

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0867 of 14 July 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS4

Mechanical fastener for use in concrete

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

38 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-20/0867 issued on 14 April 2022

European Technical Assessment ETA-20/0867

Page 2 of 38 | 14 July 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-20/0867

Page 3 of 38 | 14 July 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS4 is an anchor in size 8, 10, 12, 14 and 16 mm made of galvanized or stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4 to B9, Annex C1, C3 and C5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2, C4 and C5
Displacements (static and quasi-static loading)	See Annex C15 and C16
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C5 to C9 and C17

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	See Annex C10 to C14				

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance				
Durability	See Annex B1				

European Technical Assessment ETA-20/0867

Page 4 of 38 | 14 July 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

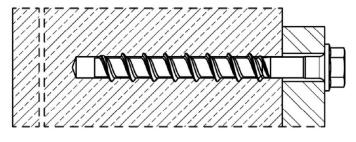
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

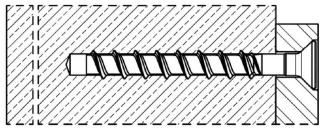
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 14 July 2022 by Deutsches Institut für Bautechnik

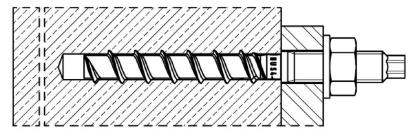

Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:
Tempel

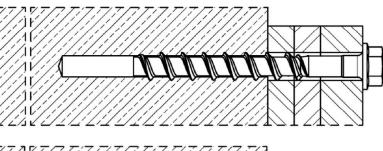

Installed condition without adjustment

HUS4-H (hexagon head configuration sizes 8, 10, 12, 14 and 16)

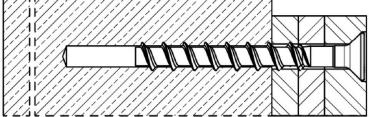

HUS4-HF (hexagon head configuration sizes 8, 10, 14 and 16)

HUS4-HR (hexagon head configuration sizes 6, 8, 10 and 14)

HUS4-C (countersunk head configuration sizes 8 and 10)


HUS4-CR (countersunk head configuration size 6, 8 and 10)

HUS4-A (threaded rod connection sizes 10 with M12 and 14 with M16)


HUS4-AF (threaded rod connection sizes 10 with M12 and 14 with M16)

Installed condition with adjustment - hnom2, hnom3

HUS4-H (hexagon head configuration sizes 8, 10, 12, and 14)

HUS4-HF (hexagon head configuration sizes 8, 10, and 14)

HUS4-C (countersunk head configuration sizes 8 and 10)

Hilti screw anchor HUS4

Product description

Installed condition with and without adjustment

Annex A1

Table A1: Screw types

Hilti HUS4-H, sizes 8,10, 12, 14 and 16, hexagonal head configuration, carbon steel galvanized Hilti HUS4-HF, sizes 8,10, 14 and 16, hexagonal head configuration, carbon steel multilayer coating

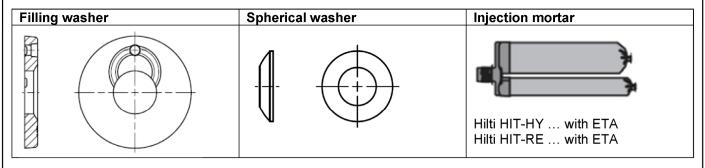
Hilti HUS4-HR, sizes 6, 8, 10 and 14 hexagonal head configuration, stainless steel

Hilti HUS4-C, sizes 8 and 10, countersunk head configuration, carbon steel galvanized

Hilti HUS4-CR, sizes 6, 8 and 10 countersunk head configuration, stainless steel

Hilti HUS4-A, size 10 with external thread M12 and size 14 with external thread M16, carbon steel galvanized Hilti HUS4-AF, size 10 with external thread M12 and size 14 with external thread M16, carbon steel multilayer coating

Hilti screw anchor HUS4

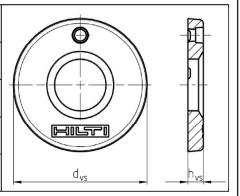

Product description

HUS4 screw types

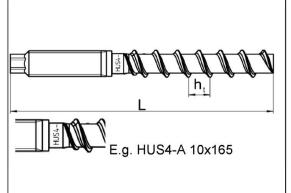
Annex A2

Table A2: Hilti filling set (for HUS4-H (F, R) and HUS4-A (F)) and Hilti injection mortar

Table A3: Materials


Part	Material
HUS4-H(F), HUS4-C and HUS4-A(F) screw anchor	Carbon steel Rupture elongation A₅ ≤ 8%
HUS4-HR and HUS-CR	Stainless steel (A4 grade) Rupture elongation A5 > 8% Stainless steel of corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015 1.4401 or 1.4404 according to EN 10088-1:2014
Hilti Filling set (carbon steel)	Filling washer: Carbon steel Spherical washer: Carbon steel
Hilti Filling set (stainless steel)	Corrosion resistance class CRC III according to EN 1993-1-4:2006+A1:2015 Filling washer: Stainless steel A4 according to ASTM A240/A 240M:2019 Spherical washer: Stainless steel A4 according to EN 10088-1:2014

Hilti screw anchor HUS4	
Product description HUS4 screw types, Filling set and Hilti injection mortar Materials	Annex A3


Table A4: Filling set dimensions

Filling set size	M10	M12	M16	M20		
Diameter	d _{vs}	[mm]	42	44	52	60
Thickness	h _{vs}	[mm]	5	5	6	6
HUS4-H (F, R)	8	10	12 + 14	16		
HUS4-A (F)	-	10	14	-		

Table A5: Fastener dimensions and marking HUS4-A(F)

Fastener size HUS4-		A(F) 10		A(F) 14					
Nominal fastener diameter	d	[mm]		10		14			
Metric thread conection				M12					
Pitch of the thread	ht	[mm]		10			14		
November despet			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h_{nom}	[mm]	55	75	85	65	80	115	
Effective embedment depth	h _{ef}	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$						
Limits of effective embedment depth	h _{ef,max}	[mm]	68,0 91,8						
Length of screw min / max	L	[mm]	120 / 165 155 / 205						

HUS4:	Hilti Ur	Hilti Universal Screw 4 th generation							
A: AF:		Thread connection, galvanized Thread connection, multilayer coating							
10:	Nomin	al screw	diameter	d [mm]					
165:	Length	of screv	v L [mm]						
8:	Carbo	n steel							
K:	Length	identific	ation HU	S4-A 10>	(165				
G	Ĩ	K	J	Ĺ	N				
10x120	10x140	10x165	14x155	14x185	14x205				

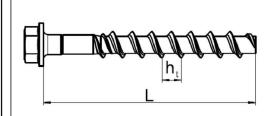

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A4

Table A6:	Fastener	dimensions	and marking	HUS4-H
-----------	-----------------	------------	-------------	--------

Fastener size HUS	64-			H(F) 8	3	H	1(F) 1	0		H 12		H(F) 14			H(F) 16	
Nominal fastener diameter	d	[mm]		8			10		12			14			16	
Pitch of the thread	ht	[mm]		8			10			12			14		13,2	
Nominal			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
embedment depth	h_{nom}	[mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130
Effective embedment depth	h _{ef}	[mm]		$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$												
Limits of effective embedment depth	h _{ef,max}	[mm]		56,1 68,0					79,9		91,8		10	4,9		
Length of screw min / max	L	[mm]	4	45 / 150			60 / 305		70 / 150		75 / 150		100 /	/ 205		

