

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/1081 of 15 July 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

HALFEN Serrated Anchor Channels HZA

Anchor channels

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Werke

Leviat Manufacturing Plants

31 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601-V01, Edition 06/2022

ETA-20/1081 issued on 14 April 2021

Page 2 of 31 | 15 July 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

081 Page 3 of 31 | 15 July 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The HALFEN Serrated Anchor Channels HZA is a system consisting of a C-shaped serrated channel profile of steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and HALFEN serrated channel bolts.

The anchor channel is embedded surface-flush in the concrete. HALFEN serrated channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
Resistance to steel failure of the connection between anchors and channel	$N_{Rk,s,c}$ see Annex C1
Resistance to steel failure of channel lips and subsequently pull-out of channel bolt	$N_{Rk,s,l}^{0}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C2
- Resistance to steel failure by exceeding the bending strength of the channel	s_{max} see Annex A7 $M_{Rk,s,flex}$ see Annex C1
Maximum installation torque to avoid damage during installation	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C3
- Resistance to concrete cone failure	h_{ef} see Annex B3 $k_{cr,N}$; $k_{ucr,N}$ see Annex C3
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A7 c_{min} ; h_{min} see Annex B3
Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C3
- Resistance to blowout failure - bearing area of anchor head	A _h see Annex A6

English translation prepared by DIBt

Page 4 of 31 | 15 July 2022

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
- Resistance to steel failure of channel bolt under shear loading without lever arm	$V_{Rk,s}$ see Annex C8
- Resistance to steel failure by bending of the channel bolt under shear load with lever arm	$M_{Rk,s}^0$ see Annex C8
- Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction)	$V_{Rk,s,l,y}^{0}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C5
Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis)	$V_{Rk,s,l,x}$ see Annex C6
- Factor for sensitivity to installation (longitudinal shear)	γ_{inst} see Annex C6
- Resistance to steel failure of the anchor (longitudinal shear)	$V_{Rk,s,a,x}$ see Annex C5
- Resistance to steel failure of connection between anchor and channel (longitudinal shear)	$V_{Rk,s,c,x}$ see Annex C5
- Resistance to concrete pry-out failure	k_8 see Annex C7
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C7
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C8
Characteristic resistance under fatigue tension loading	
- Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2)	No Performance assessed
Fatigue limit resistance to steel failure of the whole system (test method B)	No Performance assessed
- Fatigue resistance to steel failure of the whole system (linearized function, test method C)	$\Delta N_{Rk,s,lo,n}$; $N_{lok,s,n}$ (n = 10 ⁴ to n = ∞) see Annex C9
- Fatigue resistance to concrete related failure (exponential function, test method A1, A2)	No Performance assessed
Fatigue limit resistance to concrete related failure (test method B)	No Performance assessed
- Fatigue resistance to concrete related failure (linearized function, test method C)	$\Delta N_{Rk,c,E,n}$; $\Delta N_{Rk,p,E,n}$ (n = 10 ⁴ to n = ∞) see Annex C10

Page 5 of 31 | 15 July 2022

English translation prepared by DIBt

Essential characteristic	Performance
Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{N0} \; ; \; \delta_{N^\infty} \; see \; Annex \; C4 \\ \delta_{V,y,0} \; ; \; \delta_{V,y,\infty} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,\infty} \\ see \; Annex \; C7 \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	No Performance assessed			

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

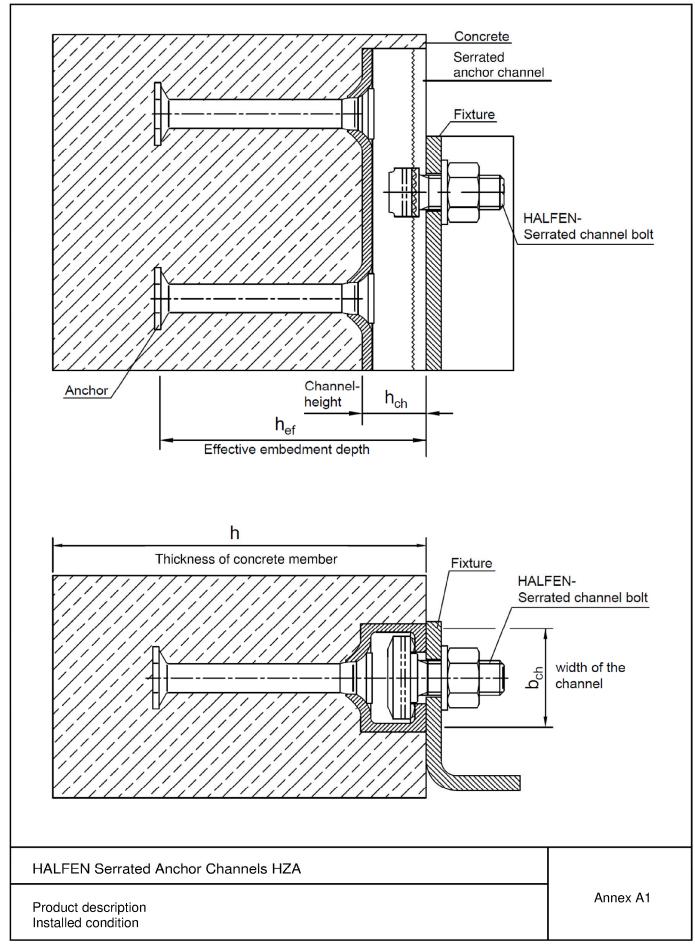
In accordance with EAD No. 330008-03-0601-V01, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

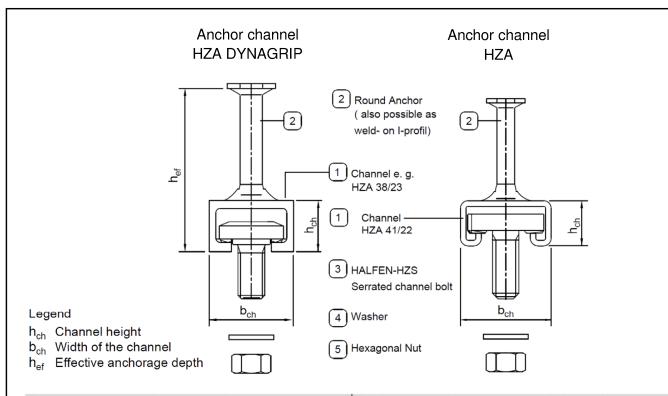
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 15 July 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:

