

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0293 of 16 December 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

ST Carbon K

Plastic anchor for fixing of external thermal insulation composite systems with rendering

DAW SE Roßdörfer Straße 50 64372 Ober-Ramstadt DEUTSCHLAND

DAW 10183

13 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604 Edition 10/2017

ETA-21/0293 issued on 9 April 2021

European Technical Assessment ETA-21/0293 English translation prepared by DIBt

Page 2 of 13 | 16 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0293

Page 3 of 13 | 16 December 2022

English translation prepared by DIBt

Specific part

1 Technical description of the product

The screwed-in anchor ST Carbon K consists of an anchor sleeve made of polyethylene (virgin material), an anchor plate made of polyethylene (virgin material) and an accompanying specific screw made of polyamide (virgin material).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic load bearing capacity	
- Characteristic resistance under tension load	See Annex C 1
 Minimum edge distance and spacing 	See Annex B 2
Displacements	See Annex C 2
Plate stiffness	See Annex C 2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 2

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

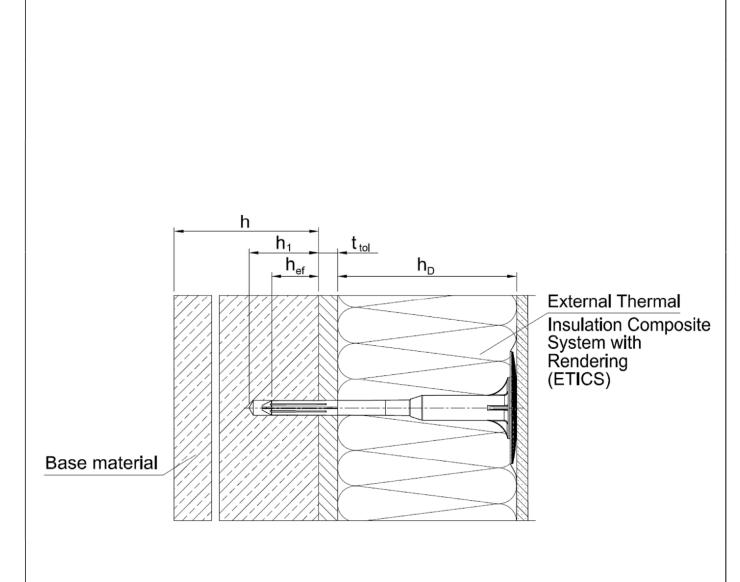
In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

European Technical Assessment ETA-21/0293 English translation prepared by DIBt

Page 4 of 13 | 16 December 2022

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 16 December 2022 by Deutsches Institut für Bautechnik

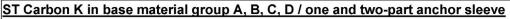
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:

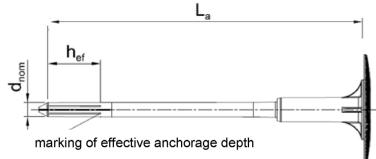
Ziegler

Intended use

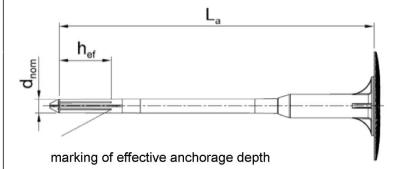
- Anchorage of ETICS in concrete and masonry
- Anchorage of ETICS in autoclaved aerated concrete and lightweight aggregate concrete

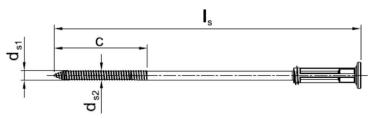
Legend: h_D = thickness of insulation material

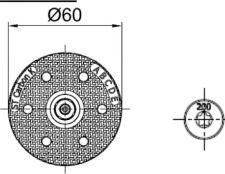

h_{ef} = effective anchorage depthh = thickness of member (wall)