Fastener size HUS	64-		HR 6	HR	8	HF	र 10	HR 14		
Nominal fastener diameter	d	[mm]	6	8		10		1	4	
Pitch of the thread	ht	[mm]	4,75	7,6		8,0		7,6 8,0 9		,8
Non-load bearing tip	hs	[mm]	-	1,03		2,43		4	,1	
Nominal			h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
embedment depth	h_{nom}	[mm]	55	60	80	70	90	70	110	
Effective embedment depth	h _{ef}	[mm]		h _{ef} = 0,8	35 * (h _{nom}	– 0,5 * h _t -	– h _s) ≤ h _{ef,ma}	эх		
Limits of effective embedment depth	h _{ef,max}	[mm]	45	64		71		86		
Length of screw min / max	L	[mm]	60 / 70	65 / 105		75 / 130		80 / 135		

HUS4:Hilti Universal Screw 4th generation

H: Hexagonal head, galvanized
HF: Hexagonal head, multilayer coating
HR: Hexagonal head, stainless steel

10: Nominal screw diameter d [mm]

100: Length of screw [mm]

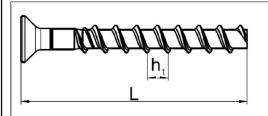

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A5

Table A7:	Fastener	dimensions	and	marking	HUS4-C
-----------	----------	------------	-----	---------	--------

Fastener size HUS4-				C 8			C 10	
Nominal fastener diameter	d	[mm]		8			10	
Pitch of the thread	ht	[mm]		8		10		
Naminal ambadment denth			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	h_{nom}	[mm]	40	60	70	55	75	85
Effective embedment depth	h _{ef}	[mm]	m] $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t) \le h_{ef,max}$					
Limits of effective embedment depth	h _{ef,max}	[mm]	mm] 56,1			68,0		
Length of screw min / max	L	[mm]	55 / 85 70 / 120					

Fastener size HUS4-			CR 6	CF	₹ 8	CR	10	
Nominal fastener diameter	d	[mm]	6	8	3	10)	
Pitch of the thread	ht	[mm]	-	7	,6	8,0	0	
Non-load bearing tip	hs	[mm]	-	1,	1,03		2,43	
Naminal ambadment denth			h _{nom2}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h_{nom}	[mm]	55	60	80	70	90	
Effective embedment depth	h _{ef}	[mm]	$h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t - h_s) \le h_{ef,max}$			nax		
Limits of effective embedment depth	h _{ef,max}	[mm]	45	64 7			1	
Length of screw min / max	L	[mm]	n] 60 / 70 65 / 95 75		75 /	105		

HUS4:	Hilti Universal Screw 4 th generation
C: CR:	Countersunk head, galvanized Countersunk head, stainless steel
10:	Nominal screw diameter d [mm]
100:	Length of screw L [mm]

Hilti screw anchor HUS4	
Production description Fastener dimensions and head marking	Annex A6

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings
- Seismic action for performance category C1 and C2 for HUS4-H(F)/-C/-A(F) (carbon steel screw)
- Seismic action for performance category C1: HUS4-HR/-CR (stainless steel screw)
- Fire exposure

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 +A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2010+A1:2016.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Anchorages subject to dry internal conditions: all screw types
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015
 - Stainless steel according to Annex A3, Table A3, screw types HUS4-HR/-CR: CRC III

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055 edition February 2018.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener (HUS4-H (F, R) and HUS4-C/-CR) must be supported on the fixture and is not damaged.
- Hilti filling set is suitable for HUS4-H (F, R) and HUS4-A (F)

Hilti screw anchor HUS4	
Intended use Specifications	Annex B1

Specifications of intended use: Drilling and cleaning for HUS4 <u>carbon steel</u>

Table B1: Static and quasi static loading for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel		Fastener size and embedment depth hno						
Cracked and uncracked concrete								
Hamanaa duillina (HD)1)	cleaned	2000	sizes 8 to 16 at all h _{nom}					
Hammer drilling (HD) ¹⁾	not cleanded		sizes 8 to 14 at all h _{nom}					
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) 1)			sizes 12 and 14 at all h _{nom}					
Uncracked concrete								
Diamond coring (DD) DD30-W handheld and with stand DD-EC1 handheld		₹ >	sizes 10 to 14 at h _{nom3}					

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 14 at hnom2+3

Table B2: Seismic performance category C1 for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel			Fastener size and embedment depth h _{nom}
Hammer drilling (HD) ¹⁾	cleaned		sizes 8 to 14 at h _{nom2+3} size 16 at h _{nom1+2}
	not cleanded		sizes 8 to 14 at h _{nom2+3}
Hammer drilling with Hilti hollow drill bit TE-CD (HDB) 1)			sizes 12 and 14 at h _{nom2+3}

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 14 at hnom2+3

Table B3: Seismic performance category C2 for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel		Fastener size and embedment depth hnom	
Hammar drilling (HD)1)	cleaned	5000	sizes 8 to 14 at h _{nom3}
Hammer drilling (HD) ¹⁾	not cleanded	كتتت	sizes 8 to 14 at h _{nom3}

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 14 at hnom3

Table B4: Static and quasi static loading under fire exposure for HUS4-H(F)/-C/-A(F)

HUS4-H(F)/-C/-A(F) carbon steel			Fastener size and embedment depth h _{nom}
Hammer drilling (HD) ¹⁾	cleaned	~~~	sizes 8 to 16 at all h _{nom}
המחווופן (חט)	nmer drilling (HD) not cleanded	كنتنك	sizes 8 to 14 at all h _{nom}
Hammer drilling with Hilt TE-CD (HDB) 1)	i hollow drill bit		sizes 12 and 14 at all h _{nom}

¹⁾ Adjustment according to Annex B11 is possible for sizes 8 to 14 at hnom2+3

Hilti screw anchor HUS4	
Intended use Specifications	Annex B2

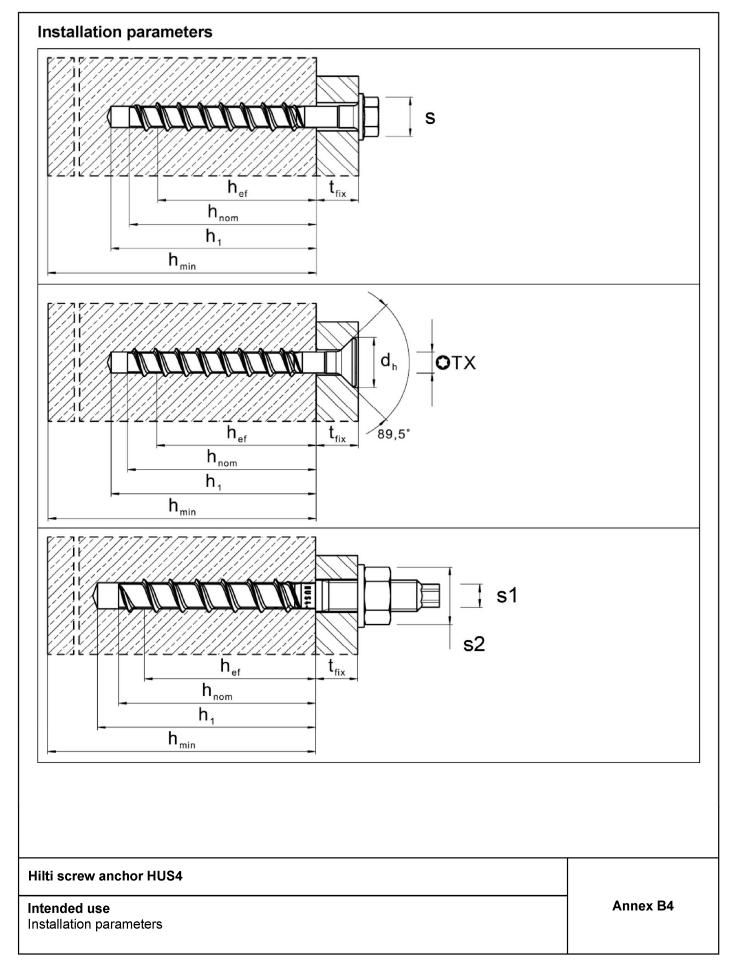
Specifications of intended use: Drilling and cleaning for HUS4 <u>stainless steel</u> Table B5: Static and quasi static loading for HUS4-HR/-CR

