

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-20/0867 vom 14. Juli 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Hilti Betonschraube HUS4

Mechanische Dübel zur Verwendung im Beton

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

38 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601

ETA-20/0867 vom 14. April 2022, Edition 05/2021

Europäische Technische Bewertung ETA-20/0867

Seite 2 von 38 | 14. Juli 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-20/0867

Seite 3 von 38 | 14. Juli 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Hilti Betonschraube HUS4 ist ein Dübel in den Größen 8, 10, 12, 14 und 16 mm aus galvanisch verzinktem oder nichtrostendem Stahl. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch geschraubt. Das Spezialgewinde schneidet während des Setzvorgangs ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B4 bis B9, Anhang C1, C3 und C5
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C2, C4 und C5
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C15 und C16
Charakteristischer Widerstand und Verschiebungen für die seismischen Leistungskategorien C1 und C2	Siehe Anhang C5 bis C9 und C17

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C10 bis C14

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

Europäische Technische Bewertung ETA-20/0867

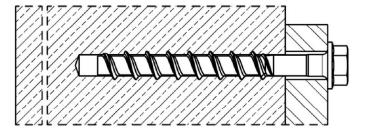
Seite 4 von 38 | 14. Juli 2022

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

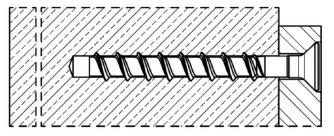
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 14. Juli 2022 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Tempel

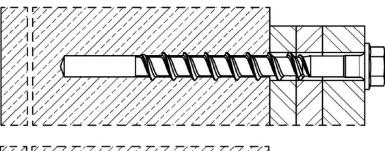

Einbauzustand ohne Adjustierung

HUS4-H (Ausführung Sechskantkopf Größen 8, 10, 12, 14 und 16)

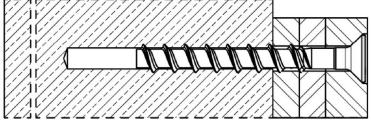
HUS4-HF (Ausführung Sechskantkopf Größen 8, 10, 14 und 16)

HUS4-HR (Ausführung Sechskantkopf Größen 6, 8, 10 und 14)

HUS4-C (Ausführung mit Senkkopf Größen 8 and 10)


HUS4-CR (Ausführung mit Senkkopf Größen 6, 8, 10 und 14)

HUS4-A (Ausführung Außengewinde Größe 10 mit M12 und Größe 14 mit M16)


HUS4-AF (Ausführung Außengewinde Größe 10 mit M12 und Größe 14 mit M16)

Einbauzustand mit Adjustierung - hnom2, hnom3

HUS4-H (Ausführung Sechskantkopf Größen 8, 10, 12 und 14)

HUS4-HF (Ausführung Sechskantkopf Größen 8, 10 und 14)

HUS4-C (Ausführung mit Senkkopf Größen 8 and 10)

Hilti Betonschraube HUS4

Produktbeschreibung

Einbauzustand mit und ohne Adjustierung

Anhang A1

Tabelle A1: Schraubenausführungen

Hilti HUS4-H, Größe 8,10, 12, 14 und 16, Ausführung mit Sechskantkopf, Kohlenstoffstahl galvanisch verzinkt Hilti HUS4-HF, Größe 8,10, 14 und 16, Ausführung mit Sechskantkopf, Kohlenstoffstah mehrlagige Beschichtung

Hilti HUS4-HR, Größen 6, 8, 10 und 14, Ausführung mit Sechskantkopf, nichtrostender Stahl

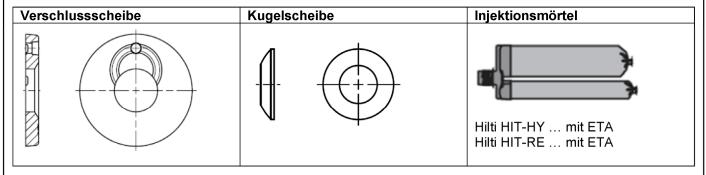
Hilti HUS4-C, Größe 8 und 10, Ausführung mit Senkkopf, Kohlenstoffstahl galvanisch verzinkt

Hilti HUS4-CR, Größe 6, 8 und 10, Ausführung mit Senkkopf, nichtrostender Stahl

Hilti HUS4-A, Größe 10 mit Außengewinde M12 und Größe 14 mit Außengewinde M16, Kohlenstoffstahl galvanisch verzinkt

Hilti HUS4-AF, Größe 10 mit Außengewinde M12 und Größe 14 mit Außengewinde M16, Kohlenstoffstahl mehrlagige Beschichtung

Hilti Betonschraube HUS4

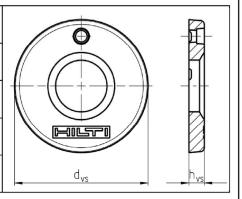

Produktbeschreibung

HUS4 Schraubenausführungen, Verfüll-Set und Hilti Injektionsmörtel Material

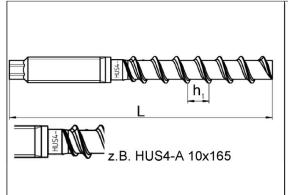
Anhang A2

Tabelle A2: Hilti Verfüll-Set (für HUS4-H (F, R) und HUS4-A(F)) und Hilti Injektionsmörtel

Tabelle A3: Material


Teil	Material
HUS4-H(F), HUS4-C and HUS4-A(F) Betonschraube	Kohlenstoffstahl Bruchdehnung A₅ ≤ 8%
HUS4-HR und HUS4-CR	Nichtrostender Stahl (Klasse A4) Bruchdehnung A5 > 8% Nichtrostender Stahl der Korrosionswiderstandsklasse CRC III nach EN 1993-1-4:2006+A1:2015 1.4401 oder 1.4404 nach EN 10088-1:2014
Hilti Verfüll-Set (Kohlenstoffstahl)	Versschlussscheibe: Kohlenstoffstahl Kugelscheibe: Kohlenstoffstahl
Hilti Verfüll-Set (Nichtrostender Stahl)	Nichtrostender Stahl der Korrosionswiderstandsklasse CRC III nach EN 1993-1-4:2006+A1:2015 Verschlussscheibe: Nichtrostender Stahl A4 nach ASTM A240/A 240M:2019 Kugelscheibe: Nichtrostender Stahl A4 nach EN 10088-1:2014

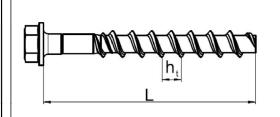
Hilti Betonschraube HUS4	
Produktbeschreibung HUS4 Schraubenausführungen, Verfüll-Set und Hilti Injektionsmörtel Material	Anhang A3


Tabelle A4: Abmessungen Verfüll-Set

Größe Verfüll-Set	M10	M12	M16	M20		
Durchmesser	d _{vs}	[mm]	42	44	52	60
Höhe	h _{vs}	[mm]	5	5	6	6
HUS4-H (F, R)	8	10	12 + 14	16		
HUS4-A (F)	-	10	14	-		

Tabelle A5: Abmessungen und Markierung HUS4-A(F)

Größe HUS4-				A(F) 10			A(F) 14			
Nomineller Dübeldurchmesser	d	[mm]		10		14				
Außengewindeanschluss				M12			M16			
Gewindesteigung	ht	[mm]	10			14				
Länge des Dübele im Beten			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Länge des Dübels im Beton	h_{nom}	[mm]	55	75	85	65	80	115		
Effektive Verankerungstiefe	h _{ef}	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$							
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]	68,0 91,8							
Länge der Schraube min / max	L	[mm]		120 / 165	;		155 / 205	;		


HUS4:	Hilti Universal Schraube 4. Generation								
A: AF:	Außengewinde, galvanisch verzinkt Außengewinde, mehrlagige Beschichtung								
10:	Nomine	Nomineller Schraubendurchmesser d [mm]							
165:	Länge o	Länge der Schraube L [mm]							
8:	C-Stahl	C-Stahl							
K:	Längen	Längenidentifikation HUS4-A 10x165							
G	I	K	J	L	N				
10x120	10x140	10x165	14x155	14x185	14x205				

Hilti Betonschraube HUS4	
Produktbeschreibung Abmessungen und Markierung	Anhang A4

Tabelle A6: Abmessungen und Kopfmarkierung HUS4-H(F)																
Größe HUS4-				H(F) 8	3	H(F) 10		H 12			H(F) 14			H(F) 16		
Nomineller Dübeldurchmesser	d	[mm]	8		10		12			14			16			
Gewindesteigung	ht	[mm]		8 10 12			14			13,2						
Länge des Dübels			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
im Beton	h_{nom}	[mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130
Effektive Verankerungstiefe	h _{ef}	[mm]		$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$												
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]		56,1 68,0			79,9		91,8		104,9					
Länge der Schraube min / max	L	[mm]	4	45 / 150 60 / 305			70 / 150		75 / 150		100 / 205					

