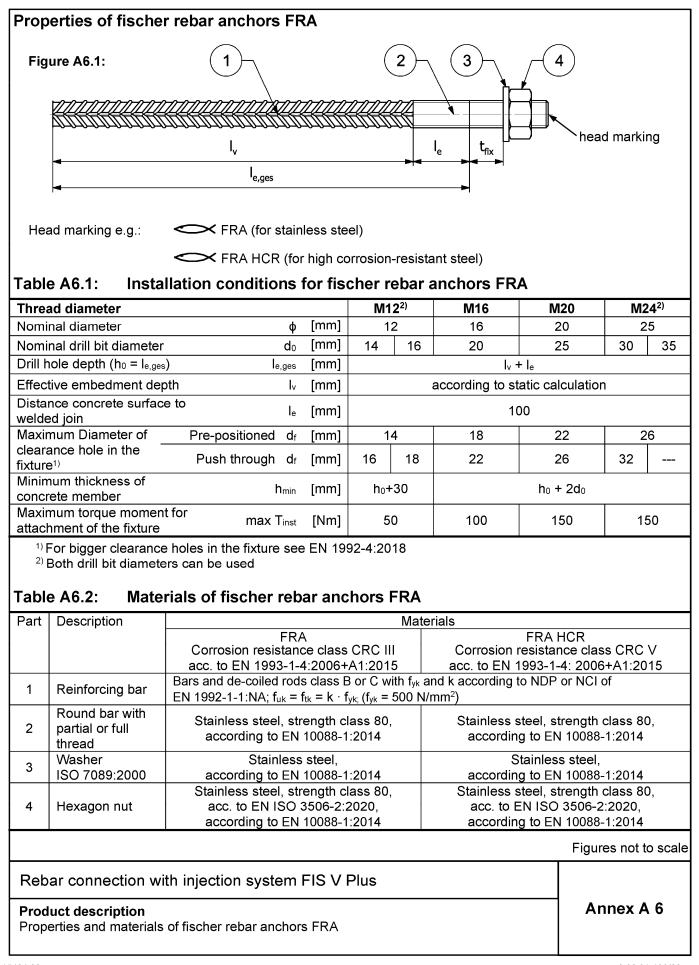
The shear transfer between old and new concrete shall be designed according to EN 1992-1-1:2011 Preparation of joints according to **Annex B 3** of this document


Figures not to scale

 Rebar connection with injection system FIS V Plus

 Product description

 Installation conditions and application examples reinforcing bars, part 2



Overview system components	
Injection cartridge (shuttle cartridge) FIS V Plus with sealing cap; Sizes: 360 ml, 825 m	1
Imprint: fischer FIS V Plus or FIS VS Plus Low Speed, processing shelf-life, hazard code, curing times and processing times (dependin temperature), piston travel scale (optional), size, volume	ng on
Injection cartridge (coaxial cartridge) FIS V Plus with sealing cap; Sizes: 300 ml, 380 m	ıl, 400 ml, 410 ml
Imprint: fischer FIS FIS V Plus or FIS VS Plus Low Speed, proce shelf-life, hazard code, curing times and processing times (depen- temperature), piston travel scale (optional), size, volume	ding on
Static mixer FIS MR Plus for injection cartridges up to 410 ml	
Static mixer FIS JMR for injection cartridges 825 ml	JM]
Injection adapter and extension tube Ø 9 for static mixer FIS MR Plus; Injection adapter and extension tube Ø 9 or Ø 15 for static mixer FIS JMR	
Reinforcing bar (rebar) Sizes: \$8, \$10, \$12, \$14, \$16, \$20, \$25, \$28 mark 7////////////////////////////////////	ing setting depth
fischer rebar anchor FRA / FRA HCR Sizes: M12, M16, M20, M24	
Blow out pump AB G Compressed-air cleaning tool ABP with fischer con	npressed-air nozzle
	Figures not to scale
Rebar connection with injection system FIS V Plus	
Product description Overview system components; Injection mortar, static mixer, injection adapter, reinforcing bar, fischer rebar anchor FRA, cleaning tools	Annex A 4

Properties of reinforcing	oars (I	rebar)									
Figure A5.1:											
 The minimum value of rel The maximum outer reba The nominal diamete (\$\phi\$: Nominal diamete 	r diame er of the	ter over th bar with r	ne ribs sha rib φ + 2 ·	all be h (h :	: ≤ 0,0	7 · φ)	2011				
Table A5.1: Installation					0					4)	
Nominal diameter of the bar	<u>ф</u>	8 ¹⁾	10 ¹⁾	12		14	16	20		25 ¹⁾	28
Nominal drill hole diameter do	_	10 12	12 14	14	16	18	20	25	5	30 35	35
Drill hole depth ho	_ [mm]					h ₀ =					
Effective embedment depth Iv			v + 30		acc	. to static	calculat	ion			
concrete member			v + 30 ≥ 100)				K	/ + 2d c)		
Table A5.2: Materials o	f reba	rs									
Designation			cing bar (•						
Reinforcing bar EN 1992-1-1:2011, Annex C			l de-coileo accordino k · f _{yk}					!-1-1/N	١A		
									Fi	gures not	to scale
Rebar connection with inje	ction s	system F	IS V Plu	JS							
Product description Properties and materials of rein	orcing	bars (reba	ar)							Annex /	45

