

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0897 of 20 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

fischer Bolt Anchor FAZ II Plus dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

22 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-20/0897 English translation prepared by DIBt

Page 2 of 22 | 20 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 22 | 20 December 2022

Specific Part

1 Technical description of the product

The fischer Bolt Anchor FAZ II Plus dynamic is an anchor made of galvanised steel (FAZ II Plus dynamic) or stainless steel (FAZ II Plus dynamic R) which is placed into a drilled hole and anchored by torque-controlled expansion.

The fastener consists of an fischer Bolt Anchor FAZ II Plus with cone bolt, expansion clip, washer and hexagon nut and a Dynamic set with filling conical washer, spherical washer and lock nut.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static, quasi-statisc loading and seismic)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annexes C 1, C 5, C 6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 9
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annexes C 7 to C 9

Essential characteristic (fatigue loading, Linearized function - Assessment method C)	Performance
Characteristic fatigue resistance under cyclic tension loading	
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	
Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance $\Delta N_{Rk,c,0,n} \Delta N_{Rk,sp,0,n} \Delta N_{Rk,cb,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	See Annexes C 10 and C 11
Characteristic pull- out fatigue resistance	
$\Delta N_{Rk,p,0,n}$ $(n = 1 \text{ to } n = \infty)$	

European Technical Assessment ETA-20/0897

Page 4 of 22 | 20 December 2022

English translation prepared by DIBt

Essential characteristic (fatigue loading, Linearized function - Assessment method C)	Performance		
Characteristic fatigue resistance under cyclic shear loading			
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)			
Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	See Annexes		
Characteristic concrete pry out fatigue resistance	C 10 and C 11		
$\Delta V_{Rk,cp,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)			
Characteristic fatigue resistance under cyclic combined tension and shear	loading		
Characteristic steel fatigue resistance a_s ($n = 1$ to $n = \infty$)	See Annexes C 10 and C 11		
Load transfer factor for cyclic tension and shear loading			
Load transfer factor $\psi_{\scriptscriptstyle FN}, \psi_{\scriptscriptstyle FV}$	See Annexes C 10 and C 11		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 and C 4

3.3 Aspects of durability

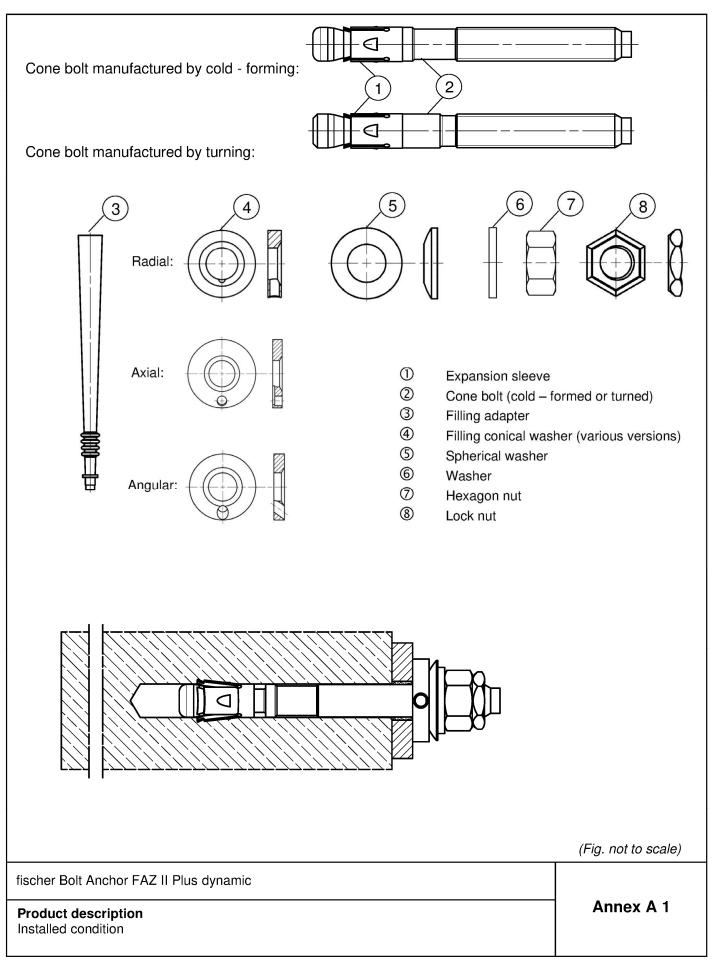
Essential characteristic	Performance
Durability	See Annex B 1

Assessment and verification of constancy of performance (AVCP) system applied, with 4 reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 20 December 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Baderschneider