Größe HUS4-			HR 6	HE	₹ 8	HR	10	HR 14		
Nomineller Dübeldurchmesser	d	[mm]	6	8 10			0	14		
Gewindesteigung	ht	[mm]	4,75	7	,6	8	,0	9,8		
Nicht tragende Spitze	hs	[mm]	-	1,03 2,43			4,1			
Länge des Dübels			h _{nom2}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	
im Beton	h_{nom}	[mm]	55	60	80	70	90	70	110	
Effektive Verankerungstiefe	h _{ef}	[mm]		h _{ef} = 0,	85 * (h _{nom}	– 0,5 * h _t –	h _s) ≤ h _{ef,ma}	эх		
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]	45	6	4	7	1	86		
Länge der Schraube min / max	L	[mm]	60 / 70	65 / 105		75 /	130	80 / 135		

HUS4: Hilti Universal Schraube 4. Generation

H: Sechskantkopf, galvanisch verzinkt

HF: Sechskantkopf, mehrlagige Beschichtung

HR: Sechskantkopf, nichtrostender Stahl

10: Nomineller Schraubendurchmesser d [mm]

100: Länge der Schraube [mm]

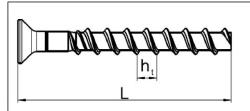

Hilti Betonschraube HUS4	
Produktbeschreibung Abmessungen und Markierung	Anhang A5

Tabelle A7:	Abmessungen ι	und Kopfmarkierung	HUS4-C
-------------	---------------	--------------------	--------

Größe HUS4-				C 8			C 10	
Nomineller Dübeldurchmesser	d	[mm]		8			10	
Gewindesteigung	ht	[mm]	8 10					
Länge des Dübels im Beton			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Lange des Dubeis ini Beton	h _{nom}	[mm]	40	60	70	55	75	85
Effektive Verankerungstiefe	h _{ef}	[mm] $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$						
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]	n] 56,1 68,0					
Länge der Schraube min / max	L	[mm]	55 / 85 70 / 120					

Größe HUS4-			CR 6	CF	₹ 8	CR	10
Nomineller Dübeldurchmesser	d	[mm]	6	8	3	1	0
Gewindesteigung	ht	[mm]	-	7	,6	8	,0
Nicht tragende Spitze	hs	[mm]	-	1,0	03	2,	43
Länge des Dübels im Beton			h _{nom2}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Lange des Dubels IIII beton	h_{nom}	[mm]	55	60	80	70	90
Effektive Verankerungstiefe	h _{ef}	[mm]	h _{ef} =	= 0,85 * (h _r	nom - 0,5 *	$h_t - h_s) \le h_{\epsilon}$	ef,max
Grenze der effektiven Verankerungstiefe	h _{ef,max}	[mm]	45	6	4	7	·1
Länge der Schraube min / max	L	[mm]	60 / 70	65 /	/ 95	85 /	105

HUS4: Hilti Universal Schraube 4. Generation

C: Senkkopf, galvanisch verzinkt

CR: Senkkopf, nichtrostender Stahl

10: Nomineller Schraubendurchmesser d [mm]

100: Länge der Schraube L [mm]

Hilti Betonschraube HUS4	
Produktbeschreibung Abmessungen und Kopfmarkierung	Anhang A6

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Belastung
- Seismische Einwirkung C1 und C2 f
 ür HUS4-H(F)/-C/-A(F) (Kohlenstoffstahl)
- Seismische Einwirkung C1: HUS4-HR/-CR Größe 8, 10 and 14, (nichtrostender Stahl)
- Brandbeanspruchung

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013+A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 entsprechend EN 206:2013+A1:2016.
- Gerissener oder ungerissener Beton.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume.
- Für alle anderen Bedingungen entsprechend der Korrosionswiderstandsklasse CRC nach EN 1993-1-4:2006+A1:2015
 - Nichtrostender Stahl nach Anhang A3, Tabelle A3, Schraubenarten HUS4-HR/-CR: CRC III

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind pr
 üfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des D
 übels (z. B. Lage des D
 übels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018
- Bei Anforderungen an den Brandschutz ist sicherzustellen, dass lokale Betonabplatzungen vermieden werden.

Einbau:

- Der Verankerung durch entsprechend geschulten Personals und unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Nach der Montage darf ein leichtes Weiterdrehen des Dübels nicht möglich sein.
- Der Dübelkopf (HUS4-H (F, R) und HUS4-C/-CR) muss am Anbauteil anliegen und darf nicht beschädigt sein.
- Das Hilti Verfüll-Set darf mit HUS4-H (F, R) und HUS4-A (F) verwendet werden.

Hilti Betonschraube HUS4	
Verwendungszweck Spezifikationen	Anhang B1

Spezifizierung des Verwendungszwecks: Bohren und reinigen für <u>Kohlenstoffstahl</u> Tabelle B1: Statische und quasi-statische Lasten für HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F)			Dübelgröße und Einbindetiefe h _{nom}	
Gerissener und ungeri	ssener Beton			
Lieuwana anh a lanana (LID)1)	gereinigt		Größe 8 bis 16 mit allen h _{nom}	
Hammerbohren (HD) ¹⁾	ungereinigt	التنتين	Größe 8 bis 14 mit allen hnom	
Hammerbohren mit Hilti TE-CD (HDB) ¹⁾	Hohlbohrern		Größe 12 und 14 mit allen h _{nom}	
Ungerissener Beton				
Diamantbohren (DD) DD30-W handgeführt ur DD-EC1 handgeführt	nd with Bohrständer	(Größe 10 bis 14 mit h _{nom3}	

¹⁾ Adjustieren nach Anhang B11 ist mit den Größen 8 bis 14 bei h_{nom2+3} erlaubt.

Tabelle B2: Seismische Einwirkung C1 für HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F)		Dübelgröße und Einbindetiefe h _{nom}
Hammerbohren (HD) ¹⁾	gereinigt	Größe 8 bis 14 mit h _{nom2+3} Größe 16 mit h _{nom1+2}
, ,	ungereinigt	Größe 8 bis 14 mit h _{nom2+3}
Hammerbohren mit Hilti TE-CD (HDB) ¹⁾	Hohlbohrern	Größe 12 und 14 mit h _{nom2+3}

¹⁾ Adjustieren nach Anhang B11 ist mit den Größen 8 bis 14 bei h_{nom2+3} erlaubt.

Tabelle B3: Seismische Einwirkung C2 für HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F)		Dübelgröße und Einbindetiefe h _{nom}	
Hammarhahran (HD)1)	gereinigt	~~~	Größe 8 bis 14 mit h _{nom3}
Hammerbohren (HD) ¹⁾	ungereinigt	كتتت	Größe 8 bis 14 mit h _{nom3}

¹⁾ Adjustieren nach Anhang B11 ist mit den Größen 8 bis 14 bei h_{nom3} erlaubt.

Tabelle B4: Statische und quasi-statische Lasten unter Brandbeanspruchung für HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F)			Dübelgröße und Einbindetiefe h _{nom}
Hammarhahran (HD)1)	gereinigt	~~~	Größe 8 bis 16 mit allen h _{nom}
Hammerbohren (HD) ¹⁾	ungereinigt	التنتين	Größe 8 bis 14 mit allen h _{nom}
Hammerbohren mit Hilti Hohlbohrern TE-CD (HDB) ¹⁾			Größe 12 und 14 mit allen h _{nom}

¹⁾ Adjustieren nach Anhang B11 ist mit den Größen 8 bis 14 bei h_{nom2+3} erlaubt.

Hilti Betonschraube HUS4	
Verwendungszweck Spezifikationen	Anhang B2

Spezifizierung des Verwendungszwecks: Bohren und reinigen für HUS4 nichtrostender Stahl

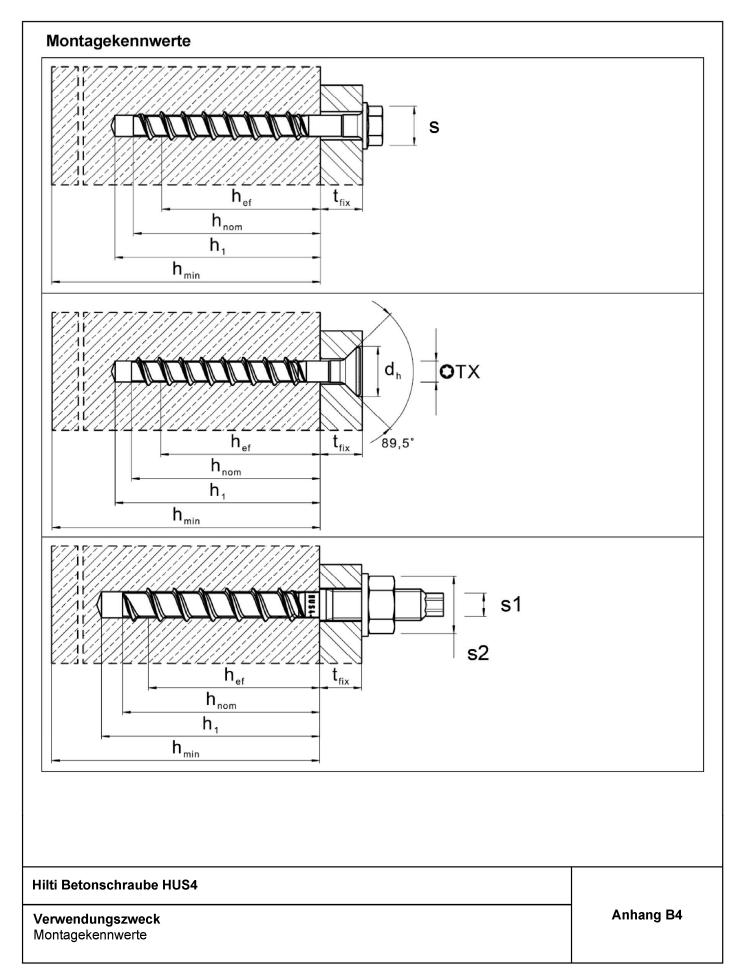
Table B5: Static and quasi static loading for HUS4-HR/-CR