Specifications of	of intended	use part 1			
Table B1.1:	Overview use	e and performan	ce categories		
Anchorages subject	to			Plus with …	
		Reinfor	cing bar	fischer reba	ar anchor FRA
Hammer drilling or compressed air drilling with standard drill bit	64444000000		all s	izes	
Hammer drilling with hollow drill bit (fischer "FHD", Heller "Duster Expert", Bosch "Speed Clean", Hilti "TE-CD, TE-YD")	Ī			it diameter (d₀) o 35 mm	
Use category I1	dry or wet concrete		all s	izes	
Characteristic resistance under static and quasi static loading, in	uncracked concrete cracked concrete	all sizes	Tables: C1.1 C1.2 C1.3	all sizes	Tables: C1.1 C1.2 C1.3 C2.1 C2.2
Characteristic resistance under seismic loading			_1)		1)
Installation direction		D3 (down	ward and horizontal	and upwards (e.g.	overhead))
Installation tempera	ture		T _{i,min} = 0 °C to	T _{i,max} = +40 °C	
Service temperature	Temperature range	-40 °C te	o +80 °C		temperature +80 °C; emperature +50 °C)
Resistance to fire		all sizes	Annex C 3	all sizes	Table C2.3
¹⁾ No performand			(5)		
Rebar connections Intended use Specifications part		ion system FIS \	/ Plus		Annex B 1

Specifications of intended use part 2

Anchorages subject to:

- Static and quasi-static loading: reinforcing bar (rebar) size 8 mm to 28 mm; FRA M12 to M24
- Resistance to fire: reinforcing bar (rebar) size 8 mm to 28 mm; FRA M12 to M24

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Concrete strength classes C12/15 to C50/60 according to EN 206:2013+A1:2016
- Maximum chloride content of 0,40 % (CL 0.40) related to the cement content according to EN 206:2013+A1:2016
- Non-carbonated concrete

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1 :2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) for fischer rebar anchors FRA

 For all conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 6 Table A6.2.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- · Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2011; EN 1992-1-2:2011 and Annex B 3 and B 4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

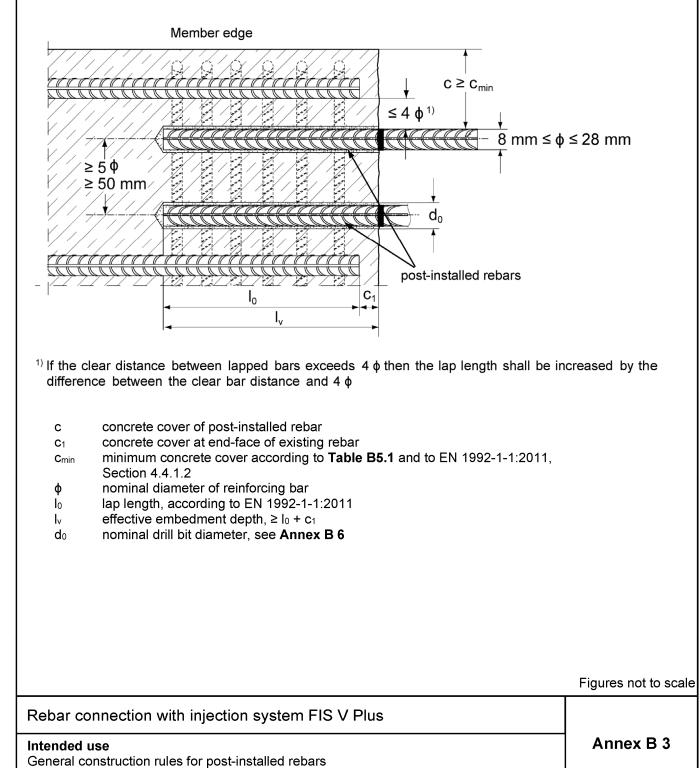
Installation:

- The installation of post-installed rebar respectively fischer rebar anchor FRA shall be done only by suitable trained installer and under Supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for Supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Rebar connection with injection system FIS V Plus

Intended use

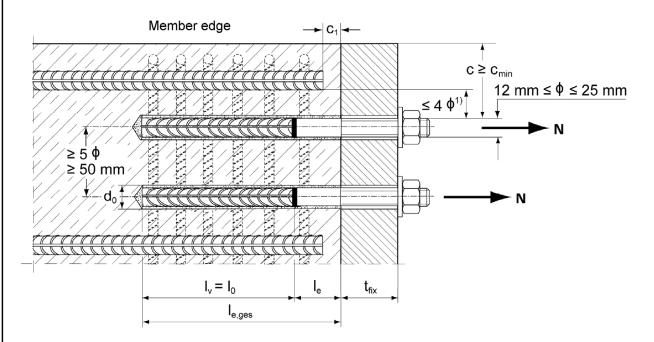
Specifications part 2


Annex B 2

General construction rules for post-installed rebars

Figure B3.1:

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2011.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.