Müller

Marking of the HALFEN serrated anchor channel e.g.: HZA 38/23 A4

a) Stamped on inner side of channel back

b) Printed on channel web

H or HALFEN Identifying mark of producer ZA Type of anchor channel

38/23 Size A4 Material

Material of serrated channel:

Carbon steel

No marking for 1.0038/1.0044/1.0045 SV 1.0242+Z/1.0529+Z

Stainless steel

A2 1.4301/1.4307/1.4567/1.4541 A4 1.4401/1.4404/1.4571 L4, DX 1.4062/1.4162/1.4362

F4, FA 1.4462 HCR 1.4529/1.4547

Marking of the HALFEN serrated channel bolts e.g.: HALFEN 8.8

H or HALFEN Identifying mark of producer

8.8 Strength grade

Material of serrated channel bolts:

Carbon steel
No marking
Stainless steel

A2 1.4301/1.4307/1.4567/1.4541 A4 1.4401/1.4404/1.4571/1.4578

L4 1.4362 F4, FA 1.4462 HCR 1.4529/1.4547

Strength grade of the serrated channel bolts:

Carbon steel

8.8 Strength grade 8.8

Stainless steel

50, 70 Strength grade 50, 70

HALFEN Serrated Anchor Channels HZA

Product description Marking and materials

Tabla	Λ1.	Materials	and ir	atandad	1100
Iable	Αι.	ivialeriais	anu n	nenueu	นรษ

		Inte	nded use				
	ے	1	2				
no.	catio	Dry internal conditions	Internal conditions with usual humidity				
Item no.		Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity. For examples see use conditions in Annex B1				
		M	aterials				
1	Channel profile	Carbon steel 1.0038 (A), 1.0044 (A), 1.0045 (A) 1.0976 (D) hot-dip galv. ≥ 55 μm acc. to (N) 1.0242+Z (U), 1.0529+Z (U) hot-dip galv. ≥ 15 μm	Carbon steel 1.0038 (A), 1.0044 (A), 1.0045(A) 1.0976 (D) hot-dip galv. ≥ 55 μm acc. to (N) Stainless steel ⁵⁾ 1.4301 (G), 1.4307 (G), 1.4567 (G) 1.4541 (G)				
2	Anchor	Carbon steel 1.0038 (A), 1.0214 (B), 1.0213 (B) 1.1132 (E), 1.1122 (E), 1.5525 (I) 1.5535 (I), 1.5523 (H), 1.0045 (A) 1.0401 (C) hot-dip galv. ≥ 55 μm acc. to (N)	Carbon steel 1.0038 (A), 1.0214 (B), 1.0213 (B) 1.1132 (E), 1.1122 (E), 1.5525 (I) 1.5535 (I), 1.5523 (H), 1.0045 (A) 1.0401 (C) hot-dip galv. ≥ 55 μm acc. to (N) Stainless steel ⁵⁾ 1.4301 (G), 1.4307 (G) 1.4567 (G), 1.4541 (G)				
3	HALFEN serrated channel bolts	Carbon steel strength grade 8.8 (J) hot-dip galv. ≥ 50 µm acc. to (P) 1)	Carbon steel strength grade 8.8 (J) hot-dip galv. ≥ 50 µm acc. to (P) ¹⁾ Stainless steel ⁵⁾ strength grade 50,70 (K) 1.4301 (G), 1.4307 (G) 1.4567 (G), 1.4541 (G)				
4	Washer ³⁾ (R) and (S) production class A, 200 HV	Carbon steel EN 10025:2005 electroplated ≥ 5 µm acc. to (O)	Carbon steel EN 10025:2005 hot-dip galv. ≥ 50 µm acc. to (P) 1) Stainless steel 5) steel grade A2, A3 (K)				
(5)	Hexagonal nuts (T)	Carbon steel strength grade 5/8 (L) electroplated ≥ 5 µm acc. to (O)	Carbon steel strength grade 5/8 (L) hot-dip galv. ≥ 50 µm acc. to (P) ¹⁾ Stainless steel ⁵⁾ strength grade 70, 80 (M) steel grade A2, A3 (M)				

HALFEN Serrated Anchor Channels HZA

Product description Materials and intended use

Table A1 (continued): Materials and intended use

			Intended use						
	io	3	4	5					
Item no.		according EN 1993-1-4:2006+A1:2015, Tab. A.2							
_	Spe	For CRC III	For CRC IV	For CRC V					
			Materials						
① Channel profile		Stainless steel 1.4401 (G), 1.4404 (G) 1.4571 (G), 1.4362 (G) 1.4062 (F), 1.4162 (F)	Stainless steel 1.4462 ²⁾ (G)	Stainless steel 1.4529 (G), 1.4547 (G)					
2	Stainless steel 1.4401 (G), 1.4404 (G) 1.4571 (G), 1.4362 (G) 1.4578 (G) Carbon steel 4) 1.0038 (A)		Stainless steel 1.4462 ²⁾ (G)	Stainless steel 1.4529 (G), 1.4547 (G)					
3	Stainless steel HALFEN serrated channel bolts Stainless steel strength grade 50,70 (K) 1.4401 (G), 1.4404 (G) 1.4571 (G), 1.4362 (G) 1.4578 (G)		Stainless steel strength grade 50,70 (K) 1.4462 ²⁾ (G)	Stainless steel strength grade 50,70 (K) 1.4529 (G), 1.4547 (G)					
4	Washer 3) (R) and (S) Stainless steel steel grade A4, A5 (K)		Stainless steel 1.4462 ²⁾ (G)	Stainless steel 1.4529 (G), 1.4547 (G)					
(5)	Hexagonal nuts (T)	Stainless steel strength grade 70, 80 (M) steel grade A4, A5 (M)	Stainless steel strength grade 70, 80 (M) 1.4462 ²⁾ (G)	Stainless steel strength grade 70, 80 (M) 1.4529 (G), 1.4547 (G)					
4 - E	N 10025-2:2004	F - EN 10088-2:2014	K - EN ISO 3506-1:2009	P - EN ISO 10684:2004					
3 - E	N 10263-2:2017	G - EN 10088-3:2014	L - EN ISO 898-2:2012	R - EN ISO 7089:2000					
C - E	N 10277-2:2008	H - EN 10269:2013	M - EN ISO 3506-2:2009	S - EN ISO 7093-1:2000					
) - E	N 10149-2:2013	I - EN 10263-4:2017	N - EN ISO 1461:2009	T - EN ISO 4032:2012					
E - E	N 10263-3:2017	J - EN ISO 898-1:2013	O - EN ISO 4042:1999	U - EN 10346:2015					
or e	electroplated with sp	pecial coating ≥ 12 μm	⁴⁾ only for weld-on anchors wit to EN 1992-1-1:2004 + AC:20	h sufficient concrete cover acc 10					
	462 not applicable fincluded in scope of	or indoor swimming pools of delivery	5) stainless steel anchors only steel channel profiles, channe	in combination with stainless					