HUS4-HR/-CR		Dübelgröße und Einbindetiefe h _{nom}
Gerissener und ungeri	ssener Beton	
Hammerbohren (HD)	gereinigt ungereinigt	sizes 6 to 14

Table B6: Seismische Einwirkung C1 für HUS4-HR/-CR

HUS4-HR/-CR			Dübelgröße und Einbindetiefe hnom
Hammarhahran (HD)	gereinigt	~~~	sizes 8 to 14 at h _{nom3}
Hammerbohren (HD)	ungereinigt		sizes 8 to 14 at h _{nom3}

Table B7: Statische und quasi-statische Lasten unter Brandbeanspruchung für HUS4-HR/-CR


HUS4-HR/-CR		Dübelgröße und Einbindetiefe hnom
Hammarhahran (HD)	gereinigt	sizes 6 to 14 at all h _{nom}
Hammerbohren (HD)	ungereinigt	sizes 6 to 14 at all h _{nom}

Hilti Betonschraube HUS4

Verwendungszweck
Spezifikationen

Anhang B3

Größe HUS4				8			10	
Тур				H(F), C		H(F), C, A(F)		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} s
Länge des Dübels im Beton	h _{nom}	[mm]	40	60	70	55	75	85
Bohrernenndurchmesser	d ₀	[mm]		8			10	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		8,45			10,45	
Durchmesser der Diamantbohrkrone	d _{cut} ≤	[mm]		-			9,9	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]		12			14	
Durchgangsloch im Anbauteil Vorsteckmontage (A-type)	d _f ≤	[mm]		-			14	
Schlüsselweite (H, HF-type)	S	[mm]		13			15	
Schlüsselweite für den Sechskantkopf (A-type)	s1	[mm]		-		8		
Schlüsselweite für die Mutter (A-type)	s2	[mm]	-			19		
Maximales Anziehdrehmoment (A-type)	max T _{inst}	[Nm]	-			40		
Torx-Größe (C-type)	TX	-	45			50		
Durchmesser Senkkopf	dh	[mm]	18			21		
Bohrlochtiefe für gereinigte Bohrlöcher Hammerbohren, Diamantbohren oder	h₁ ≥	[mm]	<u> </u>			+ 10 mm)		
ungereinigt Hammerbohren Überkopf Bohrlochtiefe für ungereinigte Bohrlöcher			50	70	80	65	85	95
Hammerbohren in Wand und Bodenposition	h ₁ ≥	[mm]	66	(r 86	96	mm) + 2 ' 85	`d₀ 105	115
Bohrlochtiefe (mit Adjustierung) für					(h _{nom} +	· 20 mm)		1
gereinigte Bohrlöcher. Hammerbohren, Diamantbohren oder ungereinigt Hammerbohren Überkopf	h ₁ ≥	[mm]	-	80	90	-	95	105
Bohrlochtiefe (mit Adjustierung) für				(r	n _{nom} + 20	mm) + 2 [*]	' d o	
ungereinigte Bohrlöcher Hammerbohren in Wand und Bodenposition	h ₁ ≥	[mm]	-	96	106	-	115	125
·					(h ₁ +	30 mm)		
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]	80	100	120	100	130	140
Minimaler Achsabstand	s _{min} ≥	[mm]	35			40		
Minimaler Randabstand	C _{min} ≥	[mm]	35				40	
Hilti Setzgerät ¹⁾			SIW 6AT-A22 1/2" SIW 6-22 1/2" gear 1		SIW 6AT-A22 1/2" SIW 22T-A 1/2" SIW 6-22 1/2" SIW 8-22 1/2" gear 1 SIW 9-A22 3/4"			

Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B5

Größe HUS4				12			14	
Тур		-	н			H(F), A(F)		
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des Dübels im Beton	h_{nom}	[mm]	60	80	100	65	85	115
Bohrernenndurchmesser	d ₀	[mm]		12			14	•
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]		12,50			14,50	
Durchmesser der Diamantbohrkrone	d _{cut} ≤	[mm]		12,2			-	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]		16			18	
Durchgangsloch im Anbauteil Vorsteckmontage (A-type)	d _f ≤	[mm]		-			18	
Schlüsselweite (H, HF-type)	S	[mm]		17			21	
Schlüsselweite für den Sechskantkopf (A-type)	s1	[mm]	- 1:			12	12	
Schlüsselweite für die Mutter (A-type)	s2	[mm]	- 24			24		
Maximales Anziehdrehmoment (A-type)	max T _{inst}	[Nm]	. 80					
Bohrlochtiefe für gereinigte Bohrlöcher		F	(h _{nom} + 1		10 mm)			
Hammerbohren, Diamantbohren oder ungereinigt Hammerbohren Überkopf	h₁ ≥	[mm]	70 90 110	110	75	95	125	
Bohrlochtiefe für ungereinigte Bohrlöcher				(h	_{nom} + 10 r	nm) + 2 *	+ 2 * d ₀	
Hammerbohren in Wand und Bodenposition	h₁≥	[mm]		103	123	153		
Bohrlochtiefe (mit Adjustierung) für				l	(h _{nom} +	20 mm)		
gereinigte Bohrlöcher. Hammerbohren, Diamantbohren,oder ungereinigt Hammerbohren Überkopf	h₁ ≥	[mm]	-	100	120	-	105	135
Bohrlochtiefe (mit Adjustierung) für				(h	_{nom} + 20 r	nm) + 2 *	d ₀	
ungereinigte Bohrlöcher Hammerbohren in Wand und Bodenposition	h ₁ ≥	[mm]		-	133	163		
					(h ₁ + 3	I		
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]	110	130	150	120	160	200
Minimaler Achsabstand	s _{min} ≥	[mm]		50			60	
Minimaler Randabstand	C _{min} ≥	[mm]	n] 50 60					
Hilti Setzgerät ¹⁾			SIW 22T-A 1/2" SIW 22T-A 1/2" SIW 6-22 1/2" SIW 6-22 1/2" SIW 8-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4" SIW 9-A22 3/4"		/2" /2"			

¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B6

Größe HUS4			16	6
Тур			H(I	F)
			h _{nom1}	h _{nom2}
Länge des Dübels im Beton	h_{nom}	[mm]	85	130
Bohrernenndurchmesser	d ₀	[mm]	16	6
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	16,50	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]	20	
Schlüsselweite (H, HF-type)	s	[mm]	24	
Bohrlochtiefe für gereinigte Bohrlöcher		F7	(h _{nom} + 1	10 mm)
Hammerbohren oder ungereinigt Hammerbohren Überkopf	h₁ ≥	[mm]	95	140
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]	130	195
Minimaler Achsabstand	s _{min} ≥	[mm]	90)
Minimaler Randabstand	C _{min} ≥	[mm]	65	
Hilti Setzgerät ¹⁾			SIW 22T SIW 6-2 SIW 8-2 SIW 9-A	22 1/2" 22 1/2"

¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B7

Tabelle B11: Montagekennwerte HUS4-HR/-CR 6 und 8

Größe HUS4			6	8		
Тур			HR, CR	HR, CR		
			h _{nom1}	h _{nom1}	h _{nom2}	
Länge des Dübels im Beton	h_{nom}	[mm]	55	60	80	
Bohrernenndurchmesser	d ₀	[mm]	6	8	3	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,40	8,	45	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]	9	1	2	
Schlüsselweite (H-type)	s	[mm]	13	1	3	
Torx-Größe (C-type)	TX	[-]	30	45		
Durchmesser Senkkopf	dh	[mm]	11	18		
Bohrlochtiefe für gereinigte Bohrlöcher			h _{nom} + 10mm			
Hammerbohren oder ungereinigt Hammerbohren Überkopf	h₁ ≥	[mm]	65	70	90	
Bohrlochtiefe für ungereinigte Bohrlöcher			(h _{nom} + 10 r	nm) + 2 * d ₀	l	
Hammerbohren in Wand und Bodenposition	h ₁ ≥ [mm]		77	86	106	
	L \	[(h ₁ + 30 mm)			
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]	100	100	120	
Minimaler Achsabstand	s _{min} ≥	[mm]	35	60		
Minimaler Randabstand	C _{min} ≥	[mm]	35	60		
Hilti Setzgerät ¹⁾			SIW 6AT-A22 1/2"	SIW 22T-A 1/2" SIW 6AT-A22 1/2"		
_			gear 3	gear 3 SIW 6-22 1/2" gear 2		

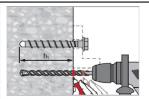
¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.

Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B8

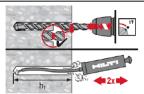
Tabelle B12: Montagekennwerte HUS4-HR/-CR 10 und 14

Fastener size HUS4			1	0	14		
Туре			HR,	CR	HR		
			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Länge des Dübels im Beton	h_{nom}	[mm]	70	90	70	110	
Bohrernenndurchmesser	d_0	[mm]	1	0	1	4	
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	10	,45	14	,50	
Durchgangsloch im Anbauteil Durchsteckmontage	d _f ≤	[mm]	1	4	1	8	
Schlüsselweite (H-type)	s	[mm]	1	5	21		
Torx-Größe (C-type)	TX	[-]	50		-		
Durchmesser Senkkopf	dh	[mm]	21		-		
Bohrlochtiefe für gereinigte Bohrlöcher			h _{nom} +		· 10mm		
Hammerbohren oder ungereinigt Hammerbohren Überkopf	h ₁ ≥ [mm]		80	100	80	120	
Bohrlochtiefe für ungereinigte Bohrlöcher				(h _{nom} + 10 r	mm) + 2 * d ₀		
Hammerbohren in Wand und Bodenposition	h ₁ =	[mm]	100	120	108	148	
Maximales Anziehdrehmoment	T _{inst}	[Nm]	4	5	6	5	
Minimale Dicke des Betonbauteils	h _{min} ≥	[mm]	120	140	140	160	
Minimum spacing	s _{min} ≥	[mm]	50		60		
Minimaler Achsabstand	C _{min} ≥	[mm]	50		60		
Hilti Setzgerät 1)	Setzgerät ¹⁾		SIW 22T-A 1/2" SIW 6AT-A22 1/2" gear 3 SIW 6-22 1/2" gear 2		SIW 22T-A 1/2" SIW 6-22 1/2" gear 2 SIW 8-22 1/2" gear 1 SIW 9-A22 3/4"		

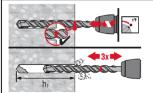
¹⁾ Installation mit anderem Tangential-Schlagschrauber bei gleichwertiger Leistung ist zulässig.


Hilti Betonschraube HUS4	
Verwendungszweck Montagekennwerte	Anhang B9

Setzanweisung

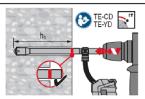

Bohrlocherstellung und Reinigung

Hammerbohren (HD) alle Größen für Kohlenstoffstahl und nichtrostender Stahl Schraubenarten (Größe 16 nur mit Reinigung)

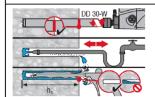


Erforderliche Bohrtiefe h_1 für Durchsteckmontage oder Vorsteckmontage auf dem Bohrer oder der Bohrkrone markieren.

Details zur Bohrlochtiefe h₁ siehe Tabelle B5 bis B9.


Mit Reinigung des Bohrlochs zur Montage in Wand oder Bodenposition. Bohrtiefe $h_1 = h_{nom} + 10 \text{ mm}$

Es ist keine Reinigung erforderlich, wenn nach oben gebohrt wird. Es ist keine Reinigung erforderlich, wenn vertikal nach unten oder horizontal gebohrt und nach dem Bohren dreimal gelüftet¹⁾ wird. Die Bohrtiefe muss um zusätzlich 2*d₀ vergrößert werden.


¹⁾ Den Bohrer dreimal aus dem Bohrloch ziehen und wieder hineinschieben, nachdem die empfohlene Bohrlochtiefe h1 erreicht wurde. Dieses Vorgehen soll sowohl im Drehmodus wie auch im Hammermodus der Bohrmaschine durchgeführt werden. Genauere Informationen sind in der relevanten Gebrauchsanweisung (MPII) enthalten.

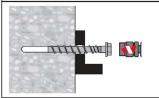
Hammerbohren mit Hilti Hohlbohrer (HDB) TE-CD Größe 12 und 14 für Kohlenstoffstahl Schraubenarten.

Es ist keine Reinigung erforderlich Bohrtiefe $h_1 = h_{nom} + 10 \text{ mm}$

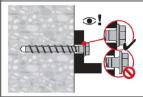
Diamantbohren mit DD-EC1 oder DD-30W Grüße 10 bis 14 für Kohlenstoffstahl Schraubenarten.

Mit Reinigung des Bohrlochs zur Montage in alle Richtungen. Bohrtiefe $h_1 = h_{nom} + 10 \text{ mm}$

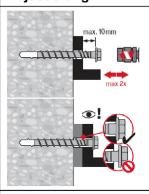
Hilti Betonschraube HUS4


Verwendungszweck
Setzanweisung

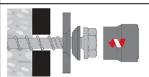
Anhang B10


Setzen des Dübels ohne Adjustierung für Kohlenstoffstahl und nichtrostender Stahl Schraubenarten.

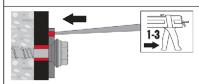
Maschinensetzen


Montagekennwerte siehe Tabelle B5 bis B7.

Kontrolle der Setzung


Setzen des Dübels mit Adjustierung für Kohlenstoffstahl Schraubenarten.

Adjustierung



Der Dübel darf maximal zweimal adjustiert werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10 mm betragen. Die erforderliche Setztiefe h_{nom2} oder h_{nom3} muss nach der Adjustierung eingehalten werden.

Setzen des Dübels mit Hilti Verfüll-Set

Injektion des Hilti HIT Mörtels und Aushärtezeit

Ringspalt zwischen Stahlelement und Anbauteil mit einem Hilti Injektionsmörtel HIT-HY --- oder HIT-RE ... mit 1 bis 3 Hüben verfüllen. Befolgen Sie die Bedienungsanleitung, die dem entsprechenden Hilti Injektionsmörtel beigelegt ist.

Nach Ablauf der erforderlichen Aushärtezeit t_{cure} kann die Befestigung belastet werden.

Hilti Betonschraube HUS4

Verwendungszweck

Setzanweisung

Anhang B11

Wesentliche Merkmale unter statische und quasi-statische Lasten in Tabelle C1: Beton für HUS4 Kohlenstoffstahl Größe 8 und 10

Größe HUS4	Größe HUS4				8			10		
Тур					H(F), C		H	(F), C, A(F)	
				h_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels ir	n Beton	h_{nom}	[mm]	40	60	70	55	75	85	
Adjustierung										
Max. Dicke der Unte	Max. Dicke der Unterfütterung		[mm]	-	10	10	-	10	10	
Max. Anzahl der Ad	justierungen	na	[-]	-	2	2	-	2	2	
Stahlversagen unt	tahlversagen unter Zugbeanspruchung									
Charakteristischer V	Viderstand	$N_{Rk,s}$	[kN]		36,0			55,0		
Teilsicherheitsbeiwe	ert	γ _{Ms,N} 1)	[-]	1,5						
Herausziehen			•							
Charakteristischer V ungerissenem Betor		N Rk,p	[kN]		≥ N ⁰ _{Rk,c} ³⁾		13	22	≥ N ⁰ Rk,c ³⁾	
Charakteristischer V gerissenem Beton C		$N_{Rk,p}$	[kN]	$5.5 \geq N^{0}_{RK,c^{3}}$						
Erhöhungsfaktor für $N_{Rk,p} = N_{Rk,p(C20/25)} *$		Ψ¢	[-]			(f _{ck} /2	2 0) ^{0,5}			
Betonausbruch un	d Spalten									
Effektive Verankeru	ngstiefe	$h_{\text{ef}}^{2)}$	[mm]	30,6	47,6	56,1	42,5	59,5	68,0	
Faktor für	ungerissenen Beton	k _{ucr,N}	[-]			11	,0			
	gerissenen Beton	k cr,N	[-]		7,7					
Betonausbruch	Randabstand	C cr,N	[mm]			1,5	h _{ef}			
Betoriausprucii	Achsabstand	S cr,N	[mm]		3 h _{ef}					
Charakteristischer V	arakteristischer Widerstand N ⁰ _{Rk,sp} [kN]		N _{Rk,p}							
Spolton	Randabstand	C cr,sp	[mm]		1,5 h _{ef}			1,65 h _{ef}		
Spalten	Achsabstand	S cr,sp	[mm]		3 h _{ef}			3,3 h _{ef}		
Montagebeiwert		γinst	[-]		1,0		1,2	1	,0	