HUS4-HR/-CR stainles	s steel	Fastener size and embedment depth h _{nom}
Cracked and uncracke	d concrete	
Hammer drilling (HD)	cleaned care	sizes 6 to 14 at all h _{nom}

Table B6: Seismic performance category C1 for HUS4-HR/-CR

not cleanded

HUS4-HR/-CR stainless steel		Fastener size and embedment depth hnom	
Hammar drilling (HD)	cleaned		sizes 8 to 14 at h _{nom2}
Hammer drilling (HD)	not cleanded		sizes 8 to 14 at hnom2


Table B7: Static and quasi static loading under fire exposure for HUS4-HR/-CR

HUS4-HR/-CR stainless steel		Fastener size and embedment depth hnom
Hammar drilling (HD)	cleaned	sizes 6 to 14 at all h _{nom}
Hammer drilling (HD)	not cleanded	sizes 6 to 14 at all h _{nom}

Hilti screw anchor HUS4	
Intended use	Annex B3
Specifications	

English translation prepared by DIBt

English translation prepared by DIBt

Fastener size HUS4				8			10		
Туре			H(F), C			H(F), C, A(F)			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedmenth depth	h _{nom}	[mm]	40	60	70	55	75	85	
Nominal drill hole diameter	d ₀	[mm]		8	•		10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45			10,45			
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		-		9,9			
Clearance hole diameter through setting	d _f min	[mm]	11		13 14				
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]		-			14		
Wrench size (H, HF-type)	s	[mm]		13			15		
Wrench size for hex head (A-type)	s1	[mm]	-		8				
Wrench size for nut (A-type)	s2	[mm]	-		19				
Maximum installation torque (A-type)	max T _{inst}	[Nm]	-			40			
Torx size (C-type)	TX	-	45		50				
Diameter of countersunk head	dh	[mm]	18			21			
Depth of drill hole for cleaned hole hammer drilling, diamond coring or for uncleanded hole when drilling upwards	h₁ ≥	[mm]	(h _{nom} +		- 10 mm) 65	85	95		
Depth of drill hole for uncleanded hole			(h _{nom} + 10 mm) + 2 * d		<u> </u>				
hammer drilling in wall and floor position	h₁ ≥	[mm]	66	86	96	85	105	115	
Depth of drill hole (with adjustability) for					(h _{nom} +	- 20 mm)			
cleaned hole hammer drilling, diamond coring or for uncleanded hole when drilling upwards	h ₁ ≥	[mm]	-	80	90	-	95	105	
Depth of drill hole (with adjustability) for			(h _{nom} + 20 mm) + 2 * d ₀			ı			
uncleaned hole hammer drilling in wall and floor position	h₁ ≥	[mm]	-	96	106	-	115	125	
·	1 -	, ,			+ 30 mm)				
Minimum thickness of concrete member	h _{min} ≥	[mm]	80	100	120	100	130	140	
Minimum spacing	s _{min} ≥	[mm]	35		40				
Minimum edge distance	C _{min} ≥	[mm]	35		40				
Hilti Setting tool 1)			SIW 6AT-A22 1/2"		SIW 6AT-A22 1/2" SIW 22T-A 1/2" SIW 6-22 1/2" SIW 8-22 1/2" gear 1 SIW 9-A22 3/4"				

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B5

Fastener size HUS4				12			14			
Туре			Н			H(F), A(F)				
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedmenth depth	h_{nom}	[mm]	60	80	100	65	85	115		
Nominal drill hole diameter	d ₀	[mm]		12		14				
Cutting diameter of drill bit	d _{cut} ≤	[mm]	12,50		14,50					
Cutting diameter of diamond core bit	d _{cut} ≤	[mm]		12,2			-			
Clearance hole diameter through setting	d _f min max	- [mm]	16		18					
Clearance hole diameter pre setting (A-type)	d _f ≤	[mm]		-		18				
Wrench size (H, HF-type)	s	[mm]	17		21					
Wrench size for hex head (A-type)	s1	[mm]	-		12					
Wrench size for nut (A-type)	s2	[mm]	-		24					
Maximum installation torque (A-type)	max T _{inst}	[Nm]	- 80							
Depth of drill hole for cleaned hole hammer drilling, diamond coring or for	h₁ ≥ [mn			I	(h _{nom} +	10 mm)	T	ı		
uncleanded hole when drilling upwards		[]	70	90	110	75	95	125		
Depth of drill hole for uncleanded hole		[mm]	(h _{nom} + 10 mm) + 2 * d ₀							
hammer drilling in wall and floor position	h ₁ ≥	[]	94	114	134	103	123	153		
Depth of drill hole (with adjustability) for cleaned hole hammer drilling, diamond	h ₁ ≥	[mm]	(h _{nom} + 20 mm)							
coring or for uncleanded hole when drilling upwards			-	100	120	-	105	135		
Depth of drill hole (with adjustability) for		f1	(h _{nom} + 20 mm) + 2 * d ₀							
uncleaned hole hammer drilling in wall and floor position	I N ₁ ≥	[mm]	-	124	144	-	133	163		
							(h ₁ + 3	+ 30 mm)		
Minimum thickness of concrete member	h _{min} ≥	[mm]	110	130	150	120	160	200		
Minimum spacing	s _{min} ≥	[mm]	50		60					
Minimum edge distance	C _{min} ≥	[mm]	50		60					
Hilti Setting tool 1)			SI SI	N 22T-A ⁻ W 6-22 1 W 8-22 1 N 9-A22 3	/2" /2"	SI SI	N 22T-A W 6-22 1 W 8-22 1 N 9-A22 3	/2" /2"		

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B6

Table B10: Installation parameters HUS4-16

Fastener size HUS4		16			
Туре		H(F)			
			h _{nom1}	h _{nom2}	
Nominal embedmenth depth	h_{nom}	[mm]	85	130	
Nominal drill hole diameter	d ₀	[mm]	16		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	16,50		
Clearance hole diameter through setting	d _f ≤	[mm]	20		
Wrench size	s	[mm]	24		
Depth of drill hole for cleaned hole			(h _{nom} + 10 mm)		
hammer drilling or for uncleanded hole when drilling upwards	h ₁ ≥	[mm]	95	140	
Minimum thickness of concrete member	h _{min} ≥	[mm]	130	195	
Minimum spacing	s _{min} ≥	[mm]	90		
Minimum edge distance	C _{min} ≥	[mm]] 65		
Hilti Setting tool 1)			SIW 22T-A 1/2" SIW 6-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4"		

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B7

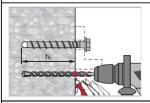
Fastener size HUS4			6	8	3	
Туре			HR, CR	HR,	CR	
			h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment depth	h_{nom}	[mm]	55	60	80	
Nominal drill hole diameter	d ₀	[mm]	6	8	3	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40	8,	45	
Clearance hole diameter	$d_f \leq$	[mm]	9	1	2	
Wrench size (H-type)	s	[mm]	13	13		
Torx size (C-type)	TX	[-]	30	45		
Diameter of countersunk head	dh	[mm]	11	18		
Depth of drill hole for cleaned hole		[1	(h _{nom} + 10mm)			
hammer drilling or for uncleanded hole when drilling upwards	h₁≥	[mm]	65	70	90	
Depth of drill hole for uncleanded hole	h >	[]	(h _{nom} + 10 r	nm) + 2 * d ₀		
hammer drilling in wall and floor position	h₁ ≥	[mm]	77	86	106	
			(h ₁ + 3	0 mm)		
Minimum thickness of concrete member	h _{min} ≥	[mm] -	100	100	120	
Minimum spacing	s _{min} ≥	[mm]	35	45	60	
Minimum edge distance	C _{min} ≥	[mm]	35	45	60	
Hilti Setting tool 1)			SIW 6AT-A22 1/2" gear 3	SIW 6AT	T-A 1/2" -A22 1/2"	
-			year s		ar 3 1/2" gear 2	