Page 5 of European Technical Assessment ETA-20/0897 of 20 December 2022

Produ	uct ma	rking	and I	etter-	code:										
Ma 	arking ar		expans	16/30	B					frc	ont side arking a	area 4 -	cone b - wrenc D Barc	h	
Proc	duct mar	king, e	xample	: <		Z +	16/30 F	<u>}</u>							
	nd type ed at ma												ture (t _{fix} a 1 or 3	C0	
FAZ II PI FAZ II PI				bon ste	eel, galv steel	vanised	I								
Table A	\2.1: L	etter ·	- code	at ma	arking	area 2	2:								
Marking		(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(K)
Max. t _{fix,g}	_{es} [mm] M16	5 70	10 75	15 80	20 85	5 90	10 95	15 100	20 105	25 110	30 115	35 120	40 125	45 130	50 135
B ≥ [mm]	M20	70	75	00	00	105	110	115	120	125	130	135	140	145	150
	M24			-		130	135	140	145	150	155	160	165	170	175
Marking		(L)	(M)	(N)	(0)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix,g}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
B ≥ [mm]	M16 M20	145 160	155 170	165 180	175 190	185 200	205 220	225 240	245 260	265 280	285 300	335 350	385 400	435 450	485 500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525
				Calcu	lation e	existing	a h _{ef} foi	[,] install	ed fast	eners:					
							-	le A2.1) —							
				CXIStil	ig ner –	-	-		CXIStin	'y uix,ges	5				
						Tfix,ges	see An	nex B2							
													(Fig. nc	nt to soc	
fischer B	olt Anch	or FAZ	II Plus	dynan	nic								(, ig. iic	. 10 300	
Product Product			tter coo	le									Ann	ex A :	2

Tab	le A3.1: Materials FAZ	II Plus dynamic				
Daut	Decimation	Ma	aterial			
Part	Designation	FAZ II Plus dynamic	FAZ II Plus dynamic R			
		Steel	Stainless steel R			
Steel grade		Zinc plated ≥ 5 µm, ISO 4042:2018	Acc. to EN 10088:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015			
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014	Stainless steel EN 10088:2014			
2	Cone bolt	Cold form steel or free cutting steel				
3	Filling adapter	Plastic				
4	Filling conical washer	Cold form stool or free outting stool				
5	Spherical washer	Cold form steel or free cutting steel	Stainless steel EN 10088:2014			
6	Washer	Cold strip, EN 10139:2016	EN 10000.2014			
7	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70			
8	Lock nut	Cold strip, EN 10139:2016	Stainless steel EN 10088:2014			
	Injection cartridge	Mortar, hardener, filler (com	pressive strength ≥ 50 N/mm²)			
I		·				

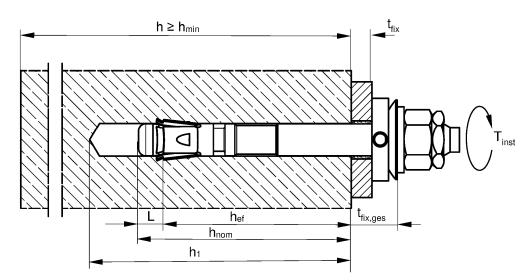
fischer Bolt Anchor FAZ II Plus dynamic

Product description Materials Annex A 3

Specificatio	ons of intended	use			
Fastenings subject to:					
Size	FAZ II Plus dynamic, FAZ II Plus dynamic R				
Hammer drilling with	M16	M20	M24		
standard drill bit					
Hammer drilling with hollow drill bit with automatic cleaning		1			
Static and quasi-static loading in cracked and uncracked concrete		<i>✓</i>			
Seismic actions category C1 and C2 – not in combination with fatigue loading		1			
Fire exposure – not in combination with fatigue loading		1			
Fatigue load in cracked and uncracked concrete – not in combination with seismic- or fire exosure		1			
 Base materials: Compacted reinforced and unreinforced normal according to EN 206:2013+A2:2021 Strength classes C20/25 to C50/60 according to EN 	-		ed and uncracked)		
Use conditions (Environmental conditions): • Structures subject to dry internal conditions (FAZ II					

 For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III: for FAZ II Plus dynamic R

Design:


- Fastenings are to be designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 061: 2020-08 "Design method for fasteners in concrete under fatigue cyclic loading"
- Fastenings in stand-off installation according to EN 1992-4:2018, 6.2.2.3 are not covered by this European Technical Assessment
- · Fatigue design cannot be done in combination with seismic- or fire exposure

Intended use Specifications Annex B 1

Table B2.1: Installation parameters

Qi-a			FAZ II Plus dyr	namic, FAZ II Plu	s dynamic R
Size			M16	M20	M24
Nominal drill hole diameter	d0 =	_	16	20	24
Maximum bit diameter with hammer or hollow drilling	d _{cut,max}	[mm]	16,50	20,55	24,55
Effective embedment depth	h _{ef} ≥		65 - 160	100 - 180	125
Length from hef to end of cone bolt	L	[]	17,5	20,0	23,5
Overall fastener embedment depth in the concrete	h _{nom} ≥	[mm]		h _{ef} + L	
Depth of drill hole to deepest point	h₁ ≥		h _{nom} + 5	h _{nom} +	- 10
Diameter of clearance hole in the fixture	d _f ≤	[mm]	18	22	26
Required setting torque	T _{inst} =	[Nm]	110	200	270
Minimum thickness of the fixture	t _{fix,min} ≥	· [mm]	15	20	24
Thickness of the fixture	t _{fix,ges} =	. [] [t _{fix} + 11	t _{fix} + 13	t _{fix} + 17