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	Anhang C1

²⁾ Wenn $h_{nom} > h_{nom1}$ und $< h_{nom3}$ kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_{t})$ ³⁾ $N^{0}_{RK,c}$ gemäß EN 1992-4:2018

Tabelle C1 fortgesetzt								
Größe HUS4				8			10	
Тур				H(F), C		Н	(F), C, A(F)
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Länge des Dübels im Beton	h_{nom}	[mm]	40	60	70	55	75	85
Stahlversagen unter Querbeanspru	chung							
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	18	3,8	21,9	28	3,8	32,0
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]			1,	25		
Duktilitätsfaktor	k 7	[-]			0	,8		
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]		32			64	
Betonausbruch auf der lastabgewa	ndten Seite (pry-out)						
Pry-out Faktor	k ₈	[-]	1,0	2	,0	1,0	2	,0
Betonkantenbruch								
Wirksame Dübellänge	lf	[mm]	40	60	70	55	75	85
Wirksamer Außendurchmesser	d_{nom}	[mm]		8			10	

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	Anhang C2

Tabelle C2: Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton für HUS4 Kohlenstoffstahl Größe 12 bis 16

Größe HUS4					12			14		1	6
Тур					Н		Н	(F), A(F)	H((F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im B	eton	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Adjustierung											
Max. Dicke der Unterfü	tterung	t adj	[mm]	-	10	10	-	10	10	-	-
Max. Anzahl der Adjust	ierungen	na	[-]	-	2	2	-	2	2	-	-
Stahlversagen unter 2	Zugbeanspruchui	ng									
Charakteristischer Wide	erstand	N _{Rk,s}	[kN]		79,0			101,5		10	7,7
Teilsicherheitsbeiwert		γ _{Ms,N} 1)	[-]				1	,5			
Herausziehen											
Charakteristischer Wide ungerissenem Beton Ca	20/25	N _{Rk,p}	[kN]			≥ N ^o	Rk,c ³⁾			22	46
Charakteristischer Wide gerissenem Beton C20		$N_{Rk,p}$	[kN]	$10 \qquad \geq N^{0}_{Rk,c^{3)}} \qquad 16$			32				
Erhöhungsfaktor für $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_c$		Ψc	[-]				(f _{ck} /2	2 0) ^{0,5}			
Betonausbruch und S	palten										
Effektive Verankerungs	tiefe	$h_{\text{ef}}^{2)}$	[mm]	45,9	62,9	79,9	49,3	66,3	91,8	66,6	104,9
Faktor für	ungerissenen Beton	k _{ucr,N}	[-]				11	1,0			
T ARTOT TUT	gerissenen Beton	k _{cr,N}	[-]				7	,7			
 Betonausbruch	Randabstand	C _{cr,N}	[mm]				1,5	h _{ef}			
Betonausbruch	Achsabstand	S cr,N	[mm]				3	h _{ef}			
Charakteristischer Wide	erstand	N^0 Rk,sp	[kN]				N	Rk,p			
Spalten	Randabstand	C cr,sp	[mm]		1,65 h _e	f			1,60 h _e	f	
Opailell	Achsabstand	S cr,sp	[mm]		3,30 h _e	f			3,20 h _e	f	
Montagebeiwert		γinst	[-]				1	,0			

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	Anhang C3

Wenn $h_{nom} > h_{nom1}$ und $< h_{nom3}$ kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_{t})$ North Andrea Hallorian Regelanger Heiner.

Tabelle C2 fortgesetzt										
Größe HUS4				12			14		1	6
Тур				Н		Н	(F), A(F)	H((F)
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im Beton	h_{nom}	[mm]	60	80	100	65	85	115	85	130
Stahlversagen unter Querbeanspruc	hung									
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	38	3,9	44,9	55	6	2	65,1	73,1
Teilsicherheitsbeiwert	$\gamma_{\text{Ms},\text{V}}^{1)}$	[-]				1,	25			
Duktilitätsfaktor	k 7	[-]				0	,8			
Charakteristischer Widerstand	M^0 Rk,s	[Nm]		120			186		24	40
Betonausbruch auf der lastabgewan	dten Seite (pry-out)	ı							
Pry-out Faktor	k 8	[-]				2	,0			
Betonkantenbruch										
Wirksame Dübellänge	lf	[mm]	60	80	100	65	85	115	85	130
Wirksamer Außendurchmesser	d_{nom}	[mm]		12			14		1	6

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	Anhang C4

Tabelle C3: Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton für HUS4 nichtrostender Stahl Größe 6 bis 14

Größe HUS4				6		В	1	0	1	4
Тур				HR, CR	HR,	, CR	HR,	CR	н	R
Länge des Dübels	im Beton	h _{nom}	[mm]	55	60	80	70	90	70	110
Stahlversagen un Querbeanspruch		ıchung								
Charakteristischer	Widerstand	$N_{Rk,s}$	[kN]	24,0	34	1,0	52	2,6	102	2,2
Teilsicherheitsbeiv	vert	$\gamma_{Ms,N}^{1)}$	[-]	1,4						
Charakteristischer	Widerstand	$V_{Rk,s}$	[kN]	17,0	26	5,0	33	3,0	55,0	77,0
Teilsicherheitsbeiv	vert	$\gamma_{Ms,V}^{1)}$	[-]				1,5			
Duktilitätsfakto		k ₇	[-]				1,0			
Charakteristischer	Widerstand	M ⁰ Rk,s	[Nm]	19	3	6	6	6	19	3
Herausziehen					•					
Charakteristischer gerissenem Beton	C20/25	$N_{Rk,p}$	[kN]	5	8,5	15	12	16	12	25
Charakteristischer ungerissenem Bet	on C20/25	$N_{Rk,p}$	[kN]	9	12 16 16 25 ≥N ⁰ _{Rk,c}			₹k,c ²⁾		
Erhöhungsfaktor fü $N_{Rk,p} = N_{Rk,p(C20/25)}$		Ψc	[-]		$(f_{ck}/20)^{0,5}$					
Concrete cone and	splitting failure									
Effektive Veranker	ungstiefe	h _{ef}	[mm]	45	47	64	54	71	52	86
Faktor für	ungerissenen Beton	$\mathbf{k}_1 = \mathbf{k}_{\text{cr,N}}$	[-]				7,7			
T artor rai	gerissenen Beton	k ₁ = k _{ucr,N}	[-]				11,0			
Betonausbruch	Randabstand	C cr,N	[mm]			1	,5 h _{ef}			
Deterradabilitier	Achsabstand	S _{cr,N}	[mm]				3 h _{ef}			
Spalten	Randabstand	C cr,sp	[mm]	1,5 h _{ef}	1,5	h _{ef}	1,8	h _{ef}	1,8	h _{ef}
Oparteri	Achsabstand	S cr,sp	[mm]	3 h _{ef}	3	h _{ef}	3,6	h _{ef}	3,6	h _{ef}
Montagebeiwert		γinst	[-]	1,4	1,0	1,2	1,2	1,0	1,	2
Betonausbruch a lastabgewandten										
Pry-out Faktor		k ₈	[mm]	1,5				2,0		
Betonkantenbruc	h									
Wirksame Dübellä	nge	$I_f = h_{ef}$	[mm]	45	47	64	54	71	52	86
Wirksamer Außen	durchmesser	d _{nom}	[mm]	6	3	8	1	0	1	4

¹⁾ Sofern andere nationale Regelungen fehlen.

²⁾ N⁰_{Rk,c} gemäß EN 1992-4:2018

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter statische und quasi-statische Lasten in Beton	Anhang C5

Tabelle C4: Wesentliche Merkmale für die seismische Einwirkung C1 in Beton für HUS4 Kohlenstoffstahl

Länge des Dübels im Beton h_{nom} [mm]607075858010085Stahlversagen unter Zug- und QuerbeanspruchungCharakteristischer Widerstand $N_{Rk,s,C1}$ [kN]36,055,079,0101Teilsicherheitsbeiwert $\gamma_{Ms,N}^{1)}$ [-]1,5	h _{nom3}
Typ $A(F)$, C $A(F)$	h _{nom3} 115
Länge des Dübels im Beton h_{nom} [mm]607075858010085Stahlversagen unter Zug- und QuerbeanspruchungCharakteristischer Widerstand $N_{Rk,s,C1}$ [kN]36,055,079,0101Teilsicherheitsbeiwert $\gamma_{Ms,N}^{1)}$ [-]1,5Charakteristischer Widerstand $V_{Rk,s,C1}$ [kN]18,826,738,922,5Teilsicherheitsbeiwert $\gamma_{Ms,V}^{1)}$ [-]1,25Abminderungsfaktor nach EN 1992-4: 2018 für nicht verfüllten Ringspalt α_{gap} [-]0,5Abminderungsfaktor nach EN 1992-4: 2018 für verfüllten Ringspalt α_{gap} [-]1,0	115
)1,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34,5
	34,5
Abminderungsfaktor nach EN 1992-4: 2018 für nicht verfüllten Ringspalt Abminderungsfaktor nach EN 1992-4: 2018 für verfüllten Ringspalt α _{gap} [-] 1,0	
2018 für nicht verfüllten Ringspalt Abminderungsfaktor nach EN 1992-4: 2018 für verfüllten Ringspalt α _{gap} [-] 1,0	
2018 für verfüllten Ringspalt	
Herausziehen	
Tioradozionon	
Charakteristischer Widerstand in gerissenem Beton $N_{Rk,p,C1}$ [kN] $\geq N_{Rk,c}^{0}$	
Betonausbruch	
Effektive Verankerungstiefe hef²) [mm] 47,6 56,1 59,5 68,0 62,9 79,9 66,3	91,8
Betonausbruch Randabstand c _{cr,N} [mm] 1,5 h _{ef}	
Achsabstand s _{cr,N} [mm] 3 h _{ef}	
Montagebeiwert γ _{inst} [-] 1,0	
Betonausbruch auf der lastabgewandten Seite (pry-out)	
Pry-out Faktor k ₈ [-] 2,0	
Betonkantenbruch	
Wirksame Dübellänge I _f [mm] 60 70 75 85 80 100 85	115
Wirksamer Außendurchmesser d _{nom} [mm] 8 10 12 14	14