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B8

Table B12: Installation	parameters	HUS4-HR/-CR	10 and 14
--------------------------------	------------	-------------	-----------

Fastener size HUS4			1	0	14		
Туре			HR,	CR	HR		
			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Nominal embedment depth	h_{nom}	[mm]	70	90	70	110	
Nominal drill hole diameter	d ₀	[mm]	1	0	1	4	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	10	,45	14	,50	
Clearance hole diameter	d _f ≤	[mm]	1	4	1	8	
Wrench size (H-type)	s	[mm]	1	5	21		
Torx size (C-type)	TX	[-]	50 -			-	
Diameter of countersunk head	dh	[mm]	21 -				
Depth of drill hole for cleaned hole	h >	[mana]		(h _{nom} +	· 10mm)		
hammer drilling, diamond coring or for uncleanded hole when drilling upwards	h₁ ≥	[mm]	80	100	80	120	
Depth of drill hole for uncleanded hole	h₁≥	[mama]		(h _{nom} + 10 n) mm) + 2 * d ₀		
hammer drilling in wall and floor position	111 <	[mm]	100	120	108	148	
Installation Torque	T _{inst}	[Nm]	4	5	6	5	
Minimum thickness of concrete member	h _{min} ≥	[mm]	120	140	140	160	
Minimum spacing	s _{min} ≥	[mm]	5	0	6	0	
Minimum edge distance	c _{min} ≥	[mm]	5	0	60		
			SIW 22		SIW 22		
Hilti Setting tool 1)			SIW 6AT		SIW 6-22 1/2" gear 2 SIW 8-22 1/2" gear 1		
			_	1/2" gear 2	SIW 9-A22 3/4"		

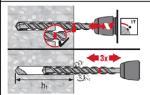

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS4	
Intended use Installation parameters	Annex B9


Installation instructions

Hole drilling and cleaning

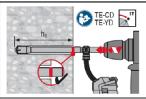
Hammer drilling (HD) all sizes for carbon and stainless steel screw types (size 16 with cleaning only)



Mark drilling depth h₁ for pre or through installation. Details for drilling depth h₁ see table B5 to B9.

Cleaning needed in downward and horizontal installation direction with drill hole depth.

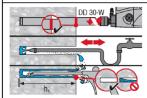
 $h_1 = h_{nom} + 10 \text{ mm}$


No cleaning is allowed in upward installation direction.

No cleaning is allowed in downward and horizontal installation direction when 3x ventilation¹⁾ after drilling is executed.

Drill hole depth $h_1 = h_{nom} + 10 \text{ mm} + 2 * d_0$

¹¹) moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h₁ is achieved. This procedure shall be done with both revolution and hammer functions activated in the drilling machine. For more details read the relevant installation instruction (MPII).

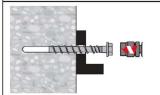

Hammer drilling with Hilti hollow drill bit (HDB) TE-CD size 12 and 14 for carbon steel screw types

No cleaning needed.

 $h_1 = h_{nom} + 10 \text{ mm}$

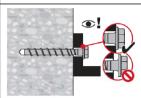
Diamond coring with DD-EC1 or DD-30W size 10 to 14 for carbon steel screw types

Electronic copy of the ETA by DIBt: ETA-20/0867

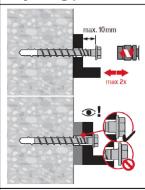

Cleaning needed in all installation directions.

 $h_1 = h_{nom} + 10 \text{ mm}$

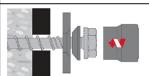
Hilti screw anchor HUS4	
Intended use Installation instructions	Annex B10


Fastener setting without adjustment

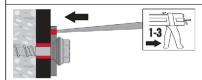
Setting by impact screw driver


Setting parameters listed in Table B5 to B7.

Setting check


Fastener setting with adjustment for carbon steel screw types

Adjusting process



A screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than h_{nom2} or h_{nom3} .

Fastener setting with Hilti filling set

Injection of Hilti HIT mortar and curing time

Fill the annular gap between screw and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY \dots or HIT-RE \dots

Follow the installation instructions supplied with the respective Hilti injection mortar.

After required curing time tcure the fastening can be loaded.

Hilti screw anchor HUS4

Intended use

Electronic copy of the ETA by DIBt: ETA-20/0867

Installation instructions

Annex B11

Table C1: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 8 and 10

Fastener size HU	S 4			8 1					
Туре					H(F), C		н	(F), C, A	(F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedme	ent depth	h _{nom}	[mm]	40	60	70	55	75	85
Adjustment									
Total max. thickne layers	ss of adjustment	t adj	[mm]	-	10	10	-	10	10
Max. number of a	djustments	na	[-]	-	2	2	-	2	2
Steel failure for t	ension load								
Characteristic resi	stance	$N_{Rk,s}$	[kN]] 36,0 55,0					
Partial factor		$\gamma_{Ms,N}^{1)}$	[-]	1,5					
Pull-out failure									
concrete C20/25	stance in uncracked	$N_{Rk,p}$	[kN]] $\geq N^{0}_{Rk,c}^{3}$ 13 22			≥ N ⁰ _{Rk,c} ³		
Characteristic resi concrete C20/25	stance in cracked	$N_{Rk,p}$	[kN]	$5,5 \geq N^0_{Rk,c}^{3)}$					
Increasing factor f $N_{Rk,p} = N_{Rk,p(C20/25)}$		Ψο	[-]			(f _{ck} /2	2 0) ^{0,5}		
Concrete cone ai	nd splitting failure								
Effective embedm	ent depth	h _{ef} ²⁾	[mm]	30,6	47,6	56,1	42,5	59,5	68,0
Factor for	Uncracked	k ucr,N	[-]			11	1,0		
Factor for	Cracked	k cr,N	[-]			7	,7		
Concrete cone	Edge distance	C _{cr,N}	[mm]			1,5	h _{ef}		
failure	Spacing	S _{cr,N}	[mm]	3 h _{ef}					
Characteristic resi	stance	N^0 Rk,sp	[kN]	N _{Rk,p}					
Colitting failure	Edge distance	C _{cr,sp}	[mm]		1,5 h _{ef}			1,65 h _{ef}	
Splitting failure	Spacing	S cr,sp	[mm]		3 h _{ef}			3,3 h _{ef}	
Installation factor		γinst	[-]		1,0		1,2	1	,0

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C1

 $^{^{2)}}$ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

English translation prepared by DIBt

Table C1 continued									
Fastener size HUS4				8		10			
Туре			H(F), C H(F), C, A(F)			F)			
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth	h_{nom}	[mm]	40	60	70	55	75	85	
Steel failure for shear load									
Characteristic resistance	V^0 Rk,s	[kN]	18,8 21,9 28,8					32,0	
Partial factor	$\gamma_{Ms,V}^{1)}$	[-]	1,25						
Ductility factor	k 7	[-]			0	,8			
Characteristic resistance	M^0 Rk,s	[Nm]		32			64		
Concrete pry-out failure									
Pry-out factor	k 8	[-]	1,0	2	,0	1,0	2	,0	
Concrete edge failure									
Effective length of fastener	l _f	[mm]	40	60	70	55	75	85	
Outside diameter of fastener	d_{nom}	[mm]		8			10		

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C2

Table C2: Essential characteristics under static and quasi-static load in concrete for HUS4 carbon steel size 12 to 16