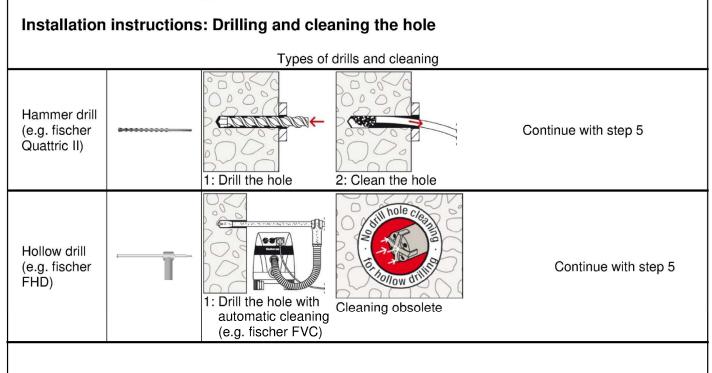
- h_{ef} = Effective embedment depth
- t_{fix} = Thickness of the fixture
- $t_{fix,ges}$ = Thickness of the fixture and the filling set
- h₁ = Depth of drill hole to deepest point
- h = Thickness of the concrete member
- h_{min} = Minimum thickness of concrete member
- h_{nom} = Overall fastener embedment depth in the concrete
- T_{inst} = Required setting torque
 - = Length from hef to end of cone bolt

(Fig. not to scale)

fischer Bolt Anchor FAZ II Plus dynamic

Intended use

Installation parameters


Annex B 2

L

Installation instructions:

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Hammer- or hollow drilling according to Annex B 2 •
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement .
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller • distance if the aborted drill hole is filled with high strength mortar and if under shear or obligue tension load it is not in the direction of load application

Electronic copy of the ETA by DIBt: ETA-20/0897

fischer Bolt Anchor FAZ II Plus dynamic Intended use

Annex B 3

Installation instructions

Installation instr	Installation instructions: Installation of the fastener						
	5: Check the position of the conical washer						
	6: Set the fastener. E.g. with fischer FA-ST II setting tool:						
Tinst	7: Apply T _{inst}						
	8: Tighten lock nut manually, then use wrench to give another quarte	er turn					
	9: The gap between anchor and fixture (annular gap) must be filled with mortar (compressive strength \geq 50 N/mm ² e.g. fischer FIS HB, FIS V Plus, FIS EM Plus or FIS SB) via the fillable conical washer.						
tfix,ges	10: Correctly installed fastener						
fischer Bolt Anchor FA	Z II Plus dynamic						
Intended use Installation instruction	S	Annex B 4					

	0:			FAZ II Plus	dynamic, FAZ II Plu	us dynamic R		
	Size			M16	M20	M24		
Steel failure								
Characteristic resistance FAZ II Plus FAZ II Plus dynamic R		——— N _{Rk,s} [kN] -		78,7	108,4	180,0		
				83,0	127,6	187,0		
Partial factor for	FAZ II Plus dynamic		1) [1]	1,40	1,40	1,50		
steel failure	FAZ II Plus dynamic R	γ _{Ms} 1) [-]		1,40	1,45	1,50		
Pullout failure			·					
Effective embedm calculation	ent depth for	h _{ef}	[mm]	65 - 160	100 - 180	125		
Characteristic resistance in cracked concrete C20/25 Characteristic resistance in uncracked concrete C20/25		N _{Rk,p}	[LN]]	27,0	34,4	48,1		
		(C20/25)	[kN] -	38,6	49,2	68,8		
		_	C25/30	1,12				
Increasing factor v	νc for		C30/37		1,22			
cracked or uncrac		- [-] - -	C35/45	1,32				
concrete			C40/50	1,41				
$N_{Rk,p} = \psi_{C} \cdot N_{Rk,p} \left(0 \right)$	C20/25)		C45/55		1,50			
		-	C50/60					
Installation sensiti	vity factor	γinst	[-]		1,0)		
Concrete cone a	nd splitting f	ailure						
Factor for uncrack	ked concrete	k _{ucr,N}			11,0 ²⁾			
Factor for cracked	l concrete	k _{cr,N}	[-]		7,72)			
Characteristic spa	cing	Scr,N	[]	3 · h _{ef}				
Characteristic edg		Ccr,N	[mm]	1,5 · h _{ef}				
Characteristic spa for splitting failure	cing	Scr,sp	[mm]		$2 \cdot c_{cr,sp}$			
Characteristic edg		_				4)		
distance for splitting failure	h ≥ 200	Ccr,sp	[mm]	2∙h _{ef}	2,4·h _{ef}	2,2·h _{ef}		
Characteristic resi to splitting	stance	N^0 Rk,sp	[kN]		min {N ⁰ Rk,c; NRk,p} ³⁾			