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale für die seismische Einwirkung C1 in Beton	Anhang C6

²⁾ Wenn $h_{nom} > h_{nom1}$ und $< h_{nom3}$ kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_{t})$

³⁾ N⁰_{Rk,c} gemäß EN 1992-4:2018

Größe HUS4				1	6		
Тур				H(F)			
				h _{nom1}	h _{nom2}		
Länge des Dübels im l	3eton	h _{nom}	[mm]	85	130		
Stahlversagen unter	Zug- und Querbe	anspruchu	ıng				
Charakteristischer Wid	lerstand	N _{Rk,s,C1}	[kN]	107,7			
Teilsicherheitsbeiwert		γMs,N ¹⁾	[-]	1,5			
Charakteristischer Wid	lerstand	V _{Rk,s,C1}	[kN]	42,9 25,3			
Teilsicherheitsbeiwert		γMs,V ¹⁾	[-]	1,25			
Teilsicherheitsbeiwert verfüllt	Ringspalt nicht	αgap	[-]	0,5			
Teilsicherheitsbeiwert	Ringspalt verfüllt	$lpha_{\sf gap}$	[-]	1,0			
Herausziehen							
Charakteristischer Wid gerissenem Beton	lerstand in	N _{Rk,p,C1}	[kN]	7,5			
Betonausbruch							
Effektive Verankerung	stiefe	$h_{\text{ef}}^{2)}$	[mm]	66,6	104,9		
Betonausbruch	Randabstand	C cr,N	[mm]	1,5	h _{ef}		
	Achsabstand	S cr,N	[mm]	3 h _{ef}			
Montagebeiwert		γinst	[-]	1,0			
Betonausbruch auf d	er lastabgewandt	en Seite (p	ory-out)				
Pry-out Faktor		k 8	[-]	2,0			
Betonkantenbruch							
Wirksame Dübellänge		l _f	[mm]	85	130		
Wirksamer Außendurc	hmesser	d _{nom}	[mm]	1	6		

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale für die seismische Einwirkung C1 in Beton	Anhang C7

Wenn $h_{nom} > h_{nom1}$ und $< h_{nom3}$ kann das aktuelle h_{ef} für Betonausbruch folgendermaßen berechnet werden: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_{t})$

Tabelle C5: Wesentliche Merkmale für die seismische Einwirkung C1 in Beton für HUS4 nichtrostender Stahl

Fastener size F	IUS4			8	10	14
Тур				HR, CR	HR, CR	HR
Länge des Dübe	els im Beton	h _{nom}	[mm]	80	90	110
Stahlversagen Querbeansprud						
Charakteristisch	er Widerstand	$N_{Rk,s,C1}$	[kN]	34,0	52,6	102,2
Teilsicherheitsb	eiwert	$\gamma_{Ms,N}^{1)}$	[-]		1,4	
Charakteristisch	er Widerstand	$V_{Rk,s,C1}$	[kN]	11,1	17,9	53,9
Teilsicherheitsb	eiwert	$\gamma_{\text{Ms},\text{V}}^{1)}$	[-]		1,5	
Herausziehen						
	Charakteristischer Widerstand in gerissenem Beton		[kN]	7,7	12,5	17,5
Betonausbruch	ı					
Effektive Verank	kerungstiefe	h_{ef}	[mm]	64	71	86
Betonausbruc	Randabstand	Ccr,N	[mm]		1,5 h _{ef}	
h	Achsabstand	S _{cr,N}	[mm]		3 h _{ef}	
Montagebeiwert		γinst	[-]	1,2	1,0	1,2
Betonausbruch lastabgewandt	n auf der en Seite (pry-out)					
Pry-out Faktor		k ₈	[-]		2,0	
Betonkantenbr	uch					
Wirksame Dübe	llänge	$I_f = h_{ef}$	[mm]	64	71	86
Wirksamer Auße	endurchmesser	d _{nom}	[mm]	8	10	14

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale für die seismische Einwirkung C1 in Beton	Anhang C8

Tabelle C6: Wesentliche Merkmale für die seismische Einwirkung C2 in Beton für HUS4 Kohlenstoffstahl

11054	Konienstons	itaiii							
Größe HUS4				8	10	12	14		
Тур				H(F), C	H(F), C, A(F)	Н	H(F), A(F)		
				h _{nom3}	h _{nom3}	h _{nom3}	h _{nom3}		
Länge des Dübels im Be	ton	h_{nom}	[mm]	70	85	100	115		
Adjustierung									
Max. Dicke der Unterfütte	erung	t adj	[mm]	10	10	10	10		
Max. Anzahl der Adjustie	rungen	na	[-]	2	2	2	2		
Stahlversagen unter Zu	gbeanspruchu	ng	•						
Charakteristischer Widerstand		N _{Rk,s,C2}	[kN]	36,0	55,0	79,0	101,5		
Teilsicherheitsbeiwert		γ _{Ms,N} 1)	[-]		1,	,5			
Stahlversagen unter Qu	ıerbeanspruchı	ung	<u>'</u>						
Teilsicherheitsbeiwert		γ _{Ms,V} 1)	[-]		1,2	25			
Montage mit Hilti Verfüll-	Set (HUS4-H un	d HUS4-A))						
Charakteristischer Wider	stand	$V_{Rk,s,C2}$	[kN]	13,9	21,5	27,2	46,5		
Abminderungsfaktor nac 2018 für verfüllten Rings		$lpha_{\sf gap}$	[-]	1,0					
Montage ohne Hilti Verfü	II-Set								
Charakteristischer Wider		$V_{Rk,s,C2}$	[kN]	9,4	13,7	22,5	34,4		
Abminderungsfaktor nac 2018 für nicht verfüllten F		lphagap	[-]		0	,5			
Herausziehen									
Charakteristischer Wider gerissenem Beton	stand in	$N_{Rk,p,C2}$	[kN]	2,7	5,4	11,4	17,7		
Betonausbruch									
Effektive Verankerungsti	efe	h _{ef}	[mm]	56,1	68,0	79,9	91,8		
Beton-ausbruch	Randabstand	C cr,N	[mm]		1,5	h _{ef}			
Deton-ausbruch	Achsabstand	S cr,N	[mm]		3	h _{ef}			
Montagebeiwert γ _{inst} [-]				1,0					
Betonausbruch auf der	lastabgewandt	en Seite (pry-out)						
Pry-out Faktor			[-]		2,	,0			
Betonkantenbruch									
Wirksame Dübellänge		lf	[mm]	70	85	100	115		
Wirksamer Außendurchn	nesser	d _{nom}	[mm]	8	10	12	14		

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale für die seismische Einwirkung C2 in Beton	Anhang C9

Tabelle C7: Wesentliche Merkmale unter Brandbeanspruchung in Beton für HUS4-H Kohlenstoffstahl