Z115424.22

General construction rules for post-installed fischer rebar anchors FRA

Figure B4.1:

- Only tension forces in the axis of the fischer rebar anchor FRA may be transmitted.
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transmission of the shear load shall be ensured by appropriate additional measures, e.g. by shear lugs or by anchors with a European Technical Assessment (ETA).
- In the anchor plate, the holes for the tension anchor shall be executed as slotted holes with the axis in the direction of the shear force.

- ¹⁾ If the clear distance between lapped bars exceeds 4ϕ then the lap length shall be increased by the difference between the clear bar distance and 4ϕ .
 - c concrete cover of post-installed fischer rebar anchor FRA
 - c1 concrete cover at end-face of existing rebar
 - c_{min} minimum concrete cover according to **Table B5.1** and to EN 1992-1-1:2011, Section 4.4.1.2
 - φ nominal diameter of reinforcing bar
 - $I_0 \qquad \ \ Iap\ Iength,\ according\ to\ EN\ 1992-1-1:2011,\ Section\ 8.7.3$
 - $I_{e,ges}$ overall embedment depth, $\ge I_0 + I_e$
 - d₀ nominal drill bit diameter, see Annex B 6
 - Ie length of the bonded in threaded part
 - t_{fix} thickness of the fixture
 - I_v effective embedment depth