HALFEN Serrated Anchor Channels HZA

Product description Materials and intended use

Fig. 1

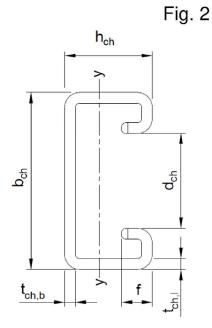


Table A2: Profile dimensions (steel and stainless steel)

			Dimensions						
Anchor channel HZA	I Material		b ch	h _{ch}	t _{ch,b}	t _{ch,I}	d _{ch}	f	ly
					[m	m]			[mm ⁴]
29/20	Carbon steel		29,0	20,0	2,5	2,5	14,0	5,0	10.200
38/23	Carbon steel & stainless steel		38,0	23,0	3,5	3,0	18,0	5,5	21.100
41/27	Carbon steel	Fig. 1	40,0	27,0	4,2	4,0	18,0	7,0	39.000
53/34	Carbon steel & stainless steel		52,5	34,0	4,0	4,0	22,5	7,5	92.600
64/44	Carbon steel & stainless steel		64,0	44,0	4,5	5,0	26,0	10,0	240.300
41/22	Carbon steel & stainless steel	Fig. 2	41,3	20,7	2,5	2,5	22,3	7,2	12.600

HALFEN Serrated Anchor Channels HZA	
Product description Profile dimensions	Annex A5

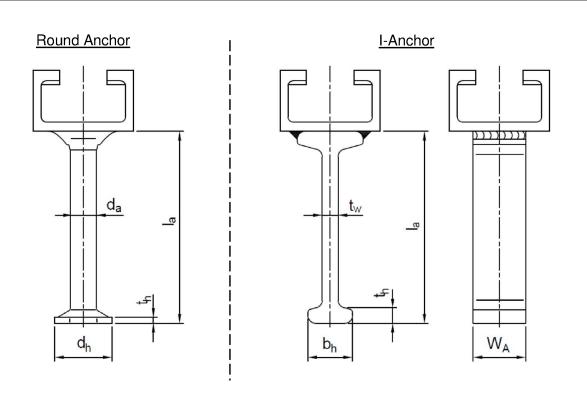


Table A3: Dimensions of anchors (Round Anchor and I-Anchor)

Anchor	or Round Anchor I-Anchor		Round Anchor I-Anchor								
channel	min la	da	dh	th	Ah	min la	tw	bh	th	WA	Ah
HZA		[m	m]		[mm ²]			[mm]			[mm ²]
29/20	64,0	8	16	1,9	151	69	5	18	3,5	12-20	156
38/23	73,0	10	20	2,2	236	128	6	17	5	20-30	220
41/27	124,0	12	25	2,7	378	128	6	17	5	25-35	275
53/34	123,7	12	25	2,7	378	128	6	17	5	30-40	330
64/44	_1)	_1)	_1)	_1)	_1)	140	7,1	20	6	41-50	529
41/22	63,3	8	16	1,9	151	69	5	18	3,5	12-20	156

¹⁾ Product not available

			- .	
HALFEN	Sarratad	Anchor	Channe	
	Ochalcu		Ullalili	710 I IZA

Product description Dimensions of anchors

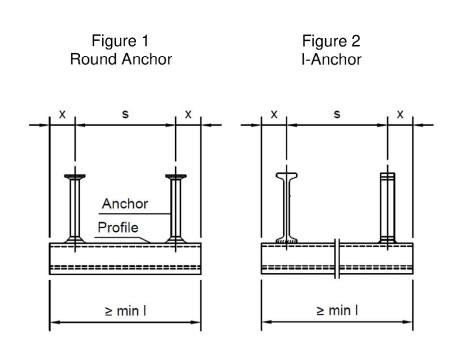


Table A4: Anchor positioning

	Anchor	spacing s		oacing <	Min. Channel length I _{min}		
Anchor channel HZA	Smin	Smax	Round Anchor Fig. 1	I-Anchor Fig. 2	Round Anchor Fig. 1	I-Anchor Fig. 2	
				[mm]			
29/20	50	200	28 ²⁾	28 ²⁾	106	106	
38/23	80	250	28 ²⁾	28 ²⁾	136	136	
41/27	80	250	35	35	150	150	
53/34	80	250	35	35	150	150	
64/44	80	300 ³⁾	_1)	35	_1)	150	
41/22	50	250	25 ²⁾	25 ²⁾	100	100	