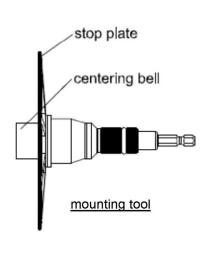

 h_1 = depth of drilled hole to deepest point


t_{tol} = thickness of equalizing layer or non-load-bearing coating


ST Carbon K	
Product description Installed condition	Annex A 1



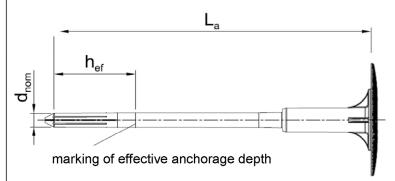


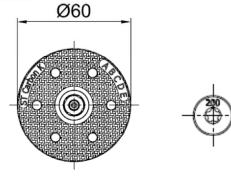

ST Carbon K: two-part anchor sleeve

ST Carbon K: plastic screw

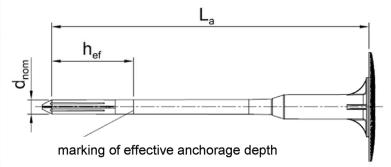
Marking: Anchor type (ST Carbon K) Base material group (A, B, C, D, E) Length of anchor (z.B. 200)

Table A1: Dime	nsions						
		Anchor Sleev	ve		Plas	tic screw	
Anchor Type	d _{nom}	h _{ef}	min L₂ max L₂ [mm]	d _{s1}	d _{s2} [mm]	с [mm]	min l₅ max l₅ [mm]
ST Carbon K	[mm] 8	[mm] 30	100 300	5,7	5,0	55	100 300

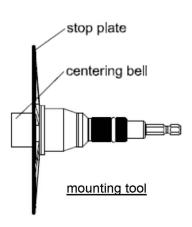

Determination of maximum thickness of insulation h₀ [mm] ST Carbon K:

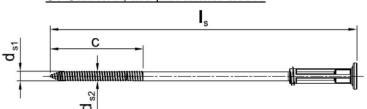

$$\begin{array}{ll} h_D & = L_a - t_{tol} - h_{ef} \\ e.g. & h_D & = 200 - 10 - 30 \\ h_{Dmax} & = 160 \end{array}$$

ST Carbon K	
Product description Marking and dimension of the one and two-part anchor sleeve ST Carbon K, Base material group: A, B, C, D; plastic screw	Annex A 2



ST Carbon K in base material group E / one and two-part anchor sleeve




ST Carbon K, one-part anchor sleeve

Marking: Anchor type (ST Carbon K) Base material group (A, B, C, D, E) Length of anchor (z.B. 200)

ST Carbon K, two-part anchor sleeve

ST Carbon K: plastic screw

T . I. I.		D:	•
lable	AZ:	Dimei	nsions

		Anchor Sleeve			Plast	ic screw	
Anchor Type	d _{nom}	h _{ef}	min La max La	d _{s1}	d _{s2}	С	min l₅ max l₅
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ST Carbon K	8	50	100 300	5,7	5,0	55	100 300

Determination of maximum thickness of insulation h_□ [mm] ST Carbon K:

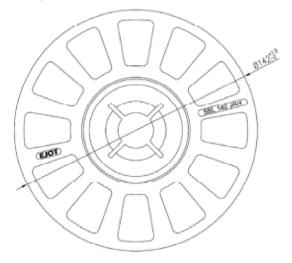
$$h_D$$
 = $L_a - t_{tol} - h_{ef}$
e.g. h_D = 200 - 10 - 50

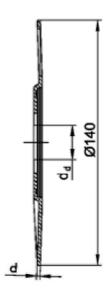
e.g.	h_D	= 200 - 10 - 5
	h Dmax	= 140

ST Carbon K

Product description

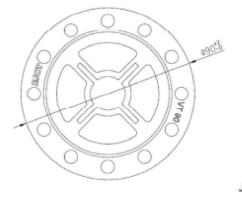
Marking and dimension of the one and two-part anchor sleeve ST Carbon K, Base material group: E, plastic screw

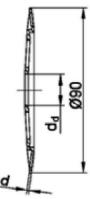

Annex A 3


Electronic copy of the ETA by DIBt: ETA-21/0293

Designation	material	
Anchor plate	Polyethylene (virgin material) PE-HD colour: anthracite	
Anchor sleeve	Polyethylene (virgin material) PE-HD Colour: anthracite	
Plastic screw	Polyamide (virgin material) PA 6 GF 50 colour: anthracite, black	
Slip-on plate SBL 140 plus, VT 90	Polyamide (virgin material) PA 6 or PA 6 GF 50 Colour: nature	