Figures not to scale

Rebar connection with injection system FIS V Plus

Intended use

General construction rules for post-installed fischer rebar anchors FRA

Annex B 4

	illing to	lerance				maning	g of the	e drillir	ig met	hod ar	nd the	
		diameter			N	linimur	n concr	ete cov	er c _{min}			
nod			Without	drilling a	id [mm]			With c	Irilling a	aid [mm]		
ling drill	< 2	25	30 mm	+ 0,06 l	_∨ ≥ 2 ¢	30 m	m + 0,0	2 I _v ≥ 2	ф ۲			
rill bit	≥ 2	25	40 mm	+ 0,06 l	v ≥ 2 φ	40 m	m + 0,0	2 I _v ≥ 2	φ ///			Π
air	< 2	25	50 m	m + 0,0)8 I _v	50) mm +	0,02 l _v			_	ш
	≥ 2	25	60 mm	+ 0,08 l	v ≥ 2 ¢	60 m	m + 0,0	2 I _v ≥ 2	ф •	<u> </u>	Drillir	ng aid
e minim	ium cono	crete cove	r as spec	ified in	EN 199						nent	
de	pth I _{v,m}	ax				-	•					
		Manu	al dispen	ser			•					
	L											/
threa	d [-]		l _v			וm]			l _{v,r}			m]
	-						000					
			1000			12	200			4.04		
						15	500			180	00	
FRA I RA HC	M20 R M20		700			13	300					
			100			10	000			200	00	
			700			7	00			20		
		ns for use d₀		mixe 10	[•] witho 12	ut an 14	exten	sion t	ube 20	25	30	35
hh₀bvı	F Jsina —	IS MR Plu	s	≤ (90	≤ 120	≤ 140	≤ 150	≤ 160	ļ	≤ 210	
11 110 by t	F						- 100	< 180	≤ 190	≤ 220	≤ 2	
	drill ill bit air ex B 3, e minim Dia de fisch reb anchor threa FRA I FRA I Co ole diar	ing drill drill bit ≥ 2 air air ≥ 2 ex B 3, figure Bis e minimum cond Dispense depth lv,m fischer rebar anchor FRA thread [-] FRA M12 FRA M12 FRA M12 FRA M12 FRA M16 FRA M20 FRA M20 FRA M20 FRA M20 FRA M24 FRA M16 FRA M20 FRA M20 FR	bar ϕ [mm] ing drill iil bit < 25	bar ϕ [mm]Without of Without of 30 mming drill< 25	bar ϕ [mm]Without drilling a 30 mm + 0,06 I 30 mm + 0,06 Idrill drill ≥ 25 40 mm + 0,06 I 25 air < 25 50 mm + 0,06 I 25 air < 25 50 mm + 0,08 I 25 e minimum concrete cover as specified inDispensers and cartridge sizes depth lv,maxfischer rebar anchor FRAManual dispenser $< 5i$ thread [-]Iv,max / le,gFRA M12 FRA M12 FRA M12Thread [-]Iv,max / le,gFRA M12 FRA M12Thread [-]Iv,max / le,gFRA M12 FRA M24Thread [-]Iv,max / le,gFRA M12 FRA M24Thread [-]Iv,max / le,gFRA M12 FRA M24Thread [-]Iv,max / le,gFRA M16 FRA M24FRA M24 FRA M24TorConditions for use static mixerole diameterdoIn ho by usingFIS MR PlusIn ho by using	bar ϕ [mm]Without drilling aid [mm]ing drill< 25	bar ϕ [mm]Without drilling aid [mm]ing drill< 25	bar ϕ [mm]Without drilling aid [mm]ing drill ill bit < 25 $30 \text{ mm} + 0,06 \text{ lv} \ge 2 \phi$ $30 \text{ mm} + 0,00$ air < 25 $40 \text{ mm} + 0,06 \text{ lv} \ge 2 \phi$ $40 \text{ mm} + 0,00$ air < 25 $50 \text{ mm} + 0,08 \text{ lv} \ge 2 \phi$ $60 \text{ mm} + 0,00$ air < 25 $60 \text{ mm} + 0,08 \text{ lv} \ge 2 \phi$ $60 \text{ mm} + 0,00$ ex B 3, figure B3.1 and Annex B 4, figure B4.1e minimum concrete cover as specified in EN 1992-1-1:2011 mtDispensers and cartridge sizes corresponding to depth lv.maxfischer rebar anchor FRAManual dispenser Cartridge sizefischer rebar anchor FRAManual dispenser (Sma Cartridge sizefischer rebar anchor FRAManual dispenser (Sma Cartridge sizefischer rebar anchor FRAManual dispenser (Sma (Sma M12)fischer rea (FRA M20) FRA M20 FRA M20 FRA M241000fisch M20 FRA M241000fisch M20 FRA M24700fisch M20 FRA M24700fisch M20 FRA M241000fisch M20 FRA M24700fisch M20 FRA M24700fisch M20 FRA M241000fisch M21 FRA M241000fisch FRA M22 FRA M241000fisch FRA M241000fisch FIS MR Plus10 <td>bar ϕ [mm]Without drilling aid [mm]With out drilling aid [mm]ing drill< 25</td> 30 mm + 0,06 l _v ≥ 2 ϕ 30 mm + 0,02 l _v ≥ 2air< 25	bar ϕ [mm]Without drilling aid [mm]With out drilling aid [mm]ing drill< 25	bar ϕ [mm]Without drilling aid [mm]With drilling ating drill< 25	$\frac{ }{ $	bar ϕ [mm]Without drilling aid [mm]With drilling aid [mm]ing drill< 25