¹⁾ Product not available

HALFEN Serrated Anchor Channels HZA

Product description Anchor positioning, channel length

²⁾ The end spacing may be increased up to 35 mm

 $^{^{3)}}$ In case of fatigue cyclic tension load: $s_{max} = 250 \text{ mm}$

HALFEN serrated channel bolts bcbo,d bcbo,1

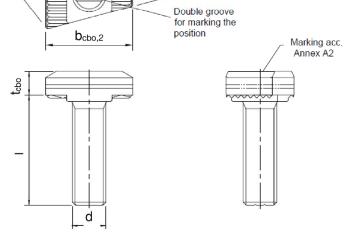


Table A5: Dimensions of HALFEN serrated channel bolts

Anchor channel HZA	Channel bolt HZS	Material	Thread diameter	Width b _{cbo,1}	Diagonal b _{cbo,d}	Length b _{cbo,2}	Thickness t _{cbo}
ΠZA	1120		diameter		[1	mm]	
29/20	HZS 29/20	8.8	M12	13,4	27,1	20,9	6,5
38/23	LIZC 20/02	8.8 A4-70	M12	17,0	37,0	28,8	8,0
and 41/27	HZS 38/23	8.8 A4-70	M16	17,0	37,0	28,8	8,0
50/04	HZS 53/34	8.8 A4-70	M16	21,0	51,6	41,6	11,5
53/34		8.8 A4-70	M20	21,0	51,6	41,6	13,0
CA/AA	1170 04/44	8.8 A4-70	M20	24,7	63,1	51,0	14,0
64/44	HZS 64/44	8.8 A4-70	M24	24,7	63,1	51,0	16,0
		8.8	M12	20,5	42,5	34,7	5,5
41/22	HZS 41/22	A4-50	M12	20,5	42,5	34,7	7,5
		8.8 A4-50	M16	20,5	42,5	34,7	7,5

HALFEN Serrated Anchor Channels HZA

Product description HALFEN serrated channel bolts, dimensions

Table A6: Strength grade

	Steel 1)	Stainless steel 1)		
Strength grade	8.8	50	70	
f _{uk} [N/mm²]	800	500 700		
f _{yk} [N/mm²]	640	210	450	
Finish	Hot-dip galvanized	-		

¹⁾ Materials according Annex A2 and Annex A3-A4, Tab. A1

HALFEN Serrated Anchor Channels HZA

Product description
HALFEN serrated channel bolts, strength grade

Annex A9

Specifications for intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel
- Fatigue cyclic tension for anchor channel/channel bolt according Annex C9, Table C11

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (serrated anchor channels and serrated channel bolts according to Annex A3-A4, Table A1,
 column 1 5)
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (serrated anchor channels and serrated channel bolts according to Annex A3-A4, Table A1, column 2 - 5)
- According to EN 1993-1-4:2006+A2:2015 relating to corrosion resistance class CRC III
 (serrated anchor channels and serrated channel bolts according to Annex A4, Table A1,
 column 3 5)
- According to EN 1993-1-4:2006+A2:2015 relating to corrosion resistance class CRC IV (serrated anchor channels and serrated channel bolts according to Annex A4, Table A1, column 4 - 5)
- According to EN 1993-1-4:2006+A2:2015 relating to corrosion resistance class CRC V
 (serrated anchor channels and serrated channel bolts according to Annex A4, Table A1, column 5)

Design:

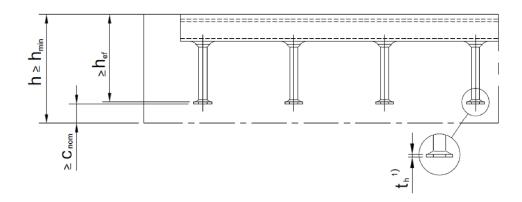
- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the serrated anchor channel and serrated channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", June 2022.
- The characteristic resistances are calculated with the minimum effective embedment depth.

HALFEN Serrated Anchor Channels HZA	
Intended use Specifications	Annex B1

English translation prepared by DIBt

Installation:

Electronic copy of the ETA by DIBt: ETA-20/1081


- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A7, Table A4 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instruction given in Annexes B6 and B7.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the anchor channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The anchor channels are protected from penetration of concrete into the internal space of the channel profiles.
- Washer may be chosen according to Annex A3-A4 and provided separately by the user.
- Orientating the channel bolt (groove mark according to Annex B7) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

HALFEN Serrated Anchor Channels HZA

Intended use
Specifications

Annex B2

Side view

Plan view

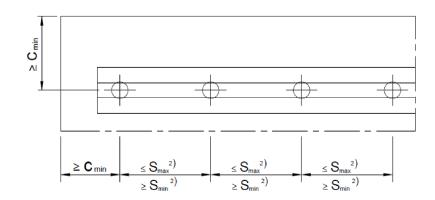


Table B1: Min. effective embedment depth, edge distance and thickness of concrete member

Serrated anchor channel HZA			29/20	38/23	41/27	53/34	64/44	41/22	
Minimum effective embedment depth	[mm]	h _{ef,min}	82	94	148	155	178	82	
Minimum edge distance		[mm]	Cmin	50	75	75	100	125	50
Minimum thickness of		h	$h_{ef} + t_h^{1)} + c_{nom}^{3)}$						
concrete member		h _{min}	125	125	170	200	200	125	

¹⁾ th = Anchor head thickness

HALFEN Serrated Anchor Channels HZA

Intended use Installation parameters of anchor channels

Annex B3

Z125137.21

Electronic copy of the ETA by DIBt: ETA-20/1081

 $^{^{2)}}$ s_{min}, s_{max} acc. to Annex A7, Tab. A4

³⁾ c_{nom} acc. to EN 1992-1-1 :2004 + AC 2010

Table B2: Minimum spacing and installation torque of HALFEN serrated channel bolts

			Installation torque T _{inst} ⁴⁾							
Anchor channel	HALFEN serrated channel bolts	Min. spacing of the serrated channel bolts	G	eneral ²⁾ T _{inst,g}		Steel-to-steel contact 3) T _{inst,s}				
HZA d	Smin,cbo	Steel 8.8 ¹⁾	Stainle	ss steel	Steel 8.81)	Stainle	ss steel			
			0.00	50 ¹⁾	70 ¹⁾	0.0010.0	50 ¹⁾	701)		
	[n	nm]			[]	lm]				
29/20	12	60	35	_ 5)	_ 5)	75	_ 5)	_ 5)		
00/00	12	60	55	5)	50	75	5)	50		
38/23	16	80	75	5)	75	185	5)	130		
41/07	12	60	75	5)	_5)	75	5)	_5)		
41/27	16	80	125	5)	5)	185	_ 5)	_5)		
53/34	16	80	135	5)	130	185	_ 5)	130		
33/34	20	100	165	_ 5)	165	360	_ 5)	250		
64/44	20	100	315	_ 5)	250	360	_ 5)	250		
64/44	24	120	375	_5)	335	625	_ 5)	435		
41/22	12	60	30	20	_5)	50	20	_5)		
41/22	16	80	40	50	_5)	140	50	_5)		