¹⁾ In absence of other national regulations

²⁾ Based on concrete strength as cylinder strength

 $^{3)}$ $N^{0}_{\text{Rk},c}$ according to EN 1992-4:2018

⁴⁾ No performance assessed

fischer Bolt Anchor FAZ II Plus dynamic

Performances

Characteristic values of tension resistance under static and quasi-static action

Qi-a			FAZ II Plus dynamic, FAZ II Plus dynamic I			
Size		Γ	M16	M20	M24	
Steel failure without le	ver arm			•		
Characteristic FAZ II P	lus dynamic with filling		69,8	85,6	128,3	
resistance FAZ II P	lus dynamic with filling R	V ⁰ Rk,s [kN]	73,6	117,9	158,1	
Partial factor for steel fa	γмs ¹⁾ г		1,25			
Factor for ductility				1,0		
Steel failure with lever	arm and Concrete pryou	t failure				
Effective embedment de	h _{ef} [mm]	85 - 160	100 - 180	125		
Characteristic bending	FAZ II Plus dynamic	M ⁰ _{Rk,s} [Nm]	266	422	864	
resistance	FAZ II Plus dynamic R		256	519	898	
Factor for pryout failure		k ₈ [-]		3,2		
Effective embedment de	pth for calculation	h _{ef} [mm]	65 - < 85			
Characteristic bending	FAZ II Plus dynamic		251	2)		
resistance	FAZ II Plus dynamic R	M ⁰ _{Rk,s} [Nm]	256			
Factor for pryout failure		k ₈ [-]	3,2			
Partial factor for steel fa	ilure	γ _{Ms} ¹⁾ []		1,25		
Factor for ductility		[-]		1,0		
Concrete edge failure						
Effective embedment de	l _f [mm]		h _{ef}			
Outside diameter of a fa	Outside diameter of a fastener			20	24	

²⁾ No performance assessed

Performances

Characteristic values of shear resistance under static and quasi-static action

Table C3.1: Characteristic values of tension resistance under fire exposure – not in combination with fatigue loading

	compinatio		aligue loat	ung			
Cine					FAZ II Plu	s dynamic, FAZ II Plus	dynamic R
Size				M	16	M20	M24
			h _{ef} ≥ [mm]	65 - < 85	85 - 160	100 - 180	125
			R30	9	,4	14,7	21,1
	FAZ II Plus	NI	R60	7,	,7	12,0	17,3
	dynamic	N _{Rk,s,fi}	R90	6	,0	9,4	13,5
Characteristic			R120	5	,2	8,1	11,6
resistance steel failure			R30	21	,8	34,3	49,4
Steer failure	FAZ II Plus	NI .	R60	13,2		20,7	29,3
	dynamic R	N _{Rk,s,fi}	R90	10),5	18,3	26,4
			R120 [kN]	8	,6	17,3	25,0
Characteristic		N _{Rk,c,fi}	R30 - R90		7,7 ·	h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 /	1000
Concrete con	e failure		R120		7,7 · h∉	h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000 · 0,8	
Characteristic resistance pullout failure		N _{Rk,p,fi}	R30 R60 R90	4,5	6,8	8,6	12,0
			R120	3,6	5,4	6,9	9,6

Table C3.2: Characteristic values of shear resistance under fire exposure – not in combination with fatigue loading

			R	30	R	60
FAZ II Plus o	dynamic		V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M16	6	5	11,7	19,9	9,1	16,3
M20	h _{ef} ≥ 10	00 [mm]	18,2	39,0	14,2	31,8
M24	12	25	26,3	67,3	20,5	55,0
			R	90	R [.]	120
FAZ II Plus o	dynamic		R V _{Rk,s,fi,90} [kN]	90 M ⁰ _{Rk,s,fi,90} [Nm]	R [·] V _{Rk,s,fi,120} [kN]	1 20 M ⁰ _{Rk,s,fi,120} [Nm]
FAZ II Plus o M16	-	5	V _{Rk,s,fi,90}	M ⁰ Rk,s,fi,90	V _{Rk,s,fi,120}	M ⁰ Rk,s,fi,120
	6	5 00 [mm]	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]

Concrete pryout failure according to EN 1992-4:2018

fischer Bolt Anchor FAZ II Plus dynamic

Performances

Characteristic values of resistance under fire exposure

Table C4.1: Characteristic values of shear resistance under fire exposure – not in	
combination with fatigue loading	

	dunomia	D		R	30	R	60
FAZ II Plus	uynamic	; n		V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M16		65		21,8	46,2	13,2	27,9
M20	h _{ef} ≥	100	[mm]	34,3	90,9	20,7	54,9
M24	-	125	-	49,4	157,2	29,3	93,1
				,		,	
	lunomio	P		R	90	· · · · · · · · · · · · · · · · · · ·	20
FAZ II Plus o	dynamic	R		RS V _{Rk,s,fi,90} [kN]	0 M ⁰ _{Rk,s,fi,90} [Nm]	· · · · · · · · · · · · · · · · · · ·	20 M ⁰ _{Rk,s,fi,120} [Nm]
FAZ II Plus o M16	dynamic	R 65			_	R1	
	dynamic h _{ef} ≥		[mm]	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	R 1 V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]

Concrete pryout failure according to EN 1992-4:2018

 Table C4.2: Minimum spacings and minimum edge distances of fasteners under fire exposure for tension and shear load

Cino			FAZ II P	lus dynamic, FAZ II Plus c	lynamic R		
Size			M16	M16 M20 M24			
Spacing	Smin			Annex C5			
Edge distance	Cmin	[mm]	for fire exposi	$c_{min} = 2 \cdot h_{ef},$ ure from more than one side	e c _{min} ≥ 300 mm		