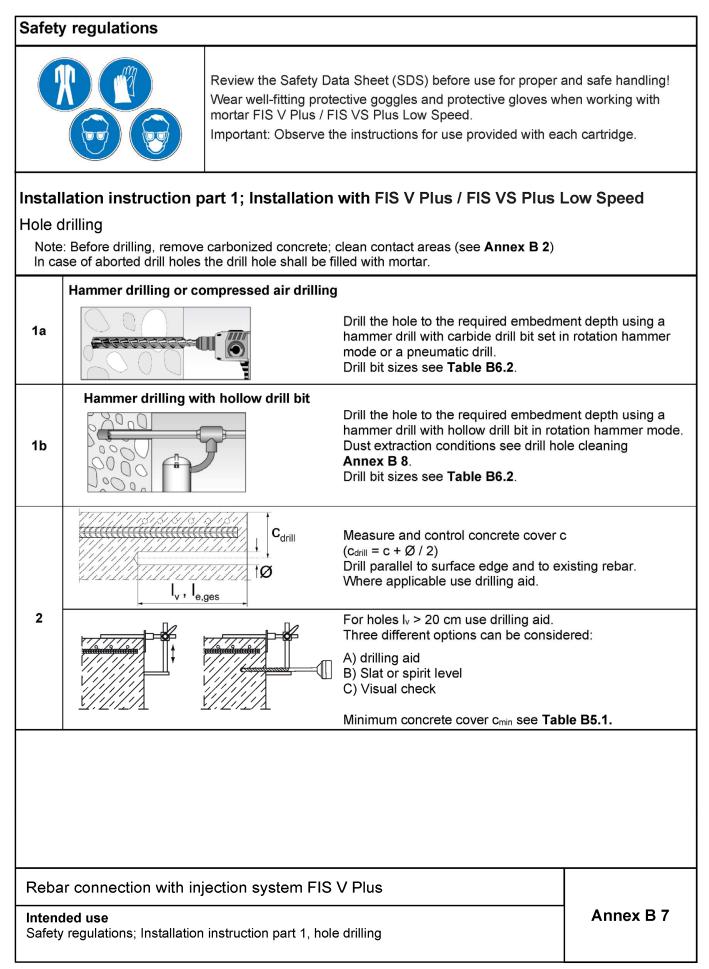
Z115424.22

Temperatur anchorage			working time ¹⁾ t _{work}			curing time ²)
anchorage [°C]	base	FIS V Plus	FIS VS Plus Low Speed	FI	S V Plus	-	/S Plus Speed
0 to	5 ³⁾	13 min			3 h	(3 h
> 5 to	10 ³⁾	9 min	20 min		90 min	:	3 h
> 10 to	20	5 min	10 min		60 min		2 h
> 20 to	30	4 min	6 min		45 min	60) min
> 30 to	40 ⁴⁾	2 min	4 min		35 min	60	min
	emperature		s below 10 °C the ca eeds 30 °C the cart				o to 20 °C
⁴⁾ If the te	emperature emperature 2: Insta	in the concrete falls in the concrete exc allation tools for	s below 10 °C the ca	ridge must be	cooled down	to +15 °C uj	
⁴⁾ If the te	emperature emperature	in the concrete falls in the concrete exc allation tools for	s below 10 °C the cart eeds 30 °C the cart drilling and clear	ridge must be	cooled down	to +15 °C ען njection o	of the
⁴⁾ If the te Table B6.2 reinforcing	emperature emperature 2: Insta mort	in the concrete falls in the concrete exc allation tools for tar	s below 10 °C the ca eeds 30 °C the cart	ridge must be	cooled down	to +15 °C up injection o	
	emperature emperature 2: Insta	in the concrete falls in the concrete exc allation tools for tar	s below 10 °C the cart eeds 30 °C the cart drilling and clear Drilling and Irill Diameter of	ridge must be	cooled down e hole and Diameter of fischer compressed-	to +15 °C up injection of Diameter of extension	of the ection
⁴⁾ If the te Table B6. reinforcing bars	emperature emperature 2: Insta mort fischer re	in the concrete falls in the concrete exc allation tools for tar bar RA Nominal c bit diame	s below 10 °C the cart eeds 30 °C the cart drilling and clear Drilling and lrill Diameter of cutting edge	ridge must be ning the bou cleaning Steel brush	cooled down the hole and in Diameter of fischer	to +15 °C up injection o lnje Diameter of	of the
⁴⁾ If the te Table B6. reinforcing bars (rebar)	emperature emperature 2: Insta mort fischer re anchor F	in the concrete falls in the concrete exc allation tools for tar bar RA Nominal c bit diame	s below 10 °C the cart eeds 30 °C the cart drilling and clear Drilling and lrill Diameter of cutting edge	ridge must be ning the bou cleaning Steel brush diameter	Diameter of fischer compressed- air nozzle	to +15 °C up injection of Diameter of extension tube	of the ection Injectio adapte

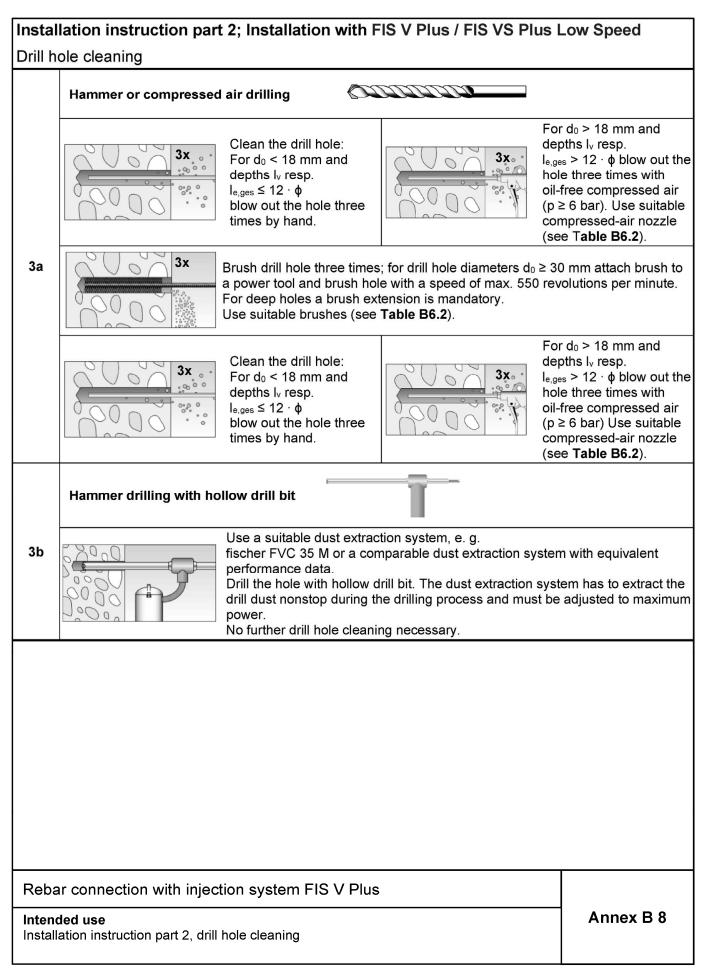
					air nozzle	tube	-
φ [mm]	Designation	d₀ [mm]	d _{cut} [mm]	d₀ [mm]	[mm]	[mm]	[colour]
8 ¹⁾		10	≤ 10,50	11,0			
0.,		12	≤ 12,50	12,5			nature
10 ¹⁾		12	≤ 12,50	12,5	11	9	nature
10.7		14	≤ 14,50	15		9	blue
12 ¹⁾	FRA M12 ¹⁾	14	≤ 14,50	15			blue
12.7	FRA HCR M12 ¹⁾	16	≤ 16,50	17	15		red
14		18	≤ 18,50	19			yellow
16	FRA M16 FRA HCR M16	20	≤ 20,55	21,5	19		green
20	FRA M20 FRA HCR M20	25	≤ 25,55	26,5	19	9 or 15	black
25 ¹⁾	FRA M24 ¹⁾	30	≤ 30,55	32			grey
2017	FRA HCR M24 ¹⁾	35	≤ 35,70	37	28		brown
28		35	≤ 35,70	37			brown