¹⁾ Materials according to Annex A2 and Annex A3-A4, Tab. A1

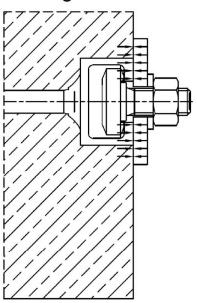
HALFEN Serrated Anchor Channels HZA	
Intended use Installation parameters	Annex B4

²⁾ Acc. to Annex B5, Fig. 1

³⁾ Acc. to Annex B5, Fig. 2

⁴⁾ T_{inst} must not be exceeded

⁵⁾ Product not available

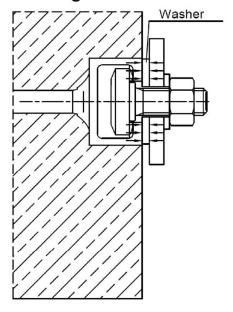


General

The fixture is in contact with the channel profile and the concrete surface.

The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 1

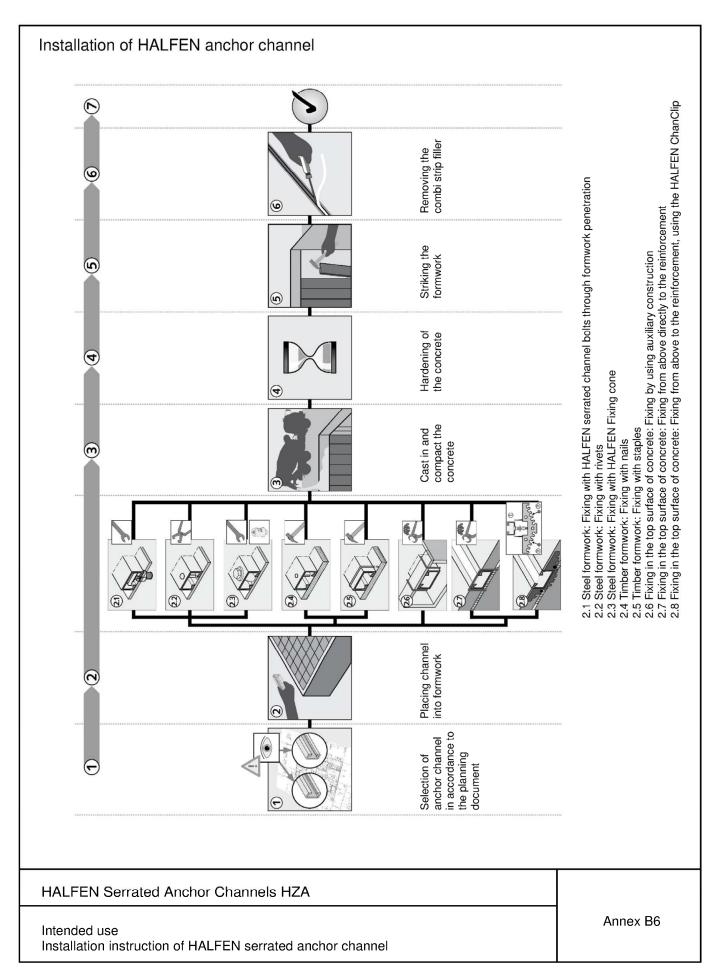


Steel-to-steel contact

The fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel parts (e.g. washer).

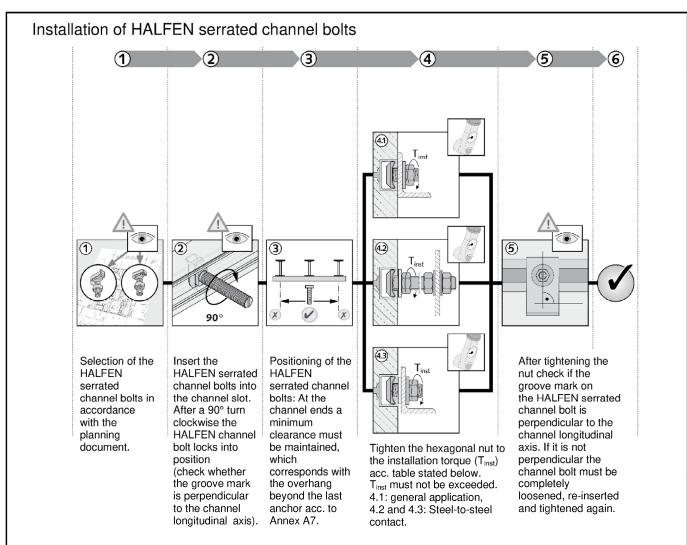
The installation torque according to Annex B4, Table B2 shall be applied and must not be exceeded.

Fig. 2


HALFEN Serrated Anchor Channels HZA

Intended use Position of the fixture

Annex B5


Electronic copy of the ETA by DIBt: ETA-20/1081

Z125137.21

Table B3: Installation torque

Pos. of	Material stren	Material strength		T _{inst} [Nm] ¹⁾					
fixture acc. Annex B5	grade		channel - HZA		M12 M16		M20	M24	
			29/20	3	5	_3)		_3)	_3)
Steel 8.8		Steel 8.8		55	55 (50)		(75)	_3)	_3)
Camanal	and (Stainless steel 50 / 70)		41/27	75		125		_3)	_3)
General			53/34	_3)		135 (130)		165 (165)	_3)
			64/44	_3)		_3)		315 (250)	375 (335)
			41/22	30	(20)	40	(50)	_3)	_3)
Ctool to otool	Steel	8.8		75	50 ²⁾	185	140 ²⁾	360	625
Steel-to-steel contact	Stainless	50	All profiles	2	20		50	_3)	_3)
Contact	steel	70		5	50	1	30	250	435