SBL 140 plus





SBL 140 plus			
d₀	[mm]	21,0	
d	[mm]	2,0	

VT 90

Electronic copy of the ETA by DIBt: ETA-21/0293

	VT 90			
dd	[mm]	18,5		
d	[mm]	1.2		

ST Carbon K

Product descriptionMaterials and slip on plates

Annex A 4

Z112418.22

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- · Normal weight concrete (base material group A) according to Annex C 1.
- Solid masonry (base material group B), according to Annex C 1.
- · Hollow or perforated masonry (base material group C), according to Annex C 1.
- Prefabricated reinforced components of lightweight aggregate concrete LAC (base material group D),
 according to Annex C 1.
- · Autoclaved aerated concrete (base material group E), according to Annex C 1.
- For other base materials of the base material group A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 51 edition April 2018.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed under the responsibility of an engineer experienced in accordance and masonry work with the partial safety factors $\gamma_m = 2.0$ and $\gamma_F = 1.5$ if there are no other regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- · Hole drilling by the drill modes according to Annex C1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

ST Carbon K	
Intended use Specifications	Annex B 1

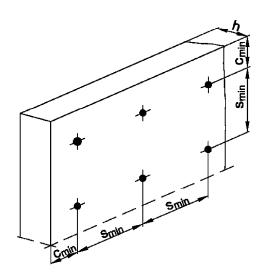
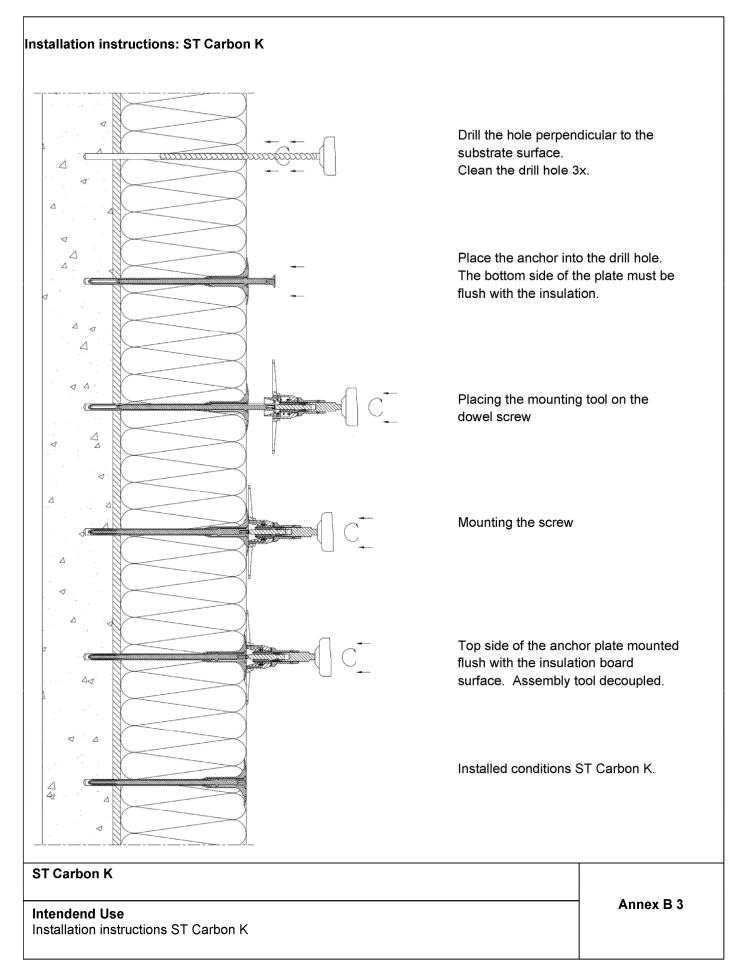


Table B1: Installation parameters			
Anchor type		ST Ca	rbon K
		Base mate	erial group
		A, B, C, D	E
Drill hole diameter	d ₀ [mm] =	8	8
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45
Depth of drilled hole to deepest point	h₁ [mm] ≥	40	60
Effective anchorage depth	h _{ef} [mm] ≥	30	50


Table B2: Anchor distances and dimensions of members			
Anchor type		ST Carbon K	
Minimum spacing	s _{min} ≥ [mm]	100	
Minimum edge distance	c _{min} ≥ [mm]	100	
Minimum thickness of member	h ≥ [mm]	100	

Scheme of distance and spacing

ST Carbon K	
Intended Use Installations parameters, Edge distances and spacing	Annex B 2