Fastener size HUS4					12		14			16	
Туре					Н		Н	(F), A(F)	H	(F)
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment de	pth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Adjustment					•	•		•	•	•	•
Total max. thickness of adjustment layers		t adj	[mm]	-	10	10	-	10	10	-	-
Max. number of adjustments		na	[-]	-	2	2	-	2	2	-	-
Steel failure for tension	n load										
Characteristic resistance	Э	N _{Rk,s}	[kN]		79,0			101,5		10	7,7
Partial factor		γ _{Ms,N} 1)	[-]	1,5							
Pull-out failure				•							
Characteristic resistance concrete C20/25	e in uncracked	$N_{Rk,p}$	[kN]	$\geq N^{0}_{Rk,c^{3)}}$				22	46		
Characteristic resistance concrete C20/25	e in cracked	$N_{Rk,p}$	[kN]] 10 ≥ N ⁰ _{Rk,c} ³⁾ 16					32		
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_c$		Ψο	[-]				(f _{ck} /2	20) ^{0,5}			
Concrete cone and spl	litting failure										
Effective embedment de	epth	$h_{\text{ef}}^{2)}$	[mm]	45,9	62,9	79,9	49,3	66,3	91,8	66,6	104,9
Factorifes	Uncracked	k ucr,N	[-]				11	1,0			
Factor for	Cracked	$\mathbf{k}_{cr,N}$	[-]				7	,7			
0 1 1	Edge distance	C _{cr,N}	[mm]				1,5	h _{ef}			
Concrete cone failure	Spacing	ing s _{cr,N} [mm] 3 h _{ef}									
Characteristic resistance	Э	N ⁰ Rk,sp	[kN]				N	Rk,p			
Calitting failure	Edge distance	C cr,sp	[mm]		1,65 h _e	f			1,60 h _e	f	
Splitting failure	Spacing	S _{cr,sp}	[mm]		3,30 h _e	f	3,20 h _€			f	
Installation factor		γinst	[-]				1	,0			

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C3

²⁾ In case $h_{nom} > h_{nom1}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to: $h_{ef} = 0.85 * (h_{nom} - 0.5 * h_t)$ ³⁾ $N^0_{Rk,c}$ according to EN 1992-4:2018

Table C2 continued										
Fastener size HUS4			12			14		16		
Туре				Н		Н	(F), A(F)	H(F)	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment depth	h_{nom}	[mm]	60	80	100	65	85	115	85	130
Steel failure for shear load			•							
Characteristic resistance	$V^0_{Rk,s}$	[kN]	38,9 44,9 55 62				65,1	73,1		
Partial factor	γ _{Ms,V} 1)	[-]	1,25							
Ductility factor	k 7	[-]				0	,8			
Characteristic resistance	M^0 Rk,s	[Nm]		120			186		24	40
Concrete pry-out failure			•							
Pry-out factor	k ₈	[-]	2,0							
Concrete edge failure			•							
Effective length of fastener	lf	[mm]	60	80	100	65	85	115	85	130
Outside diameter of fastener	d_{nom}	[mm]		12			14		1	6

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C4

Table C3: Essential characteristics under static and quasi-static load in concrete for HUS4 stainless steel

Fastener size HUS4				6		В	10		14	
Туре				HR, CR	HR.	HR, CR		CR	HR	
				h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment	depth	h _{nom}	[mm]	55	60	80	70	90	70	110
Steel failure for tens	ion and shear lo	oad			•	•	•	•	•	
Characteristic resista	nce	N _{Rk,s}	[kN]	24,0	34	1,0	52	2,6	10:	2,2
Partial factor		γ _{Ms,N} 1)	[-]				1,4			
Characteristic resista	nce	$V_{Rk,s}$	[kN]	17,0	26	3,0	33	3,0	55,0	77,0
Partial factor		γ _{Ms,V} 1)	[-]				1,5			
Ductility factor		k ₇	[-]				1,0			
Characteristic resista	nce	M ⁰ Rk,s	[Nm]	19	3	6	6	6	19	93
Pull-out failure					•		•		•	
Characteristic resistance in cracked concrete C20/25		N _{Rk,p}	[kN]	5	8,5	15	12	16	12	25
Characteristic resistance in uncracked concrete C20/25		$N_{Rk,p}$	[kN]	9	12	16	16	25	≥Nº	Rk,c ²⁾
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi$	С	Ψc	[-]	(f _{ck} /20) ^{0,5}						
Concrete cone and	splitting failure									
Effective anchorage of	lepth	h _{ef}	[mm]	45	47	64	54	71	52	86
Factor for	Cracked	k _{cr,N}	[-]				7,7			
1 actor for	Uncracked	k ucr,N	[-]				11,0			
Concrete cone failure	Edge distance	C cr,N	[mm]				1,5 h _{ef}			
Concrete cone failure	Spacing	S cr,N	[mm]				3 h _{ef}			
Splitting failure	Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef}	1,5	h _{ef}	1,8	h _{ef}	1,8	h _{ef}
Splitting failure	Spacing	S cr,sp	[mm]	3 h _{ef}	3	h _{ef}	3,6	h _{ef}	3,6	h _{ef}
Robustness		γinst	[-]	1,4	1,0	1,2	1,2	1,0	1	,2
Concrete pry-out fai	lure									
Pry-out factor		k ₈	k ₈ [mm] 1,5 2,0							
Concrete edge failu	re									
Effective length of an	chor	I _f = h _{ef}	[mm]	45	47	64	54	71	52	86
Effective diameter of	anchor	d _{nom}	[mm]	6		8	1	0	14	
Effective diameter of	anchor	d nom	[mm]	б	8 10		8 10 14		4	

¹⁾ In absence of other national regulations.

²⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Hilti screw anchor HUS4	
Performances Essential characteristics under static and quasi-static load in concrete	Annex C5

Table C4: Essential characteristics for seismic performance category C1 in concrete for HUS4 carbon steel

Fastener size HUS4			8 10		0	12		14			
Туре			H(F), C		H(F), C, A(F)		н		H(F), A(F)		
				h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Nominal embedment de	pth	h_{nom}	[mm]	60	70	75	85	80	100	85	115
Steel failure for tensio	n and shear load										
Characteristic resistanc	e	N _{Rk,s,C1}	[kN]	36	6,0	55	5,0	79	9,0	10	1,5
Partial factor		γ _{Ms,N} 1)	[-]				1	,5			
Characteristic resistanc	е	V _{Rk,s,C1}	[kN]	18	3,8	26	5,7	38	3,9	22,5	34,5
Partial factor		$\gamma_{Ms,V}^{1)}$	[-]				1,	25			
Reduction factor acc. to annular gap unfilled	Сідар	[-]	0,5								
Reduction factor acc. to annular gap filled	EN 1992-4:2018	αgap	[-]	1,0							
Pull-out failure											
Characteristic resistance concrete	e in cracked	$N_{Rk,p,C1}$	[kN]				≥ N ⁰	Rk,c ³⁾			
Concrete cone failure											
Effective embedment de	epth	$h_{\text{ef}}^{2)}$	[mm]	47,6	56,1	59,5	68,0	62,9	79,9	66,3	91,8
Concrete cone failure	Edge distance	C _{cr,N}	[mm]				1,5	h _{ef}			
Concrete cone failure	Spacing	S cr,N	[mm]				3	h _{ef}			
Installation factor		γinst	[-]				1	,0			
Concrete pry-out failu	re										
Pry-out factor		k 8	[-]	-] 2,0							
Concrete edge failure											
Effective length of faste	ner	lf	[mm]	60	70	75	85	80	100	85	115
Outside diameter of fast	tener	d _{nom}	[mm]	8	B	1	0	1	2	1	4

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C6

²⁾ In case $h_{nom} > h_{nom2}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to " $h_{ef} = 0.85$ * ($h_{nom} - 0.5$ * h_{t}) ³⁾ $N^{0}_{Rk,c}$ according to EN 1992-4:2018