Größe HUS4-H(F)					. 8		10			
				h_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im	Beton	h _{nom}	[mm]	40	60	70	55	75	85	
Stahlversagen unter	Zug und Quer	beanspruchu	ng (F _{Rk,s}	,fi = N _{Rk,s}	,fi = V _{Rk,s,t}	i)		•		
	R30	$F_{Rk,s,fi}$	[kN]		2,6		4,1	4	,2	
	R60	$F_{Rk,s,fi}$	[kN]		1,9		3,1	3	,1	
	R90	$F_{Rk,s,fi}$	[kN]		1,2		2,2	2	,3	
Charakteristischer	R120	$F_{Rk,s,fi}$	[kN]		0,9		1,5	1	,7	
Widerstand	R30	M^0 _{Rk,s,fi}	[Nm]		2,3		4,8	4,9		
	R60	M^0 Rk,s,fi	[Nm]		1,7		3,6	3	,7	
	R90	M^0 _{Rk,s,fi}	[Nm]		1,1		2,6	2	,7	
	R120	\mathbf{M}^0 Rk,s,fi	[Nm]		0,8		1,8	1	,9	
Herausziehen										
Charakteristischer	R30 R60 R90	N^0 Rk,p,fi	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
Viderstand	R120	N^0 _{Rk,p,fi}	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
Betonausbruch								•	•	
Charakteristischer Widerstand	R30 R60 R90	N^0 Rk,c,fi	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
VVIdorotaria	R30	3,2	1,6	3,7	5,2					
Randabstand										
R30 bis R120		C cr,fi	[mm]			2	h _{ef}			
Der Randabstand mu	ss ≥ 300 mm be	etragen, wenn	die Bran	dbeansp	ruchung v	on mehr	als einer	Seite and	greift.	
Achsabstand										
R30 bis R120		S cr,fi	[mm]			2 (Ccr,fi			
Betonausbruch auf o	der lastabgewa	ındten Seite (ı	pry-out)							
R30 bis R120		k ₈	[-]	1,0	2	,0	1,0	2	,0	
Bei feuchtem Beton is	t die Verankeru	ngstiefe um m	indesten	s 30 mm	zu vergr	ößern.	•	•		

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	Anhang C10

Größe HUS4-H(F)					12			14		1	6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom}
Länge des Dübels im	Länge des Dübels im Beton h _{nom} [mm]			60	80	100	65	85	115	85	130
Stahlversagen unter	Zug und Quer	beanspruchu	ng (F _{Rk,}	s,fi = NF	k _{k,s,fi} = \	√ _{Rk,s,fi})	•				
	R30	F _{Rk,s,fi}	[kN]	7,5	7,6	7,6	10,3	10,4	10,5	10,6	10,7
	R60	$F_{Rk,s,fi}$	[kN]	5,5	5,7	5,8	7,7	7,9	8,0	8,1	8,2
	R90	F _{Rk,s,fi}	[kN]	3,7	3,9	4,1	5,2	5,6	5,8	5,7	5,9
Charakteristischer	R120	$F_{Rk,s,fi}$	[kN]	2,8	3,0	3,1	3,9	4,2	4,4	4,3	4,5
Widerstand	R30	M^0 Rk,s,fi	[Nm]	11,4	11,6	11,6	18,9	19,2	19,3	23,7	23,9
	R60	M^0 _{Rk,s,fi}	[Nm]	8,4	8,8	8,9	14,1	14,6	14,8	18,1	18,3
	R90	M^0 _{Rk,s,fi}	[Nm]	5,7	6,0	6,2	9,5	10,2	10,7	12,7	13,2
	R120	M^0 Rk,s,fi	[Nm]	4,3	4,6	4,7	7,2	7,7	8,1	9,6	10,0
Herausziehen											
Charakteristischer Widerstand	R30 R60 R90	$N^0_{Rk,p,fi}$	[kN]	2,6	4,2	6,1	2,9	4,5	7,5	4,6	8,7
Charakteristischer Widerstand	R120	N^0 Rk,p,fi	[kN]	2,1	3,4	4,9	2,3	3,6	6,0	3,7	7,0
Betonausbruch										•	•
Charakteristischer Widerstand	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,4	5,4	9,8	2,9	6,1	13,9	6,2	19,4
	R120	N^0 Rk,c,fi	[kN]	1,9	4,3	7,8	2,3	4,9	11,1	4,9	15,
Randabstand											
R30 bis R120		C cr,fi	[mm]				2	h _{ef}			
Der Randabstand mu	ss ≥ 300 mm be	tragen, wenn	die Bran	dbean	spruchi	ung voi	n mehr	als ein	er Seite	e angre	eift.
Achsabstand											
R30 bis R120		S _{cr,fi}	[mm]				2 (Ccr,fi			
Betonausbruch auf d	der lastabgewa	ndten Seite (pry-out)								
R30 bis R120		k 8	[-]				2	,0			

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	Anhang C11

Tabelle C8: Wesentliche Merkmale unter Brandbeanspruchung in Beton für HUS4-C Kohlenstoffstahl

Größe HUS4-C					. 8		10			
				h_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im	Beton	h_{nom}	[mm]	40	60	70	55	75	85	
Stahlversagen unter	Zug und Quer	beanspruchu	ng (F _{Rk,s}	,fi = N _{Rk,s}	,fi = V _{Rk,s,t}	i)				
	R30	$F_{Rk,s,fi}$	[kN]		0,5			1,0		
	R60	$F_{Rk,s,fi}$	[kN]		0,4			0,9		
Charakteristischer	R90	$F_{Rk,s,fi}$	[kN]		0,3			0,7		
	R120	$F_{Rk,s,fi}$	[kN]		0,2			0,6		
Widerstand	R30	M^0 _{Rk,s,fi}	[Nm]		0,4			1,2		
	R60	M^0 Rk,s,fi	[Nm]	0,3				1,0		
	R90	M^0 _{Rk,s,fi}	[Nm]		0,2			0,8		
	R120	M^0 Rk,s,fi	[Nm]	0,2				0,6		
Herausziehen										
Charakteristischer Widerstand	R30 R60 R90	N^0 Rk,p,fi	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
	R120	N^0 Rk,p,fi	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
Betonausbruch										
Charakteristischer Widerstand	R30 R60 R90	N^0 _{Rk,e,fi}	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
Viderstand	R120	N^0 Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	75 1,0 0,9 0,7 0,6 1,2 1,0 0,8 0,6 3,9 3,1	5,2	
Randabstand			'						•	
R30 bis R120		C cr,fi	[mm]			2	h _{ef}			
Der Randabstand mus	ss ≥ 300 mm be	tragen, wenn	die Bran	dbeanspi	ruchung v	on mehr	als einer	Seite and	greift.	
Achsabstand										
R30 bis R120		S cr,fi	[mm]			2 (Ccr,fi			
Betonausbruch auf o	der lastabgewa	ındten Seite (ı	pry-out)							
R30 bis R120		k ₈	[-]	1,0	2	,0	1,0	2	,0	
Bei feuchtem Beton is	t die Verankeru	ngstiefe um m	indesten	s 30 mm	zu vergr	ößern.				

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	Anhang C12

Tabelle C9: Wesentliche Merkmale unter Brandbeanspruchung in Beton für HUS4-A Kohlenstoffstahl

Größe HUS4-A(F)					10		14			
				h_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im	Beton	h_{nom}	[mm]	55	75	85	65	85	115	
Stahlversagen unter	Zug und Quer	beanspruchu	ng (F _{Rk,s}	,fi = N _{Rk,s}	,fi = V _{Rk,s,t}	fi)				
	R30	$F_{Rk,s,fi}$	[kN]		4,2			8,4		
	R60	F _{Rk,s,fi}	[kN]		3,3			6,8		
	R90	$F_{Rk,s,fi}$	[kN]		2,5			5,1		
Charakteristischer	R120	F _{Rk,s,fi}	[kN]		2,1			4,3		
Widerstand	R30	M^0 _{Rk,s,fi}	[Nm]	4,8				15,4		
	R60	M^0 Rk,s,fi	[Nm]		3,8			12,4		
	R90	M^0 Rk,s,fi	[Nm]		2,9			9,3		
	R120	M ⁰ Rk,s,fi	[Nm]	2,4				7,8		
Herausziehen										
Charakteristischer	R30 R60 R90	N^0 Rk,p,fi	[kN]	2,3	3,9	4,7	2,9	4,5	7,5	
VVIdorotaria	R120	N^0 Rk,p,fi	[kN]	1,9	3,1	3,7	2,3	3,6	6,0	
Betonausbruch										
Charakteristischer Widerstand	R30 R60 R90	N^0 Rk,e,fi	[kN]	2,0	4,7	6,5	2,9	6,1	13,9	
Ierausziehen Charakteristischer Viderstand Charakteristischer Viderstand Charakteristischer Viderstand Candabstand	R120	N^0 Rk,c,fi	[kN]	1,6	3,7	5,2	2,3	4,9	11,1	
Randabstand			'						•	
R30 bis R120		C cr,fi	[mm]			2	h _{ef}			
Der Randabstand mus	ss ≥ 300 mm be	tragen, wenn	die Bran	dbeanspi	ruchung v	on mehr	als einer	Seite and	greift.	
Achsabstand										
R30 bis R120		S cr,fi	[mm]			2 (Ccr,fi			
Betonausbruch auf o	der lastabgewa	ındten Seite (ı	pry-out)							
R30 bis R120		k ₈	[-]	1,0			2,0			
Bei feuchtem Beton is	t die Verankeru	ngstiefe um m	indesten	s 30 mm	zu vergr	ößern.				