fischer Bolt Anchor FAZ II Plus dynamic

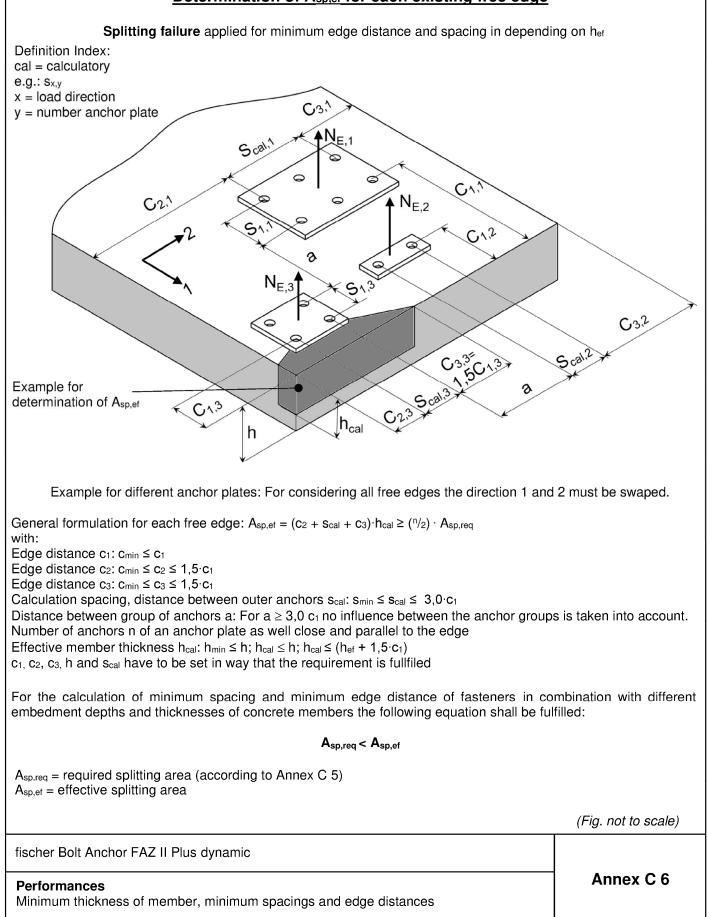
Performances

Characteristic values of resistance under fire exposure

Size			FAZ II P	lus dynamic, FAZ II Plu	s dynamic R
Size			M16	M20	M24
Minimum edge distance		_			
Uncracked concrete	0 .		65	95	135
Cracked concrete	Cmin		65	85	100
Corresponding spacing	S	[mm]		according to Annex C	6
Minimum thickness of concrete member	h _{min}	[]	140	160	200
Thickness of concrete member	h≥			max. $\{h_{min}; 1, 5 \cdot h_{ef}\}$	
Minimum spacing					
Uncracked concrete			65	95	100
Cracked concrete			05	90	100
Corresponding edge distance	С	[mm]		according to Annex C	6
Minimum thickness of concrete member	h _{min}	[]	140	160	200
Thickness of concrete member	h≥			max. {h _{min} ; 1,5 · h _{ef} }	
Minimum splitting area					
Uncracked concrete	^	[·1000	67	100	117,5
Cracked concrete	— A _{sp,req}		50	77	87,5

Table C5.2: Calculated values for minimum spacing and minimum edge distances for cracked
concrete with one edge (c_2 and $c_3 \ge 1,5 c_1$)

Type of apphar	FAZ II Plus dynamic, FAZ II Plus dynamic R					
Type of anchor	M16		M20	M24		
Effective anchorage depth	h _{ef} ≥ [mm]	65	85	100	125	
Minimum thickness of concrete member	h≥[mm]	140	180	160	200	
Minimum anacing	s _{min} [mm]	6	65	95	100	
Minimum spacing	for $c \ge [mm]$	100	75	130	115	
Minimum odgo diatopoo	c _{min} [mm]	(65	85	100	
Minimum edge distance	for $s \ge [mm]$	165	85	230	140	


fischer Bolt Anchor FAZ II Plus dynamic

Performances

Minimum thickness of member, minimum spacings and edge distances

Determination of Asp,ef for each existing free edge

				Ind shear resistant with fatigue load		ismic action
						Plus dynamic R
Size				M16	M20	M24
Effective embedme	ent depth	h _{ef}	[mm]	85 - 160	100 - 180	125
With filling of the a	nnular gap	$lpha_{gap}$	[-]		1,0	
Steel failure N _{Rk,s} ,	_{C1} = N _{Rk,s} ; γ _{Ms,C1}	= γ_{Ms} (see A	nnex C1)		
Pullout failure						
Characteristic resistic resistic cracked concrete (N _{Rk,p,C1}	[kN]	27,0	34,4	48,1
Installation sensitiv	vity factor	γinst	[-]		1,0	
Concrete cone fa	ilure and splitti	ng failure N _F	$R_{k,c,C1} = \mathbf{N}$	0 _{Rk,c} ; N _{Rk,sp,C1} = N ⁰ _R	_{k,sp} (see Annex (C1)
Steel failure with	out lever arm					
			<u> </u>	FAZ II Plus d	-	
	Martin Chille	het	[mm]	85 - 160	100 - 180	
Characteristic resistance C1	With filling	V _{Rk,s,C1}	[kN]	59,3	85,6	102,6
resistance CT		h	[]	FAZ II Plus dy	1	105
	Mith filling	hef	[mm]	85 - 160	100 - 180	
Dartial factor for at	With filling	V _{Rk,s,C1}	[kN]	62,6	94,3	126,5
Partial factor for st	eel failure	γMs,C1 ¹⁾	[-]		1,25	
fischer Bolt Ancho	or FAZ II Plus dy	namic				Annex C 7

Characteristic values of tension and shear resistance under seismic action category C1