Fastener size HUS4				1	6	
Гуре				H(F)		
,,				h _{nom1}	h _{nom2}	
Nominal embedment de	pth	h _{nom}	[mm]	85	130	
Steel failure for tensio	n and shear load		<u> </u>			
Characteristic resistance		N _{Rk,s,C1}	[kN]	10	7,7	
Partial factor		γMs,N ¹⁾	[-]	1	,5	
Characteristic resistance	e	V _{Rk,s,C1}	[kN]	42,9	25,3	
Partial factor		γMs,V ¹⁾	[-]	1,	25	
Partial factor annular ga	p unfilled	$lpha_{\sf gap}$	[-]	0,5		
Partial factor annular ga	p filled	$lpha_{\sf gap}$	[-]	1,0		
Pull-out failure			·			
Characteristic resistance concrete	e in cracked	N _{Rk,p,C1}	[kN]	7,5	19,0	
Concrete cone failure						
Effective embedment de	epth	$h_{\text{ef}}^{2)}$	[mm]	66,6	104,9	
Concrete cone failure	Edge distance	C _{cr,N}	[mm]	1,5	h _{ef}	
Concrete cone failure	Spacing	S _{cr,N}	[mm]	3	h _{ef}	
Installation factor		γinst	[-]	1	,0	
Concrete pry-out failui	·e					
Pry-out factor		k 8	[-]	2,0		
Concrete edge failure						
Effective length of faster	ner	lf	[mm]	85	130	
Outside diameter of fast	ener	d _{nom}	[mm]	1	6	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C7

 $^{^{2)}}$ In case $h_{nom} > h_{nom2}$ and $< h_{nom3}$ the actual h_{ef} for concrete failure can be calculated according to " $h_{ef} = 0.85$ * ($h_{nom} - 0.5$ * h_{t})

Table C5: Essential characteristics for seismic performance category C1 in concrete for HUS4 stainless steel

Fastener size F	IUS4			8	10	14
Туре				HR, CR	HR, CR	HR
				h _{nom2}	h _{nom2}	h _{nom2}
Nominal embed	ment depth	h_{nom}	[mm]	80	90	110
Steel failure for	r tension and she	ar load				
Characteristic re	esistance	N _{Rk,s,C1}	[kN]	34,0	52,6	102,2
Partial factor		γ _{Ms,N} 1)	[-]		1,4	
Characteristic re	esistance	V _{Rk,s,C1}	[kN]	11,1	17,9	53,9
Partial factor		γMs,V ¹⁾	[-]		1,5	
Pull-out failure						
Characteristic resistance in cracked concrete		N _{Rk,p,C1}	[kN]	7,7	12,5	17,5
Concrete cone	failure					
Effective embed	ment depth	h _{ef}	[mm]	64	71	86
Concrete cone	Edge distance	C cr,N	[mm]	1,5 h _{ef}		
failure	Spacing	S cr,N	[mm]		3 h _{ef}	
Robustness		γinst	[-]	1,2	1,0	1,2
Concrete pry-o	ut failure					
Pry-out factor		k 8	[-]		2,0	
Concrete edge	failure		•			
Effective length	of fastener	$I_f = h_{ef}$	[mm]	64	71	86
Outside diamete	er of fastener	d _{nom}	[mm]	8	10	14

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C1 in concrete	Annex C8

Table C6: Essential characteristics for seismic performance category C2 in concrete for HUS4 carbon steel

Fastener size HUS4				8	10	12	14
Туре			H(F), C	H(F), C, A(F)	н	H(F), A(F)	
				h _{nom3}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment de	epth	h_{nom}	[mm]	70	85	100	115
Adjustment							
Total max. thickness of layers	adjustment	t adj	[mm]	10	10	10	10
Max. number of adjustn	nents	na	[-]	2	2	2	2
Steel failure for tension	n						
Characteristic resistance	е	$N_{Rk,s,C2}$	[kN]	36,0	55,0	79,0	101,5
Partial factor		$\gamma_{\text{Ms},N}{}^{1)}$	[-]		1	,5	
Steel failure for shear	load						
Partial factor		γMs,V ¹⁾	[-]	-] 1,25			
Installation with Hilti fillin	ng set (HUS4-H ar	nd HUS4-A	٦)				
Characteristic resistanc	e	V _{Rk,s,C2}	[kN]	13,9	21,5	27,2	46,5
Partial factor annular ga	ap filled	$lpha_{\sf gap}$	[-]		1,0		
Installation without Hilti	filling set						
Characteristic resistanc	е	$V_{Rk,s,C2}$	[kN]	9,4	13,7	22,5	34,4
Partial factor annular ga	ap not filled	$lpha_{\sf gap}$	[-]		0	,5	
Pull-out failure							
Characteristic resistanc concrete	e in cracked	$N_{Rk,p,C2}$	[kN]	2,7	5,4	11,4	17,7
Concrete cone failure							
Effective embedment de	epth	h _{ef}	[mm]	56,1	68,0	79,9	91,8
Concrete cone failure	Edge distance	C _{cr,N}	[mm]			h _{ef}	
	Spacing	Scr,N	[mm]			h _{ef}	
Installation factor		γinst	[-]	[-] 1,0			
Concrete pry-out failu	re						
Pry-out factor		k 8	[-]		2	,0	
Concrete edge failure			T		1	Γ	
Effective length of faste	ner	lf	[mm]	70	85	100	115
Outside diameter of fas	tener	d_{nom}	[mm]	8	10	12	14

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS4	
Performances Essential characteristics for seismic performance category C2 in concrete	Annex C9

Table C7: Essential characteristics under fire exposure in concrete for HUS4-H carbon steel

Fastener size HUS4-H(F)				. 8		10					
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom} s			
t depth	h_{nom}	[mm]	40	60	70	55	75	85			
sion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})								
R30	$F_{Rk,s,fi}$	[kN]		2,6		4,1	4,2				
R60	$F_{Rk,s,fi}$	[kN]		1,9		3,1	3	,1			
R90	$F_{Rk,s,fi}$	[kN]		1,2		2,2	2	,3			
R120	$F_{Rk,s,fi}$	[kN]		0,9		1,5	1	,7			
R30	M^0 _{Rk,s,fi}	[Nm]		2,3		4,8	4	,9			
R60	M^0 Rk,s,fi	[Nm]		1,7		3,6	3	,7			
R90	M^0 _{Rk,s,fi}	[Nm]		1,1		2,6	2	,7			
R120	M^0 Rk,s,fi	[Nm]		0,8		1,8	1,9				
R30 R60 R90	N^0 Rk,p,fi	[kN]	1,3	2,8	3,6	2,3	3,9	4,7			
R120	N^0 _{Rk,p,fi}	[kN]	1,0	2,2	2,8	1,9	3,1	3,7			
ıre						l					
R30 R60 R90	$N^0_{Rk,c,fi}$	[kN]	0,8	2,6	4,0	2,0	4,7	6,5			
R120	N^0 Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	3,7	5,2			
		'				'		•			
R30 to R120 c _{cr,fi} [mm]					2 h _{ef}						
from more than	one side, the m	ninimum	edge dis	tance sha	all be ≥ 30	00 mm					
	S cr,fi	[mm]			2 (Ccr,fi					
ilure											
R30 to R120 k ₈				1,0 2,0				,0			
	R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120 R120 R120 R120 R120 R120 R120 R12	R30	Radepth Rade	Ridepth Nnom [mm] 40	Nom1 Nom2 Nom1 Nom2 Nom2 Nom4 Nom4 Nom4 Nom5 Nom4 Nom5 Nom5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Radepth Nnom1 Nnom2 Nnom3 Nnom1 Nnom4 Nnom4 Nnom4 Nnom4 Nnom5 Nnom4 Nnom5 Nnom4 Nnom6 Nnom6	tdepth h_{nom} [mm] h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom2} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom3} h_{nom1} h_{nom2} h_{nom3} h_{nom3} h_{nom1} h_{nom2} h_{nom3} h_{nom3} h_{nom1} h_{nom2} h_{nom3}			