Anchor type					ST Carbon k
Base materials	Bulk density ρ [kg/dm³]	Minimum com- pressive strength fb [N/mm²]	General remarks	Drill method	N _{Rk} [kN]
Concrete C12/15 – C50/60 as per EN 206:2013+A1:2016			Compacted normal weight concrete without fibres	hammer	1,5
Thin concrete members (e.g. weather resistant skin) Concrete C16/20 – C50/60 as per EN 206:2013+A1:2016			Compacted normal weight concrete without fibres Thickness of the thin skin: 100 mm > h ≥ 40 mm	hammer	1,4
Clay bricks, Mz as per EN 771-1:2011+A1:2015	≥ 1,8	12	Vertically perforation ⁴⁾ up to 15%	hammer	1,5
Sand-lime solid bricks, KS as per EN 771-2:2011+A1:2015	≥ 1,8	12	Vertically perforation ⁴⁾ up to 15%	hammer	1,5
Vertically perforated clay bricks, HLz, as per EN 771-1:2011+A1:2015	≥ 1,6	20	Vertically perforation ⁴⁾ > 15 % and ≤ 50 %.	hammer / rotary	1,5 ¹⁾
Sand-lime perforated bricks, KSL, as per EN 771-2:2011+A1:2015	≥ 1,6	12	Vertically perforation ⁴⁾ > 15 % and ≤ 50 %.	hammer / rotary	1,5 ²⁾
Lightweight concrete hollow blocks, Hbl as per EN 771-3:2011+A1:2015	≥ 1,2	6		hammer / rotary	0,93)
lightweight aggregate concrete LAC, as per EN 1520:2011 EN 771-3:2011+A1:2015	≥ 0,7	4		rotary	0,9
Autoclaved aerated concrete as per EN 771-4:2011+A1:2015	≥ 0,55	4		rotary	0,75

The value applies only for outer web thickness ≥ 25 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

⁴⁾ Cross section reduced by perforation vertically to the resting area

ST Carbon K		
Performances	Annex C 1	
Characteristic resistance		

The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

The value applies only for outer web thickness ≥ 40 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2016-05				
anchor type	insulation thickness h _D [mm]	point thermal transmittance		
ST Carban I/	60	0,001		
ST Carbon K	80 – 260	0,000		

Table C3: Plate stiffness according EOTA Technical Report TR 026:2016-05				
anchor type	diameter of the anchor plate	load resistance oft the anchor plate	plate stiffness	
	[mm]	[kN]	[kN/mm]	
ST Carbon K	60	1,5	0,7	

Base materials	Bulk density	minimum	Tension	Displacements
	ρ	compressive strength	load	
	[kg/dm³]	f _b	N	$\Delta\delta_{N}$
		[N/mm²]	[kN]	[mm]
Concrete C12/15 - C50/60			0,5	0,6
EN 206:2013+A1:2016			0,5	0,6
Thin concrete members				
(e.g. weather resistant skin)			0,45	0,6
Concrete C16/20 - C50/60			0,43	0,0
EN 206:2013+A1:2016				
Clay bricks, Mz	≥ 1,8	12	0,5	0,6
EN 771-1:2011+A1:2015	≥ 1,0	12	0,5	0,0
Sand-lime solid bricks, KS	≥ 1,8	12	0,5	0,6
EN 771-2:2011+A1:2015	≥ 1,0	12	0,5	0,0
Vertically perforated clay bricks,	≥ 1,6	20	0,5	0,6
HLz; EN 771-1:2011+A1:2015	≥ 1,0	20	0,5	0,0
Sand-lime perforated bricks	≥ 1,6	12	0,5	0,6
KSL; EN 771-2:2011+A1:2015	≥ 1,0	12		0,0
Lightweight concrete hollow blocks	≥ 1,2	4	0,3	0,4
Hbl; EN 771-3:2011+A1:2015	≥ 1,2	7	0,5	0,4
lightweight aggregate concrete LAC				
EN 1520:2011	≥ 0,7	4	0,3	0,4
EN 771-3:2011+A1:2015				
Autoclaved aerated concrete				
EN 771-4:2011+A1:2015	≥ 0,55	4	0,25	0,3

ST Carbon K	
Performances Point thermal transmittance, plate stiffness, displacements	Annex C 2