Table C8.1:				sion and shear re ination with fatigue	sistance under sei Ioading	smic action
	•	, , , , , , , , , ,			s dynamic, FAZ II Plus	s dynamic R
Size				M16	M20	M24
With filling of the	annular ga	p α _{gap}	[-]		1,0	
Steel failure N _F	$R_{k,s,C2} = N_{l}$	_{Rk,s} ; γ _{Ms,C2} = γ _{Ms} (see An	nex C1)		
Pullout failure						
Characteristic		h _{ef}	[mm]	85 - 160	100 - 180	125
resistance in cra	acked .	NRk,p,C2	[kN]	21,5	30,7	39,6
concrete C2		h _{ef}	[mm]	65 - <85	_	2)
		N _{Rk,p,C2}	[kN]	16,4		
Installation sens			[-]		1,0	
Concrete cone	failure a	nd splitting fail	ure N _{Rk}	_{,c,C2} = N ⁰ _{Rk,c} ; N _{Rk,sp,C2} =	= N ⁰ _{Rk,sp} (see Annex C	1)
Steel failure wit	thout leve	er arm				
_				FAZ II PI	us dynamic	
_		h _{ef}	[mm]	85 - 160	100 - 180	125
_	With	filling V _{Rk,s,C2}	[kN]	52,4	68,5	102,6
_		h _{ef}	[mm]	65 - <85		_2)
Characteristic _	With	filling $V_{Rk,s,C2}$	[kN]	52,4		/
resistance C2					s dynamic R	
_		h _{ef}	[mm]	85 - 160	100 - 180	125
_	With	filling V _{Rk,s,C2}	[kN]	55,2	104,9	126,5
_		h _{ef}	[mm]	65 - <85		_2)
	With	filling V _{Rk,s,C2}	[kN]	55,2		/
Partial factor for	r steel	γ Ms,C2 ¹⁾	[-]		1,25	
1) In absence of	other nat	tional regulations	2			