¹⁾ Tinst must not be exceeded

HALFEN Serrated Anchor Channels HZA

Intended use Installation instruction of HALFEN serrated channel bolts

Annex B7

²⁾ Only for HZS 41/22 M12 8.8 and for HZS 41/22 M16 8.8

³⁾ Product not available

Table C1: Characteristic Resistances under tension load – steel failure anchor channel

Serrated anchor ch	annel		Steel	29/20	38/23	41/27	53/34	64/44	41/22		
Steel failure: Ancho	or										
Characteristic	NI.	[].[]	carbon	20,1	31,4	54,0	56,5	100,0	20,1		
resistance	N _{Rk,s,a}	[kN]	stainless	_2)	31,4	_2)	56,5	100,0	22,6		
Partial factor	.,	1)	carbon	1,78	1 70	1,80	1.67	1,80	1,78		
	y Ms	s ' [/]	stainless	_2)	1,78	_2)	1,67		1,80		
Steel failure: Connection channel/anchor											
Characteristic	N _{Rk,s,c}	FL A 17	carbon	22,9	36,0	53,6	59,6	106,1	18,1		
resistance		[kN]	stainless	_2)	40,0	_2)	55,0	94,4	26,1		
Partial factor	γ Ms,	ca 1)		1,8							
Steel failure: Local	flexure o	of the c	hannel lips								
Spacing of channel bolts for N _{Rk,s,l}	Si,N	[mm]	58	76	80	105	128	83		
Characteristic	NIO	[LAN]]	carbon	22,9	39,3	53,6	82,5	106,1	18,1		
resistance	N ⁰ Rk,s,I	[kN]	stainless	_2)	40,0	_2)	55,0	94,4	26,1		
Partial factor	ү Мs	,l ¹⁾		1,8							

¹⁾ In absence of other national regulations

Table C2: Characteristic flexural resistance of channel

Serrated Anchor channel			Steel	29/20	38/23	41/27	53/34	64/44	41/22
Steel failure: Flexure of channel									
Characteristic	N4	[MIM]	carbon	873	1497	2289	3452	6935	733
flexural resistance of channel	M _{Rk,s,flex}	[Nm]	stainless	_2)	1670	_2)	3608	7922	749
Partial factor	γ Ms,fl∈	x ¹⁾	1,15						

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under tension load – steel failure	Annex C1

²⁾ No performance assessed

²⁾ No performance assessed

Table C3: Characteristic resistance under tension load – steel failure of HALFEN serrated channel bolt

HALFEN serrated channel bolt thread diameter					M12	M16	M20	M24	
Steel failure									
Characteristic	N _{Rk,s} [I		Carbon steel	8.8	67,4 (48,5) ¹⁾	125,6 (96,3) ²⁾	196,0	282,4	
resistance		[kN]	Stainless steel	50 ³⁾	40,3	64,0	5)	5)	
				70 ³⁾	59,0	109,9	171,5	247,1	
			Carbon steel	8.8		1,50			
Partial factor	Y Ms	4)	Stainless	50 ³⁾	2,86				
			steel	703)		1,	87		

¹⁾ For HZS 41/22 M12 8.8

Performances
Characteristic resistances under tension load – steel failure of serrated channel bolts

Annex C2

Electronic copy of the ETA by DIBt: ETA-20/1081

²⁾ For HZS 41/22 M16 8.8

³⁾ Materials according Annex A2, A3 and A4

⁴⁾ In absence of other national regulations

⁵⁾ No performance assessed

Table C4: Characteristic resistances under tension load – concrete failure

Serrated anchor char	nnel			29/20	38/23	41/27	53/34	64/44	41/22	
Concrete failure: Pull	-out failure									
Characteristic resistance in cracked	Round anchors	. N rk,p	[kN]	13,6	21,2	34,0	34,0	_2)	13,6	
concrete C12/15	I-anchors	, , , , , , , , , , , , , , , , , , ,	[,	14,0	19,8	24,8	29,7	47,6	14,0	
Characteristic resistance in	Round anchors	N _{Rk,p}	[kN]	19,0	29,7	47,6	47,6	_2)	19,0	
uncracked concrete C12/15	I-anchors	ГЧНК,р	[KIN]	19,7	27,7	34,7	41,6	66,6	19,7	
					1,	67				
			2,08							
	C30/37	Ψο	[-]	2,50						
Increasing factor for	C35/45					2,	92			
$N_{Rk,p}$	C40/50			3,33						
$= N_{Rk,p} \left(C12/15\right) \cdot \Psi_c$	C45/55					3,	75			
	C50/60			4,17						
	C55/67			4,58						
	≥C60/75			5,00						
Partial factor		γмр = ,	У Мс ¹⁾			1	,5			
Concrete failure: Cor	crete cone f	failure								
Due de est fa et en la		k _{cr}	,N	7,9	8,1	8,6	8,7	8,9	7,9	
Product factor k ₁		kuci	r,N	11,3	11,5	12,3	12,4	12,7	11,3	
Partial factor	ү Мс	1)			1	,5				
Concrete failure: Spli										
Characteristic edge spacing		Ccr,sp	[mama]	246	281	445	465	534	246	
Characteristic spacing	S _{cr,sp}	[mm]	492	562	890	930	1068	492		
Partial factor		¥Мsр	o ¹⁾			1	,5			

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under tension load – concrete failure	Annex C3

²⁾ No performance assessed

Table C5: Displacements under tension load

Serrated anchor channel			Steel	29/20	38/23	41/27	53/34	64/44	41/22
Topoion load	NI	[LAN]]	carbon	6,8	9,1	14,4	22,2	38,5	5,1
Tension load	N	[kN]	stainless	_1)	10,9	_1)	21,8	37,4	8,5
Chart tarm displacement	-	F	carbon	0,5	0,8	0,9	0,7	0,8	0,6
Short-term displacement	δ _{N0}	[mm]	stainless	_1)	0,9	_1)	0,7	0,7	1,0
Long torm displacement	δ _{N∞}	[mm]	carbon	0,9	1,7	1,8	1,4	1,7	1,3
Long-term displacement	UN∞	[mm]	stainless	_1)	1,8	_1)	1,5	1,4	1,9