¹⁾ Both drill bit diameters can be used.

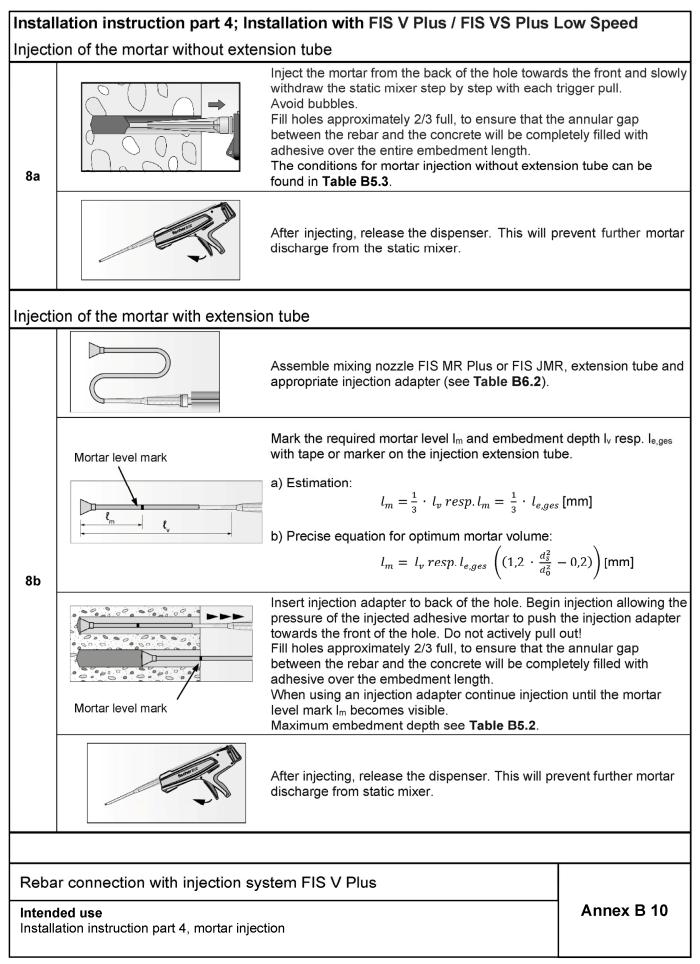
Rebar connection with injection system FIS V Plus


Intended use

Working times and curing times;


Installation tools for drilling and cleaning the bore hole and injection of the mortar

Annex B 6



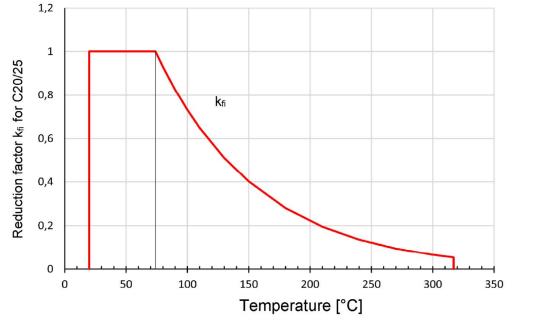

	llation instruction part 3; Installati		₋ow Speed
einfo	rcing bars (rebar) / fischer rebar anc	hor FRA and cartridge preparation	
4		Before use, make asure that the rebar o anchor FRA is dry and free of oil or othe Mark the embedment depth I _v (e.g. with Insert rebar in borehole, to verify drill hol depth I _v resp. I _{e,ges.}	r residue. tape)
5		Twist off the sealing cap Twist on the static mixer (the spiral in the clearly visible).	e static mixer must be
6	fischer EZ	Place the cartridge into a suitable disper	nser.
7	X	Press out approximately 10 cm of morta permanently grey in colour. Mortar whicl will not cure and must be disposed.	
Reba	ar connection with injection system F	FIS V Plus	
	ded use lation instruction part 3,		Annex B 9