¹⁾ In absence of other national regulations

²⁾ No performance assessed

fischer Bolt Anchor FAZ II Plus dynamic

Characteristic values of tension and shear resistance under seismic action C2

0:		FAZ II F	Plus dynamic, FAZ II Plu	us dynamic R
Size		M16	M20	M24
Displacement – f	factor for tensile load ¹⁾			
SNO - factor	in cracked concrete	0,08	0,07	0,05
S _{N∞} - factor			0,09	0,07
SNO - factor	in uncracked [mm/k	0,06	0,05	0,04
$\delta_{N\infty}$ - factor	concrete	0,10	0,06	0,05
Table C9.2: D	Sisplacements under sta	tic and quasi station	c shear loads	
Size		M16	M20	M24
isplacement – f	factor for shear load ²⁾			-
			FAZ II Plus dynam	ic
vo - factor		0,10	0,09	0,07
δv∞ - factor		0,14	0,15	0,11
	in cracked or uncracked concrete [mm/k	N]	FAZ II Plus dynamic	c R
δvo - factor	טווטו מטתכט טטווטו פופ	0,10	0,11	0,07
δv∞ - factor		0,15	0,17	0,11
$\delta_{N0} = \delta_{N0} - factor$	r · N	$\delta v_0 = \delta v_0$ $\delta v_\infty = \delta v_0$	ion of effective displacen o – factor · V ∞ – factor · V on shear loading	
$\delta_{N0} = \delta_{N0} - \text{factor}$ $\delta_{N\infty} = \delta_{N\infty} - \text{factor}$ N = Action tensi	r N r N	$\delta v_0 = \delta v_0$ $\delta v_\infty = \delta v_0$ V = Action nsion loads for ca	n – factor · V ∞ – factor · V on shear loading t egory C2 for all em	bedment depth
$\delta_{N0} = \delta_{N0} - factor$ $\delta_{N\infty} = \delta_{N\infty} - factor$ N = Action tensi Table C9.3: D	r · N r · N ion loading	δνο = δνα δν∞ = δνα V = Action Note: Second Secon	n – factor V ∞ – factor V on shear loading t egory C2 for all em dynamic, FAZ II Plus dy	bedment depth
$δ_{N0} = δ_{N0} - factor δ_{N∞} = δ_{N∞} - factorN = Action tensiTable C9.3: DSize$	r · N ion loading isplacements under te	$\delta v_0 = \delta v_0$ $\delta v_{\infty} = \delta v_0$ V = Actions TSION loads for Ca FAZ II Plus M16	n – factor V ∞ – factor V on shear loading tegory C2 for all em dynamic, FAZ II Plus dy M20	bedment depth ynamic R M24
δN0 = δN0 – factor $δN∞ = δN∞ – factor N = Action tensi Γable C9.3: Di size DLS$	r · N r · N ion loading	δνο = δνα δν∞ = δνα V = Actions Note: Second Seco	n – factor V ∞ – factor V on shear loading t egory C2 for all em dynamic, FAZ II Plus dy	bedment depth
δN0 = δN0 - factor $δN∞ = δN∞ - factor N = Action tensi Table C9.3: D Size DLS JLS 1) No performance Table C9.4: D$	r · N ion loading Displacements under ter δN,C2 (DLS) δN,C2 (ULS)	$\delta_{V0} = \delta_{V0}$ $\delta_{V\infty} = \delta_{V0}$ $V = Action loads for categories for categorie$	n – factor V m – factor V on shear loading tegory C2 for all em dynamic, FAZ II Plus dy M20 5,6 14,4 gory C2 for all embe	bedment depth ynamic R M24 4,8 15,2 edment depths
δN0 = δN0 - factor $δN∞ = δN∞ - factor N = Action tensi Table C9.3: D Size DLS JLS 1) No performance Table C9.4: D$	r · N ion loading <u>bisplacements under ter</u> δ _{N,C2 (DLS)} δ _{N,C2 (ULS)} [mm] e assessed	$\delta_{V0} = \delta_{V0}$ $\delta_{V\infty} = \delta_{V0}$ $V = Action loads for categories for categorie$	a – factor V ∞ – factor V on shear loading tegory C2 for all em dynamic, FAZ II Plus dy M20 5,6 14,4	bedment depth ynamic R M24 4,8 15,2 edment depths
$δ_{N0} = δ_{N0} - factor \delta_{N\infty} = \delta_{N\infty} - factorN = Action tensiTable C9.3: DSizeDLSJLS1) No performanceTable C9.4: DSize$	r · N ion loading <u>Displacements under ter</u> <u>δN,C2 (DLS)</u> <u>δN,C2 (ULS)</u> e assessed Displacements under sh	$\delta v_0 = \delta v_0$ $\delta v_\infty = \delta v_0$ V = Actions FAZ II Plus M16 4,4 12,3 ear loads for cate FAZ II Plus FAZ II Plus	 factor V factor V factor V on shear loading 	bedment depthe ynamic R 4,8 15,2 edment depths ynamic R
$ δ_{N0} = δ_{N0} - factor $ $ δ_{N∞} = δ_{N∞} - factor $ $ N = Action tensi $ $ Table C9.3: Di $ Size $ DLS $ $ DLS $ $ DLS with filling $	r · N ion loading <u>Displacements under ter</u> <u>δN,C2 (DLS)</u> [mm] e assessed Displacements under sh <u>δv,C2 (DLS)</u> [mm]	$\delta_{V0} = \delta_{V0}$ $\delta_{V\infty} = \delta_{V0}$ $V = ActionFactor of the second seco$	 factor V factor V factor V on shear loading 	bedment depths ynamic R 4,8 15,2 edment depths ynamic R M24 4,2
$ δ_{N0} = δ_{N0} - factor $ $ δ_{N∞} = δ_{N∞} - factor $ $ N = Action tensi $ $ Table C9.3: Di $ Size $ DLS $ $ DLS $ $ DLS $ Size $ DLS with filling $ $ JLS with filling $	r · N ion loading Displacements under ter δN,C2 (DLS) δN,C2 (ULS) e assessed Displacements under sh δV,C2 (DLS) δV,C2 (ULS) δV,C2 (ULS) [mm]	$\delta v_0 = \delta v_0$ $\delta v_\infty = \delta v_0$ V = Actions FAZ II Plus M16 4,4 12,3 ear loads for cates FAZ II Plus M16 1,2	 a – factor V b – factor V c – factor V d – f	bedment depth ynamic R M24 4,8 15,2 edment depths ynamic R M24
$δ_{N0} = δ_{N0} - factor$ $δ_{N\infty} = δ_{N\infty} - factor$ N = Action tensi Table C9.3: D i Size DLS JLS ¹⁾ No performance	r · N ion loading Displacements under ter δN,C2 (DLS) δN,C2 (ULS) e assessed Displacements under sh δV,C2 (DLS) δV,C2 (ULS) δV,C2 (ULS) [mm]	$\delta v_0 = \delta v_0$ $\delta v_\infty = \delta v_0$ V = Actions FAZ II Plus M16 4,4 12,3 ear loads for cates FAZ II Plus M16 1,2	 a – factor V b – factor V c – factor V d – f	bedment depth ynamic R 4,8 15,2 edment depths ynamic R M24 4,2