¹⁾ No performance assessed

HALFEN Serrated Anchor Channels HZA

Performances Characteristic resistances under tension load – displacements Annex C4

Table C6: Characteristic resistances under shear load – steel failure anchor channel

Serrated anchor cha	annel		Steel	29/20	38/23	41/27	53/34	64/44	41/22
Steel failure: Ancho	r					•			
		IL-NII	carbon	20,1	43,9	53,6	101,1	156,3	18,1
Characteristic	$V_{Rk,s,a,y}$	[kN]	stainless	_2)	31,4	_2)	55,0	94,4	22,6
resistance	.,		carbon	12,0	18,8	32,4	33,9	62,8	12,0
	$V_{Rk,s,a,x}$	[kN]	stainless	_2)	18,8	_2)	33,9	62,8	13,5
Davidal factor		4)		1,48	1,48	1,50	1,39	1,50	1,48
Partial factor	Partial factor Y _{Ms,a} 1)			_2)	1,48	_2)	1,39	1,50	1,50
Steel failure: Connection channel/anchor									
	V _{Rk,s,c,y}	[kN]	carbon	20,1	43,9	53,6	101,1	156,3	18,1
Characteristic			stainless	_2)	31,4	_2)	55,0	94,4	22,6
resistance	V	[kN]	carbon	13,7	21,6	32,2	35,8	63,7	10,9
	V _{Rk,s,c,x}		stainless	_2)	24,0	_2)	33,0	56,6	15,7
Partial factor	Y Ms,ca	1)				1,8			
Steel failure: Local f	lexure of c	hannel	lips						
Spacing of channel bolts for V _{Rk,s,I}	Sı,v		[mm]	58	76	80	105	128	83
Characteristic	140	[LAND	carbon	20,1	43,9	53,6	101,1	156,3	18,1
resistance	V^0 Rk,s,l,y	[kN]	stainless	_2)	31,4	_2)	55,0	94,4	22,6
Partial factor	Y Ms,l	1)				1,8		•	

¹⁾ In absence of other national regulations

HALFEN Serrated Anchor Channels HZA

Performances
Characteristic resistances under shear load – steel failure

Annex C5

²⁾ No performance assessed

Table C6 (continued): Characteristic resistances under shear load – steel failure

Serrated anchor channel			Steel	29/20	38/23	41/27	53/34	64/44	41/22
Steel failure: Conne	ection betwe	en cha	nnel lips a	nd chanr	nel bolt ir	longitud	dinal cha	nnel axis	;
		M12	carbon	12,6	23,6	23,6	_1)	_1)	14,4
		10112	stainless	_1)	_1)	_1)	_1)	_1)	_1)
		Mac	carbon	_1)	23,6	32,0	39,5	_1)	14,4
Characteristic	$V_{Rk,s,l,x}$	M16	stainless	_1)	24,9	_1)	51,7	_1)	14,2
resistance	[kN]	N] M20	carbon	_1)	_1)	_1)	39,5	85,8	_1)
			stainless	_1)	_1)	_1)	51,7	68,8	_1)
		1404	carbon	_1)	_1)	_1)	_1)	85,8	_1)
	M24		stainless	_1)	_1)	_1)	_1)	68,8	_1)
Installation factor				1,0	1,2	1,2	1,2	1,2	1,2
Installation factor	Y ins	t	stainless	_1)	1,2	_1)	1,4	1,0	1,4

¹⁾ No performance assessed

HALFEN Serrated Anchor Channels HZA

Performances
Characteristic resistances under shear load – steel failure

Annex C6

Table C7: Characteristic resistances under shear load – concrete failure

Serrated anchor cha	nnel		29/20	38/23	41/27	53/34	64/44	41/22	
Concrete failure: Pry-out failure									
Product factor		k ₈ 1)	2,0	2,0	2,0	2,0	2,0	2,0	
Partial factor		γ Mc ²⁾		'	1	,5	•	'	
Concrete failure: Co	ncrete edge failure								
Due di cat fo atomit	cracked concrete	k _{cr,V}	6,1	7,5	7,5	7,5	7,5	6,5	
Product factor k ₁₂	uncracked concrete	k _{ucr,V}	8,5	10,5	10,5	10,5	10,5	9,1	
Partial factor		γ Mc ²⁾		•	1	,5			

¹⁾ Without supplementary reinforcement. In case of supplementary reinforcement, the factor k₈ should be multiplied with 0,75.

Table C8: Displacements under shear load

Serrated anchor channel			Steel	29/20	38/23	41/27	53/34	64/44	41/22
Shear load	\ ,,	[LVI]	carbon	8,0	12,5	21,3	22,4	41,5	7,2
in y-direction 1)	V _y	[kN]	stainless	_3)	12,5	_3)	21,8	37,5	9,0
Short-term displacement	_	[mm]	carbon	0,9	1,8	0,9	1,4	1,6	0,6
in y-direction	δ _{V,y,0}	[mm]	stainless	_3)	2,3	_3)	2,3	4,1	0,9
Long-term displacement	δν,у,∞	[mm]	carbon	1,4	2,7	1,4	2,1	2,4	0,9
in y-direction			stainless	_3)	3,5	_3)	3,4	6,2	1,4
Shear load	.,	[IANI]	carbon	5,0	7,8	10,5	13,0	28,3	4,7
in x-direction ²⁾	V _x	[kN]	stainless	_3)	8,2	_3)	14,6	27,3	4,0
Short-term displacement	5	[mm]	carbon	0,4	0,2	0,2	0,3	0,9	0,1
in x-direction	δ _{V,x,0}	[mm]	stainless	_3)	0,6	_3)	0,5	0,9	0,2
Long-term displacement	5	[mm]	carbon	0,6	0,3	0,3	0,5	1,4	0,2
in x-direction	δ _{V,x,∞}		stainless	_3)	0,9	_3)	0,8	1,4	0,3

¹⁾ y-direction (perpendicular to longitudinal axis of channel)

HALFEN Serrated Anchor Channels HZA

Performances

Characteristic resistances under shear load – concrete failure, displacements

Annex C7

²⁾ In absence of other national regulations

²⁾ x-direction (in the direction of longitudinal channel axis)