reinforcing bars (rebar) / fischer rebar anchor FRA and cartridge preparation

The minimum a be multiplied by		rage ler	igth and	minimu	m lap ler	ngth				
		-	-			-	-	to EN 1992	2-1-1:2011	shall
Table C1.1:	A	mplificat	tion facto	or $\alpha_{\sf lb}$ relation	ted to co	ncrete sti	rength cla	ass and c	drilling me	ethod
Hammer drilling,	ho	llow drilli	ng and co	mpressed	l air drillin	g				
Rebar / fischer					Amplif	ication fac	ctor alb			
rebar anchor FR	A [Concre	ete strengt	n class			
φ [mm]		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25				1	,0			1	,1	1,2
28						1,0				
Table C1.2:		ond effic	ciency fa	ctor k₀ re	lated to c	concrete	strength	class and	d drilling	
Hammer drilling,	ho	llow drilli	ing and co	mpressec	l air drillin	g				
Rebar / fischer	Ţ				Bond e	fficiency f	actor k _b			
rebar anchor FR	A				Concre	ete strengt	h class			
φ [mm]		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25						1,00		I	I	I
28				1,	00			0,91	0,84	0,84
		trength o d,PIR = k b	class and f₀d						concrete	
f _{bd} : k _b :	f ⊳ De the by ar	esign valu e rebar dia $v_{11} = 0,7)$ nd recomm		drilling r nd strengtl good bond tial factor y	nethod fo h in N/mm² ⊢condition γ _c = 1,5 acc	or good b considerir (for all othe cording to I	ond cond ng the cond er bond col	ditions crete streng nditions mu	gth classes	
	f⊾ De the by ar Bo	$d_{A,PIR} = k_{b}$ esign valu e rebar dia $\gamma \eta_{1} = 0,7)$ nd recommond efficie	fbd e of the bo ameter for nended par ncy factor a	drilling r nd strengtl good bond tial factor y according t	nethod fo h in N/mm² condition y _c = 1,5 aco to Table C	or good b considerir (for all othe cording to I 1.2	ond cond ng the cond er bond col	ditions crete streng nditions mu	gth classes	
k _b : Hammer drilling, Rebar / fischer	f⊧ De the by ar Bo ho	$d_{A,PIR} = k_{b}$ esign valu e rebar dia $\gamma \eta_{1} = 0,7)$ nd recommond efficie	fbd e of the bo ameter for nended par ncy factor a	drilling r nd strengtl good bond tial factor y according t	nethod for h in N/mm ² condition $\gamma_c = 1,5$ acc to Table C	or good b considerir (for all othe cording to I 1.2	ond cond ong the cond er bond con EN 1992-1	ditions crete streng nditions mu -1:2011	gth classes	
k _b : Hammer drilling, Rebar / fischer rebar anchor FR	f⊧ De the by ar Bo ho	$d_{A,PIR} = k_{b}$ esign valu e rebar dia $\gamma \eta_{1} = 0,7)$ nd recommond efficie	fbd e of the bo ameter for nended par ncy factor a	drilling r nd strengtl good bond tial factor y according t	nethod for h in N/mm ² condition $\gamma_c = 1,5 \text{ acc}$ to Table C d air drillin Bond stree	or good b considerir (for all othe cording to B 1.2 g	ond cond ng the cond er bond con EN 1992-1 R [N/mm²]	ditions crete streng nditions mu -1:2011	gth classes	
k _b : Hammer drilling, Rebar / fischer	f⊧ De the by ar Bo ho	$d_{A,PIR} = k_{b}$ esign valu e rebar dia $\gamma \eta_{1} = 0,7)$ nd recommond efficie	fbd e of the bo ameter for nended par ncy factor a	drilling r nd strengtl good bond tial factor y according t	nethod for h in N/mm ² condition $\gamma_c = 1,5 \text{ acc}$ to Table C d air drillin Bond stree	or good b considerir (for all othe cording to I 1.2 g angth f _{bd,Pl}	ond cond ng the cond er bond con EN 1992-1 R [N/mm²]	ditions crete streng nditions mu -1:2011	gth classes	
k _b : Hammer drilling, Rebar / fischer rebar anchor FR	f⊧ De the by ar Bo ho	$_{\rm bd,PIR} = \mathbf{k}_{\rm b}$ - esign valu e rebar dia r $\eta_1 = 0,7)$ nd recommond efficie	fbd e of the bo ameter for nended par ncy factor a ing and co	drilling r nd strengtl good bond tial factor according f	nethod fo h in N/mm ² condition $y_c = 1,5$ acc to Table C d air drillin Bond stre Concre	or good b considerir (for all othe cording to β 1.2 g ength f _{bd,Pl} ete strengt	ond cond ong the cond or bond cond EN 1992-1 R [N/mm²] h class	ditions crete streng nditions mu -1:2011	gth classes ultiply the v	ralues
k _b : Hammer drilling, Rebar / fischer rebar anchor FR, φ [mm]	f⊧ De the by ar Bo ho	$p_{d,PIR} = k_b$ esign valu e rebar dia $p_1 = 0,7)$ nd recommond efficie	fbd e of the bo ameter for nended par ncy factor a ing and co C16/20	drilling r nd strengtl good bond tial factor according f mpressec	nethod fo h in N/mm ² condition $y_c = 1,5$ acc to Table C d air drillin Bond stre Concre C25/30	considerir (for all othe cording to f 1.2 g ength f _{bd,Pl} ete strengtl C30/37	ond cond ong the cond er bond cond EN 1992-1 R [N/mm²] h class C35/45	ditions crete streng nditions mu -1:2011 C40/50	gth classes ultiply the v	ralues C50/60