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C10

English translation prepared by DIBt

Fastener size HUS4	4-H(F)			12			14			16	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom}
Nominal embedmen	60	80	100	65	85	115	85	130			
Steel failure for ten	sion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi}))						
	R30	$F_{Rk,s,fi}$	[kN]	7,5	7,6	7,6	10,3	10,4	10,5	10,6	10,7
	R60	$F_{Rk,s,fi}$	[kN]	5,5	5,7	5,8	7,7	7,9	8,0	8,1	8,2
	R90	$F_{Rk,s,fi}$	[kN]	3,7	3,9	4,1	5,2	5,6	5,8	5,7	5,9
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	2,8	3,0	3,1	3,9	4,2	4,4	4,3	4,5
resistance	R30	M^0 Rk,s,fi	[Nm]	11,4	11,6	11,6	18,9	19,2	19,3	23,7	23,9
	R60	$M^0_{Rk,s,fi}$	[Nm]	8,4	8,8	8,9	14,1	14,6	14,8	18,1	18,3
	R90	M^0 Rk,s,fi	[Nm]	5,7	6,0	6,2	9,5	10,2	10,7	12,7	13,2
	R120	M^0 _{Rk,s,fi}	[Nm]	4,3	4,6	4,7	7,2	7,7	8,1	9,6	10,0
Pull-out failure											
Characteristic resistance	R30 R60 R90	$N^0_{Rk,p,fi}$	[kN]	2,6	4,2	6,1	2,9	4,5	7,5	4,6	8,7
resistance	R120	N^0 Rk,p,fi	[kN]	2,1	3,4	4,9	2,3	3,6	6,0	3,7	7,0
Concrete cone fail	ure					•					
Characteristic resistance	R30 R60 R90	N^0 Rk,c,fi	[kN]	2,4	5,4	9,8	2,9	6,1	13,9	6,2	19,4
resistance	R120	N^0 Rk,c,fi	[kN]	1,9	4,3	7,8	2,3	4,9	11,1	4,9	15,5
Edge distance					•		•	•	•	•	
R30 to R120											
In case of fire attack	from more than	one side, the n	ninimum	edge o	distanc	e shall	be ≥ 30	00 mm			
Fastener spacing											
R30 to R120		S cr,fi	[mm]	2 C _{cr,fi}							
Concrete pry-out fa	ailure										
R30 to R120		k 8	[-]	2,0							

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C11

Table C8: Essential characteristics under fire exposure in concrete for HUS4-C carbon steel

Fastener size HUS	4-C				. 8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedmen	ıt depth	h _{nom}	[mm]	40	60	70	55	75	85	
Steel failure for ten	nsion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})			•			
	R30	$F_{Rk,s,fi}$	[kN]		0,5			1,0		
	R60	$F_{Rk,s,fi}$	[kN]		0,4			0,9		
	R90	$F_{Rk,s,fi}$	[kN]		0,3			0,7		
Characteristic	R120	$F_{Rk,s,fi}$	[kN]		0,2			0,6		
resistance	R30	M^0 Rk,s,fi	[Nm]		0,4			1,2		
	R60	M^0 Rk,s,fi	[Nm]		0,3			1,0		
	R90	M^0 Rk,s,fi	[Nm]	0,2			0,8			
	R120	M^0 Rk,s,fi	[Nm]		0,2		0,6			
Pull-out failure										
Characteristic	R30 R60 R90	N^0 Rk,p,fi	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
resistance	R120	N^0 Rk,p,fi	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
Concrete cone fail	ure								1	
Characteristic resistance	R30 R60 R90	$N^0_{Rk,o,fi}$	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
resistance	R120	N^0 Rk,c,fi	[kN]	0,7	2,1	3,2	1,6	3,7	5,2	
Edge distance					•				,	
R30 to R120	[mm]	2 h _{ef}								
In case of fire attack	from more than	one side, the m	ninimum	edge dis	tance sha	all be ≥ 30	00 mm			
Fastener spacing										
R30 to R120		S cr,fi	[mm]			2 (Ccr,fi			
Concrete pry-out fa	ailure									
R30 to R120		k ₈	[-]	1,0	2	.,0	1,0	2	,0	
The anchorage dept	th shall be increas	sed for wet cor	icrete by	at least	30 mm c	ompared	to the giv	en value		

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C12

Table C9: Essential characteristics under fire exposure in concrete for HUS4-A carbon steel

Fastener size HUS4-A(F)				ı	10		14				
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedmen	nt depth	h _{nom}	[mm]	55	75	85	65	85	115		
Steel failure for ten	nsion and shear	load (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})			•		•		
	R30	$F_{Rk,s,fi}$	[kN]		4,2			8,4			
	R60	$F_{Rk,s,fi}$	[kN]		3,3			6,8			
	R90	$F_{Rk,s,fi}$	[kN]		2,5			5,1			
Characteristic	R120	$F_{Rk,s,fi}$	[kN]		2,1			4,3			
resistance	R30	M^0 _{Rk,s,fi}	[Nm]		4,8			15,4			
	R60	M^0 Rk,s,fi	[Nm]		3,8		12,4				
	R90	M^0 _{Rk,s,fi}	[Nm]		2,9			9,3			
	R120	M^0 Rk,s,fi	[Nm]		2,4		7,8				
Pull-out failure							•				
Characteristic resistance	R30 R60 R90	N^0 Rk,p,fi	[kN]	2,3	3,9	4,7	2,9	4,5	7,5		
TESISIATIOE	R120	N^0 _{Rk,p,fi}	[kN]	1,9	3,1	3,7	2,3	3,6	6,0		
Concrete cone fail	ure						I				
Characteristic resistance	R30 R60 R90	$N^0_{Rk,c,fi}$	[kN]	2,0	4,7	6,5	2,9	6,1	13,9		
16313talloc	R120	N^0 Rk,c,fi	[kN]	1,6	3,7	5,2	2,3	4,9	11,1		
Edge distance									•		
R30 to R120	R30 to R120 c _{cr,fi} [mm]				2 h _{ef}						
In case of fire attack	k from more than	one side, the n	ninimum	edge dis	tance sha	all be ≥ 30	00 mm				
Fastener spacing											
R30 to R120		S cr,fi	[mm]			2 (Ccr,fi				
Concrete pry-out fa	ailure										
R30 to R120		k ₈	[-]	1,0			2,0				
The anchorage dept	th shall be increas	sed for wet cor	ncrete by	at least	30 mm c	ompared	to the giv	en value			