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	Anhang C13

Tabelle C10: Wesentliche Merkmale unter Brandbeanspruchung in Beton für HUS4 nichtrostender Stahl

			00.0		O to:::										
Größe HUS4				(6		8	3			1	0		14	
Тур				HR	CR	Н	R	С	R	н	R	С	R	Н	R
Länge des Dübels im Beton [mm]		[mm]	55		60	80	60	80	70	90	70	90	70	110	
Stahlversagen u	uerbea	nspru	chung	(F _{Rk,s}	,fi = N	Rk,s,fi =	V _{Rk,s}	,fi)							
R30 F _{Rk,s,fi} [kN]		[kN]	4,9 0,2		9	9,3		,8	18	3,5	1,4		41,7		
	R60	$F_{Rk,s,fi}$	[kN]	3,3	0,2	6	,3	0	,6	12	2,0	1	,1	26	6,9
	R90	$F_{Rk,s,fi}$	[kN]	1,8	0,2	3	,2	0	,5	5,	4	0	,9	12	2,2
Charakteristische	R120	$F_{Rk,s,fi}$	[kN]	1,0	0,1	1	,7	0	,4	2,	4	0	,8	5,4	
Widerstand	R30	M^0 Rk,s,fi	[Nm]	4,0	0,2	8	8,2 0,8		19,4		1,5		65,6		
	R60	M^0 Rk,s,fi	[Nm]	2,7	0,2	5	,5	0,7		12,6		1,2		42,4	
	R90	M^0 Rk,s,fi	[Nm]	1,4	0,1	2,8		0	,5	5,	7	0,9		19,2	
	R120	M^0 Rk,s,fi	[Nm]	0,8	0,1	1	,5	0,4		2,5		0,8		8,5	
Herausziehen															
Charakteristische Widerstand	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1	,3	1,5	3,0	1,5	3,0	2,3	4,0	2,3	4,0	3,0	6,3
vvidorotaria	R120	$N_{Rk,p,fi}$	[kN]	1	,0	1,2	2,4	1,2	2,4	1,8	3,2	1,8	3,2	2,4	5,0
Randabstand															
R30 to R120		C cr,fi	[mm]	2 h _{ef}											
Achsabstand															
R30 to R120		S _{cr,fi} [mm] 2 C _{cr,fi}													
Betonausbruch auf der lastabgewandten Seite (pry-out)															
R30 to R120		k 8	[-]	1	,5					2	2,0				

Hilti Betonschraube HUS4	
Leistungen Wesentliche Merkmale unter Brandbeanspruchung in Beton	Anhang C14

Tabelle C11:	Verschiebungen unter Zuglast für HUS4 Kohlenstoffstahl

Größe HUS4		8		10						
Тур					H(F), C		H(F), C, A(F)			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im E	Beton	h_{nom}	[mm]	40	60	70	55	75	85	
	Zuglast	N	[kN]	2,6	5,4	6,9	3,8	7,5	8,6	
Gerissener Beton C20/25 bis C50/60	Verschiebung	δ_{N0}	[mm]	0,1	0,3	0,4	0,2	0,4	0,4	
020,20 8,0 000,00	verscritebung	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9	
	Zuglast	N	[kN]	3,7	7,1	9,1	5,2	10,5	12,2	
Ungerissener Beton C20/25 bis C50/60	Verschiebung	δ _{N0}	[mm]	0,1	0,2	0,2	0,1	0,3	0,3	
	verscritebung	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9	

Größe HUS4			12			14			16		
Тур				н			H(F), A(F)			H(F)	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im Be	eton	h_{nom}	[mm]	60	80	100	65	85	115	85	130
	Zuglast	N	[kN]	5,1	8,2	11,7	5,7	8,6	14,4	8,7	16,7
Gerissener Beton C20/25 bis C50/60	\/orachichung	δ_{N0}	[mm]	0,3	0,4	0,6	0,3	0,4	0,7	0,1	0,4
020/20 8/0 000/00	Verschiebung	δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4
	Zuglast	N	[kN]	6,8	10,8	15,5	7,5	11,7	19,1	11,5	22,9
Ungerissener Beton C20/25 bis C50/60	Verschiebung	δ _{N0}	[mm]	0,2	0,3	0,4	0,2	0,3	0,5	0,4	0,3
223,23 2,3 000,00	verscriebung	δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4

Tabelle C12: Verschiebungen unter Zuglast für HUS4 nichtrostender Stahl

Größe HUS4			6	;	В	10				14		
Тур			HR, CR	HR,	HR, CR		HR, CR		Н		R	
Länge des Dübels im Beton		h _{nom}	[mm]	55	60	80	70	90	70	85	70	110
Gerissener	Zuglast	N	[kN]	1,7	2,4	4,8	3,6	6,3	3,0	4,1	4,8	9,9
Beton	*	δηο	[mm]	0,4	0,5	0,7	0,3	0,6	0,2	0,3	0,9	1,4
0 - 0 - 0 - 0 - 0 - 0		δn∞	[mm]	0,5	0,7	1,1	0,6	1,1	0,3	0,7	1,1	1,4
	· ·	$\delta_{\text{N,seis}}$	[mm]	1)	1)	1,2	1)	1,2	1)	1,2	1)	0,4
Ungerissener	Verschiebung	N	[kN]	3,1	4,8	6,3	6,3	9,9	4,8	6,8	7,5	16,0
Beton C20/25 bis	Disabosassas	δηο	[mm]	0,8	0,7	1,6	0,3	1,3	0,2	0,3	0,7	1,0
C50/60	Displacement -	δn∞	[mm]	0,8	0,7	1,6	0,3	1,3	0,3	0,7	0,7	1,0

¹⁾ Keine Leistung bewertet.

Hilti Betonschraube HUS4	
Leistungen Verschiebungen für statische und quasi-statische Lasten	Anhang C15

Tabelle C13: Verschiebungen unter Querlast für HUS4 Kohlenstoffstahl

Größe HUS4					8		10			
Тур				H(F), C H(F), C, A(F)	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Länge des Dübels im Beton h _{nom} [mm]			[mm]	40	60	70	55	75	85	
	Querlast	V	[kN]	10,7	10,7	12,5	16,5	16,5	18,3	
Beton C20/25 bis C50/60	Verschiebung	δ∨0	[mm]	1,3	1,1	0,9	1,4	1,3	1,0	
323,23 2,3 000,00	verschiebung	δ∨∞	[mm]	2,0	1,7	1,4	2,1	2,0	1,5	

Größe HUS4			12		14			16			
Тур			н			H(F), A(F)			H(F)		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Länge des Dübels im Beton h _{nom} [mm]		60	80	100	65	85	115	85	130		
	Querlast	V	[kN]	22,2	22,2	25,7	31,4	35,4	35,4	37,2	41,8
Beton C20/25 bis C50/60	Vorschiebung	δ_{V0}	[mm]	1,6	1,6	0,9	5,3	5,3	4,0	2,3	1,8
020/20 2/0 000/00	Verschiebung	δ∨∞	[mm]	2,3	2,4	1,4	7,9	7,9	6,0	3,5	2,7

Tabelle C14: Verschiebungen unter Querlast für HUS4 nichtrostender Stahl

Fastener size HUS				6	8	3	1	0	1	4
Тур				HR, CR	HR,	CR	HR,	CR	Н	R
Länge des Dübels im	Beton	h_{nom}	[mm]	55	60	80	70	90	70	110
	Querlast	V	[kN]	7,8	11,0	12,4	13,6	15,7	12,9	27,3
Beton		δνο	[mm]	0,4	2,0	2,3	1,1	1,7	3,5	3,9
C20/25 bis C50/60	Verschiebung	δν∞	[mm]	0,5	2,4	2,9	1,5	2,4	3,9	4,3
		$\delta_{\text{V,C1}}$	[mm]	1)	1)	4,8	1)	5,3	1)	7,6

¹⁾ Keine Leistung bewertet.

Hilti Betonschraube HUS4	
Leistungen Verschiebungen für statische und quasi-statische Lasten	Anhang C16

Tabelle C15: Verschiebungen unter Zug- und Querbeanspruchung für seismische Leistungskategorie C2 für HUS4 Kohlenstoffstahl

Größe HUS4			8	10	12	14
Тур			H(F), C	H(F), C, A(F)	н	H(F), A(F)
			h_{nom3}	h _{nom3}	h _{nom3}	h _{nom3}
Länge des Dübels im Beton	h_{nom}	[mm]	70	85	100	115
Zuglast						
Verschiebung DLS	δ _{N,C2 (DLS)}	[mm]	0,59	0,80	0,77	1,06
Verschiebung ULS	δ _{N,C2} (ULS)	[mm]	1,36	3,66	2,78	3,89
Querlast mit Hilti Verfüll-Set (HUS4-	H und HUS4-A)				
Verschiebung DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]	1,85	1,72	1,73	2,52
Verschiebung ULS	$\delta_{\text{V,C2 (ULS)}}$	[mm]	5,44	6,88	5,62	6,79
Querlast ohne Hilti Verfüll-Set						
Verschiebung DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]	4,64	5,02	4,90	4,93
Verschiebung ULS	δv,c2 (ULS)	[mm]	7,96	8,97	7,00	9,14

Hilti Betonschraube HUS4		
Leistungen Verschiebungen für seismische Leistungskategorie C2	Anhang C17	