Characteristic ter		FRA HCF	२	M12	M16	M20	M24
Dohon diamatar	nsile yield	strength	for rebar p	art	-	_	
Rebar diameter		ф	[mm]	12	16	20	25
Characteristic tens		f _{yk}	[N/mm ²]	500	500	500	500
Partial factor for re	bar part	γMs,N ¹⁾	[-]		1,	15	
Table C2.2:		teristic re I nchors		to steel fail	ure under tens	ion loading of	fischer
fischer rebar anc	hor FRA /	FRA HCF	र	M12	M16	M20	M24
Characteristic res	sistance t	o steel fa		tension load	<u> </u>		
Characteristic resi	stance	N	Rk,s [kN]	62	111	173	263
Partial factor							
Partial factor		γм	s,N ¹⁾ [-]		1	,4	
¹⁾ In absence of Table C2.3:	Charac	egulations	resistance		ilure for fische ure R30 to R12	r rebar anch	ors FRA
	Charac under te	egulations teristics ension lo	resistance ading and		ilure for fische	r rebar anch	ors FRA
Table C2.3:	Charac under te	egulations teristics ension lo	resistance ading and	l fire expos	ilure for fische ure R30 to R12	r rebar anch 0	I
Table C2.3: fischer rebar anc Characteristic resistance to steel	Charac under te hor FRA /	egulations teristics ension lo	resistance bading and	l fire exposi M12	ilure for fische ure R30 to R12 M16	er rebar anch 0 M20	M24
Table C2.3: fischer rebar anc Characteristic	Charac under te hor FRA /	egulations teristics ension lo	resistance ading and	M12 2,5	ilure for fische ure R30 to R12 <u>M16</u> 4,7	r rebar anch 0 <u>M20</u> 7,4	M24 10,6

Rebar connection with injection system FIS V Plus


Annex C 2

Characteristic tensile yield strength for rebar part of FRA; Design value of the steel bearing capacity $N_{Rk,s,fi}$ under fire exposure for fischer rebar anchor FRA

Performance

Design value of the ultimate bond strength fbd,fi at increased temperature for concrete strength classes C12/15 to C50/60 (all drilling methods) The design value of the bond strength fbd,f at increased temperature has to be calculated by the following equation: $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \frac{\gamma_c}{\gamma_{m fi}}$ $k_{fi}(\theta) = \frac{24,308 \cdot e^{-0,012 \cdot \theta}}{f_{bd,PIR} \cdot 4,3} \le 1,0$ lf: θ > 74 °C If: $\theta > \theta_{max}$ (317 °C) $k_{fi}(\theta)$ = 0= Design value of the ultimate bond strength at increased temperature in N/mm² **f**bd,fi θ = Temperature in °C in the mortar layer k_{fi} (θ) = Reduction factor at increased temperature = Design value of the bond strength in N/mm² in cold condition according to Table C1.3 **f**bd,PIR considering the concrete strength classes, the rebar diameter, the drilling method and the bond conditions according to EN 1992-1-1:2011 = 1,5 recommended partial factor according to EN 1992-1-1:2011 γc = 1,0 recommended partial factor γm,fi For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2011 Equation 8.3 using the temperature-dependent ultimate design value of bond strength **f**bd,fi. Example graph of reduction factor k_{fi} (θ) for concrete class C20/25 Figure C3.1: for good bond conditions

Rebar connection with injection system FIS V Plus

Performance

Design value of bond strength $f_{\text{bd},\text{fi}}$ at increased temperature

Annex C 3