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C13

R30 to R120

2,0

Fastener size HUS4					3			3			1	0		14	4																																																								
Туре				HR	CR	Н	R	С	R	HR CR			R	н	R																																																								
				hno	om1	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom}																																																								
Nominal embe depth	dment	h _{nom}	[mm]	5	5	60	80	60	80	70	90	70	90	70	110																																																								
Steel failure fo	or tensi	on and sl	near loa	ad (F _R	_{k,s,fi} =	N _{Rk,s,fi}	= V _{Rk,s}	,fi)																																																															
	R30	$F_{Rk,s,fi}$	[kN]	4,9	0,2	9	,3	0	,8	18	3,5	1,	,4	41	,7																																																								
	R60	$F_{Rk,s,fi}$	[kN]	3,3	0,2	6,3		0,6		12	2,0	1,	,1	26	,9																																																								
	R90	$\mathbf{F}_{Rk,s,fi}$	[kN]	1,8	0,2	3	,2	0	,5	5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		5,4		0,	,9	12	,2
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	1,0	0,1	1,7		0,4		2,4		0,8		5,4																																																									
resistance	R30	M^0 Rk,s,fi	[Nm]	4,0	0,2	8,2		0,8		19,4		1,5		65	,6																																																								
	R60	M^0 Rk,s,fi	[Nm]	2,7	0,2	5,5		0,7		12,6		1,2		42,4																																																									
	R90	M^0 Rk,s,fi	[Nm]	1,4	0,1	2,8		0,5		5,7		0,9		19	,2																																																								
	R120	$M^0_{Rk,s,fi}$	[Nm]	0,8	0,1	1	,5	0	,4	2	,5	0,8		8,5																																																									
Concrete pull	out fail	ure																																																																					
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,	,3	1,5	3,0	1,5	3,0	2,3	4,0	2,3	4,0	3,0	6,3																																																								
1 CSISIAI ICC	R120	$N_{Rk,p,fi}$	[kN]	1,	1,0 1,2 2,4 1,2 2,4		2,4	1,8	3,2	1,8	3,2	2,4	5,0																																																										
Edge distance																																																																							
R30 to R120		C cr,fi	[mm]	2 h _{ef}																																																																			
Anchor spacing	9																																																																						
R30 to R120		S cr,fi	[mm]						2 0	cr,fi																																																													
	out fail																																																																						

Hilti screw anchor HUS4	
Performances Essential characteristics under fire exposure in concrete	Annex C14

[-]

 k_8

1,5

Fastener size HUS4				8		10			
Туре				H(F), C		H(F), C, A(F)			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment de	epth	h_{nom}	[mm]	40	60	70	55	75	85
	Tension Load	N	[kN]	2,6	5,4	6,9	3,8	7,5	8,6
Cracked concrete C20/25 to C50/60	Displacement	δνο	[mm]	0,1	0,3	0,4	0,2	0,4	0,4
020,20 to 000,00	Displacement	δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9
	Tension Load	N	[kN]	3,7	7,1	9,1	5,2	10,5	12,2
Uncracked concrete C20/25 to C50/60	Dianlessment	δνο	[mm]	0,1	0,2	0,2	0,1	0,3	0,3
C20/25 to C50/60 Displacem		δ _{N∞}	[mm]	0,3	0,4	0,4	0,7	0,7	0,9

Fastener size HUS4			12				14			16	
Туре				н			H(F), A(F)			H(F)	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedment de	pth	h_{nom}	[mm]	60	80	100	65	85	115	85	130
	Tension Load	N	[kN]	5,1	8,2	11,7	5,7	8,6	14,4	8,7	16,7
Cracked concrete	Displacement	δ_{N0}	[mm]	0,3	0,4	0,6	0,3	0,4	0,7	0,1	0,4
020/20 10 000/00	Displacement	δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4
	Tension Load	N	[kN]	6,8	10,8	15,5	7,5	11,7	19,1	11,5	22,9
Uncracked concrete C20/25 to C50/60	00	δνο	[mm]	0,2	0,3	0,4	0,2	0,3	0,5	0,4	0,3
Displacement		δ _{N∞}	[mm]	0,9	0,9	1,2	1,3	1,3	1,5	1,3	1,4

Table C12: Displacements under tension loads for HUS4 stainless steel

Fastener size HUS			6		В		1	10		14			
Туре				HR, CR	HR,	HR, CR		HR, CR		Н		HR	
				h _{nom1}	h _{nom1}	h _{nom2}							
Nominal ancho	orage depth	h _{nom}	[mm]	55	60	80	70	90	70	85	70	110	
	Tension load	N	[kN]	1,7	2,4	4,8	3,6	6,3	3,0	4,1	4,8	9,9	
Cracked concrete		δνο	[mm]	0,4	0,5	0,7	0,3	0,6	0,2	0,3	0,9	1,4	
C20/25 to C50/60	Displacement	δ _{N∞}	[mm]	0,5	0,7	1,1	0,6	1,1	0,3	0,7	1,1	1,4	
C30/00	-	$\delta_{\text{N,seis}}$	[mm]	1)	1)	1,2	1)	1,2	1)	1,2	1)	0,4	
Uncracked	Tension load	N	[kN]	3,1	4,8	6,3	6,3	9,9	4,8	6,8	7,5	16,0	
concrete C20/25 to	0/25 to Displacement -	δνο	[mm]	0,8	0,7	1,6	0,3	1,3	0,2	0,3	0,7	1,0	
C50/60		δ _{N∞}	[mm]	0,8	0,7	1,6	0,3	1,3	0,3	0,7	0,7	1,0	

¹⁾ No performance assessed.

Hilti screw anchor HUS4	
Performances Displacement values in case of static and quasi-static loading	Δ

Annex C15

Table C13: Displacements under shear loads for HUS4 carbon steel

Fastener size HUS4				8		10			
Туре					H(F), C		H(F), C, A(F)		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment	depth	h_{nom}	[mm]	40	60	70	55	75	85
	Shear Load	V	[kN]	10,7	10,7	12,5	16,5	16,5	18,3
Concrete C20/25 to C50/60	Displacement	$\delta_{\lor 0}$	[mm]	1,3	1,1	0,9	1,4	1,3	1,0
020,20 to 000,00	Displacement	δ∨∞	[mm]	2,0	1,7	1,4	2,1	2,0	1,5

Fastener size HU	S4				12			14		1	6
Туре			н			H(F), A(F)			H(F)		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal embedme	ent depth	h _{nom}	[mm]	60	80	100	65	85	115	85	130
Concrete	Shear Load	V	[kN]	22,2	22,2	25,7	31,4	35,4	35,4	37,2	41,8
C20/25 to	Displacement	δ_{V0}	[mm]	1,6	1,6	0,9	5,3	5,3	4,0	2,3	1,8
C50/60	Displacement	δ∨∞	[mm]	2,3	2,4	1,4	7,9	7,9	6,0	3,5	2,7

Table C14: Displacements under shear loads for HUS4 stainless steel

Fastener size HUS4				6	8	3	1	0	1	4
Туре	Туре		HR, CR	HR, CR		HR, CR		HR		
				h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal anchorage of	depth	h_{nom}	[mm]	55	60	80	70	90	70	110
	Shear load	V	[kN]	7,8	11,0	12,4	13,6	15,7	12,9	27,3
Concrete C20/25 to		δνο	[mm]	0,4	2,0	2,3	1,1	1,7	3,5	3,9
C50/60	Displacement	$\delta_{V^{\infty}}$	[mm]	0,5	2,4	2,9	1,5	2,4	3,9	4,3
		δ V,C1	[mm]	1)	1)	4,8	1)	5,3	1)	7,6

¹⁾ No performance assessed.

Hilti screw anchor HUS4	
Performances	Annex C16
Displacement values in case of static and quasi-static loading	

Table C15: Displacements under tension and shear loads for seismic category 2 for HUS 4 carbon steel

Fastener size HUS4			8	10	12	14
Туре			H(F), C	H(F), C, A(F)	н	H(F), A(F)
			h_{nom3}	h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	70	85	100	115
Tension load						
Displacement DLS	δ _{N,C2 (DLS)}	[mm]	0,59	0,80	0,77	1,06
Displacement ULS	δ _{N,C2 (ULS)}	[mm]	1,36	3,66	2,78	3,89
Shear load with Hilti filling set (HUS4-	-H and HUS4-	A)				
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	1,85	1,72	1,73	2,52
Displacement ULS	δ V,C2 (ULS)	[mm]	5,44	6,88	5,62	6,79
Shear load without Hilti filling set						
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	4,64	5,02	4,90	4,93
Displacement ULS	δ _{V,C2} (ULS)	[mm]	7,96	8,97	7,00	9,14

Hilti screw anchor HUS4	
Performances	Annex C17
Displacement values in case of seismic C2 loading	