Table C10.1:			cteristic values under tensior ding to TR 061 – not in comb	•		•
						Sure
Required evide	ence		Number of lo	ad cycles (n)		
		n ≤ 10 ⁴	$10^4 < n \le 5 \cdot 10^6$	5 · $10^6 < n \le 10^6$) ⁸ n	> 10 ⁸
Tension load o	capacity					
ΔN_{Rk,s,0,n} FAZ II Plus dynamic	[kN]	N ^{fat} _{Rk,s} ⋅ 0,227	N ^{fat} _{Rk.s} · 10 ^{(-0,299-0,085·log(n))}	N ^{fat} _{Rk,s} · 10 ^{(-0,544-0,048}	3· log(n)) N ^{fat} F	_{Rk,s} · 0,11
ΔΝ_{Rk,s,0,n} FAZ II Plus dynamic R	נאואן	N ^{fat} _{Rk,s} · 0,335	$N^{fat}_{Rk,s} \cdot 10^{(0,427-0,226\cdot \log(n))}$	N ^{fat} Rk,s · 10 ^{(-0,405-0,101}	1 · log(n)) N ^{fat} F	_{Rk,s} · 0,05
			$N^{fat}_{Rk,s} = N_{Rk,s} \ accc$	ording to Annex C1		
Characteristic fa	atigue r	esistance for	concrete cone and concrete splitti	ng and pull-out		
ΔN _{Rk,c,sp/p,0,n} FAZ II Plus dynamic; FAZ II Plus dynamic R	[kN]	N ^{fat} Rk,c,sp/p· 0,68	N ^{fat} _{Rk,c,sp/p} · 10 ^{(0,055-0,055⋅ log(n))} ≥ N ^{fat} _{Rk,c,sp/p} · 0,5	N ^{fat} _{Rk,c,sp/p} · 0,5	o N ^{fat} Ri	_{к,с,sp/p} • 0,5
-			N ^{fat} Rk,s = NRk,s acco	ording to Annex C1		
Shear load cap	oacity			1		
ΔV _{Rk,s,0,n}		V ^{fat} _{Rk,s} - 0,26	V ^{fat} _{Rk,s} · 10 ^{(-0,15-0,108· log(n))}	V ^{fat} _{Rk,s} · 10 ^{(-0,48-0,059}	· log(n)) V ^{fat} F	ak,s · 0,10
FAZ II Plus dynamic			_{k,s} = 62,8 kN for M16; V ^{fat} _{Rk,s} = 82,9	kN for M20 [·] V ^{fat} Bks = 1	28.3 kN for M	24
ΔV _{Rk,s,0,n} FAZ II Plus dynamic R	[kN]	V ^{fat} _{Rk,s} · 0,26	V ^{fat} _{Rk,s} · 10 ^{(-0,242-0,084 · log(n))}	V ^{fat} _{Rk,s} · 10 ^{(-0,536-0,040}		 Rk,s · 0,13
- cyname r		V ^{fat} ₿	_{k,s} = 62,8 kN for M16; V ^{fat} _{Rk,s} = 98,0	kN for M20: V ^{fat} Bks = 1	41.2 kN for M	24
Characteristic fa	atigue r		concrete edge and pryout failure		,	
ΔV _{Rk,c,cp,0,n} FAZ II Plus dynamic; FAZ II Plus dynamic R	[kN]	V ^{fat_{Rk,c,cp}. 0,58}	V ^{fat} _{Rk,c,cp} · 10 ^{(0,08-0,08· log(n))} ≥ V ^{fat} _{Rk,c,cp} · 0,5	V ^{fat} Rk,c,cp · 0,5		_{ik,c,cp} · 0,5
			$f^{fat}_{Rk,c,cp} = V_{Rk,c,cp}$ according to EN 19	92-4 with k ₈ according	to Annex C2	
Exponents and			or			
Exponent for co) 7		
α _{s = αsn} Load-transfer fa	[-]		(),7		
	aטנטו ר ז	1	(),5		
$\psi_{FN} = \psi_{Fv}$	[-] combin	l Alload vor	ification regarding failure modes	•	Iro	
-	[_]					
α _c ¹⁾ The annular (<u>t−</u> j gap fillir	Ing can be om	itted if there is a pure tension load	.,0		
fischer Bolt And	chor FA	Z II Plus dyn	amic		_	
Performances Essential chara Design methoc	acteristi		er tension and shear fatigue loads 61		Annex	C 10

Table C11.1: Essentia method	I characteristic value II according to TR 06				-	-
				FAZ II Plus dyr	namic, FAZ	II Plus dynamic R
Size				M 16	M20	M24
Tension load						·
Effective embedment depth		h _{ef}	[mm]	65 - 160	100 - 180	125
Steel failure						
Characteristic steel fatigue	FAZ II Plus dynamic	- 4 NI-	[kN]	8,7	11,9	19,8
resistance	FAZ II Plus dynamic R	- ΔN _{Rk,s,0,∞}	נגואן	4,2	6,4	9,4
Concrete failure				1		
		∆N _{Rk,c,0,∞}			$0,5 \cdot N_{Rk,c}$:
Characteristic concrete fatig	ue resistance	∆N _{Rk,p,0,∞}	- [kN]		0,5 · N _{Rk,p})
	,		- ' '		0,5 · N _{Rk,st}	
• •••••		ΔN _{Rk,sp,0,∞}	-		0,5 · NRk,sp	0
Shear load						
Shear load capacity, steel		'M			0.0	10.0
Characteristic steel fatigue	FAZ II Plus dynamic	- ∆V _{Rk,s,0,∞}	[kN]	6,3	8,3	12,8
	FAZ II Plus dynamic R			8,2	12,7	18,4
Concrete pryout failure		4.5.7	71 N 17		05.14	
Characteristic concrete fatig	jue resistance	∆V _{Rk,cp,0,∞}	[kN]		0,5 · V _{Rk,cp})
Concrete edge failure						
Characteristic concrete fatig		∆V _{Rk,c,0,∞}	[kN]		$0,5 \cdot V_{Rk,c}$	
Value of h_{ef} (=I _f) under shea		h _{ef}	- [mm]	65 - 160	100 - 180	
Effective outside diameter c		dnom		16	20	24
Exponents and load-trans						
Exponent for combined load						
$\alpha_{s} = \alpha_{sn}$ [-]			0,	7		
Load-transfer factor						
$\Psi FN = \Psi Fv \qquad [-]$	ad marification veneral		0,		- f - :	
Exponent for combined lo	bad, verification regard	ing failure			el fallure	
α _c [-]			1,	5		
fischer Bolt Anchor FAZ II Performances	Plus dynamic					Annex C 11
Essential characteristic val Design method II accordin		hear fatigue	loads			