³⁾ No performance assessed

Table C9: Characteristic resistance under shear load – steel failure of HALFEN serrated channel bolt

HALFEN serrated cha	nnel bo	t thread	M12	M16	M20	M24				
Steel failure										
			steel	8.8	33,7	62,8	98,0	141,2		
Characteristic vresistance	V _{Rk,s}	[kN]	Stainless	50 ¹⁾	25,3	47,1	_4)	_4)		
			steel	70 ¹⁾	35,4	65,9	102,9	148,3		
		[Nm]	steel	8.8	105	266 ²⁾	519	898		
Characteristic flexural resistance	M ⁰ Rk,s		Stainless	50 ¹⁾	66	167	_4)	_4)		
redistance			steel	70 ¹⁾	92	233	454	786		
		•	steel	8.8		1,25				
Partial factor	80	/s ³⁾	Stainless	50 ¹⁾		2,38				
			steel	70 ¹⁾		1,	56			

¹⁾ Materials according Annex A2 and A3-A4

Table C10: Characteristic resistance under combined tension and shear load

Serrated anchor channel	29/20	38/23	41/27	53/34	64/44	41/22	
Steel failure: Local failure by flexure of channel lips and failure by flexure of channel							
Product factor	Values according to EN 1992-4:2018, Section 7.4.3.1						
Steel failure: Failure of anchor an	d conn	ection bety	ween anch	or and ch	annel		
Product factor	Values according to EN 1992-4:2018, Section 7.						

HALFEN Serrated Anchor Channels HZA

Performances
Char. resist. of HALFEN serr. channel bolt under shear, comb. tension and shear

 $^{^{2)}}$ For HZS 41/22 M16 8.8, $M^0_{Rk,s}$ is limited to 261 Nm.

³⁾ In absence of other national regulations

⁴⁾ No performance assessed

For Design Method I or II for test method C according to EOTA TR 050, June 2022

Table C11: Combinations of anchor channels and channel bolts under fatigue tension load

Anchor cl	hannel		Channel bolts					
HZA	Anchor type	Channel bolt	Thread diameter [mm]	Material				
38/23	round anchor	HZS 38/23	M16					
41/27	round andnor	HZS 30/23	IVITO					
53/34	round anchor + I-anchor	HZS 53/34	M20	Steel 8.8, electroplated, hot-dip galv.				
64/44	I-anchor	HZS 64/44	M24	. 0				

Table C12: Characteristic fatigue resistances $\Delta N_{Rk,s,lo,n}$ with lower load $N_{lok,s,n}$ – Steel failure

Anchor channel	HZA	38/2	23	41/27		53/3	4	64/44	
	Load cycles n	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n} [kN]	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n} [kN]	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n} [kN]	$\Delta N_{Rk,s,lo,n}$ [kN]	N _{lok,s,n}
	≤ 10 ⁴	16,0	0,0	16,0	0,0	30,0	0,0	55,0	0,0
	2· 10 ⁴	16,0	0,0	16,0	0,0	29,0	0,0	45,2	0,0
lapt.	5· 10 ⁴	13,3	2,5	13,3	2,5	22,5	3,0	34,6	9,4
s ur	1· 10 ⁵	10,9	4,9	10,9	4,9	18,5	6,7	28,3	16,9
) JCe	2· 10 ⁵	8,9	6,9	8,9	6,9	15,2	9,7	23,1	23,0
star d	5· 10 ⁵	6,9	9,0	6,9	9,0	11,8	12,9	17,7	29,4
esis Ioa	1· 10 ⁶	5,6	10,2	5,6	10,2	9,7	14,9	14,5	33,2
ic r	2· 10 ⁶	4,6	11,2	4,6	11,2	8,0	16,5	11,8	36,4
erist ensi	5· 10 ⁶	3,5	12,3	3,5	12,3	6,2	18,1	9,1	39,6
acte e te	1· 10 ⁷	3,5	12,3	3,5	12,3	6,2	18,1	7,4	41,6
Characteristic resistances under fatigue tension load	5· 10 ⁷	3,5	12,3	3,5	12,3	6,2	18,1	4,6	44,9
Ct	≥ 108	3,5	12,3	3,5	12,3	6,2	18,1	3,8	45,9

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under fatigue tension load according test method C – Steel failure	Annex C9

Table C13: Characteristic resistances under fatigue tension load after n load cycles with static preload N_{Elok} – Concrete failure

Pull-out and concrete cone failure:

Reduction factor for pull-out and concrete cone failure

	Load	$\eta_{k,c,fat} = \eta_{k,p,fat}$ [-]								
	cycles n	S _{lok} =								
		0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
	≤ 10⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120
	2· 10 ⁴	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114
Reduction factor for	5· 10 ⁴	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106
	1· 10 ⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100
$\Delta N_{Rk,c,E,n} = \eta_{k,c,fat} N_{Rk,c}^{1}$	2· 10 ⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094
$\Delta N_{Rk,p,E,n} = \eta_{k,p,fat} N_{Rk,p}^{2}$	5· 10 ⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087
$S_{lok} = 2,25 \cdot N_{Elok}/N_{Rk,c(p)} \le 0,8^{3}$	1· 10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081
	2· 10 ⁶	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075
	5· 10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067
	1· 10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061
	2· 10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055
	5· 10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047
	≥ 108	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041

¹⁾ N_{Rk,c} static resistance according to Annex C3 and EOTA TR 047, March 2018 or EN 1992-4:2018

In absence of other national regulations the following partial factors $\gamma_{M,fat}$ are recommended for design method I and II according to EOTA TR 050, June 2022 for test method C.

$$\gamma_{Ms,fat} = 1,35 \text{ (steel)}$$

 $\gamma_{Mc,fat} = \gamma_{Mp,fat} = 1,5 \text{ (concrete)}$

HALFEN Serrated Anchor Channels HZA	
Performances Characteristic resistances under fatigue tension load according to test I Concrete failure	method C –

Annex C10

²⁾ N_{Rk,p} static resistance according to Annex C3

³⁾ N_{Elok} characteristic value of the static pre-load decisive for concrete cone or pull-out failure