



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

## ETA-21/0787 of 21 January 2022

Deutsches Institut für Bautechnik

English translation prepared by DIBt - Original version in German language

## **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach

Injection System VME basic for concrete

Bonded fastener for use in concrete

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Werk 1,D und Werk 2,D

DEUTSCHLAND

26 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



European Technical Assessment ETA-21/0787 English translation prepared by DIBt

Page 2 of 26 | 21 January 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



## Specific Part

## 1 Technical description of the product

The "Injection system VME basic for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar VME basic and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                                 |
|------------------------------------------------------------------------------------------|---------------------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | See Annex<br>B 2, C 1, C 3 C 4, C 6 and C 8 |
| Characteristic resistance to shear load (static and quasi-static loading)                | See Annex<br>C 2, C 5, C 7 and C 9          |
| Displacements under short-term and long-term loading                                     | See Annex C 10 and C 11                     |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | No performance assessed                     |

### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |

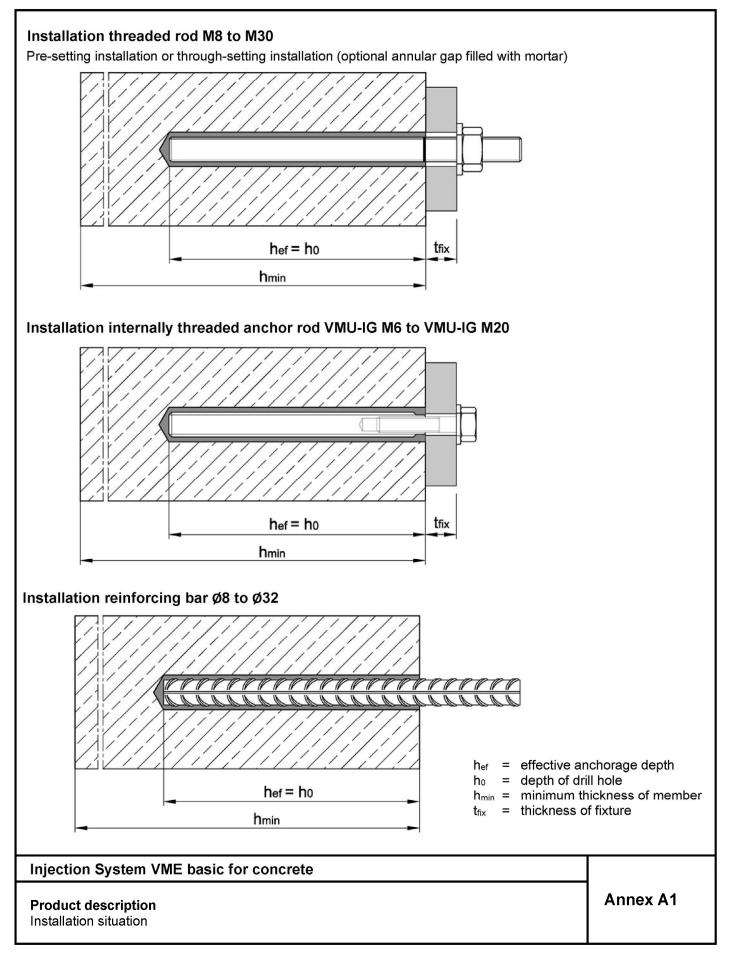


## European Technical Assessment ETA-21/0787 English translation prepared by DIBt

Page 4 of 26 | 21 January 2022

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 21 January 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider





## Page 6 of European Technical Assessment ETA-21/0787 of 21 January 2022



| Cartridge Injection Mortar VME basic                                                                                                                         |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Side-by-side cartridge<br>440 ml,<br>585 ml,<br>1400 ml                                                                                                      |                |
| <b>Imprint</b> :<br>VME basic<br>processing notes, batch number, shelf life, hazard code, storage temperature, curing- and pro<br>optional with travel scale | ocessing time, |
| Static mixer                                                                                                                                                 |                |
|                                                                                                                                                              | )              |
| Retaining washer and extension nozzle                                                                                                                        |                |
| $(0) \square (0)$                                                                                                                                            | )              |
|                                                                                                                                                              |                |
|                                                                                                                                                              |                |
|                                                                                                                                                              |                |
| Injection System VME basic for concrete                                                                                                                      |                |
| <b>Product description</b><br>Cartridge, static mixer and retaining washer                                                                                   | Annex A2       |



| Threaded rod<br>Threaded rod VMU-A, V-A with washer and hexagon nut<br>M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| V-A<br>optional: mark of<br>embedment depth                                                                                                                                                                                                                                                                                                                                                                             | Marking e.g.: $>$ M10<br>identifying mark of<br>manufacturing plant<br>M10 size of thread<br><u>additional marking:</u><br>A4 stainless steel<br>HC high corrosion resistant steel |
| <ul> <li>Threaded rod VM-A (material sold by the metre, to be cut at the required M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)</li> <li>Commercial standard threaded rod with:</li> <li>M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)</li> <li>Materials, dimensions and mechanical properties see Table A1</li> <li>Inspection certificate 3.1 acc. to EN 10204:2004</li> </ul> | length)                                                                                                                                                                            |
| Internally threaded anchor rod<br>VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VM<br>(zinc plated, A4, HCR)                                                                                                                                                                                                                                                                                                | Marking e.g.: <> M8    identifying mark of manufacturing                                                                                                                           |
| hef                                                                                                                                                                                                                                                                                                                                                                                                                     | plant<br>I internal thread<br>M8 size of internal thread<br><u>additional marking:</u><br>A4 stainless steel<br>HCR high corrosion resistant steel                                 |
| Injection System VME basic for concrete Product description Threaded rod and internally threaded anchor rod                                                                                                                                                                                                                                                                                                             | Annex A3                                                                                                                                                                           |

# Page 8 of European Technical Assessment ETA-21/0787 of 21 January 2022

English translation prepared by DIBt



٦

| Part                                                    | Designation                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Material                                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                              |                                                                        |                                                                                                                                                                                               |                                                                                                          |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| electr<br>hot-di                                        | ip galvanized ≥ 4                                                                                                                                                                                                                                          | 5 μm acc. to Ε<br>0 μm (50 μm ii<br>5 μm acc. to Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n average)                                                                                                                                                                                                  | acc. to E                                                                                                                                         |                                                                                                                              | 1:2009,                                                                | EN ISO 1068                                                                                                                                                                                   | 34:2004+AC:2009 or                                                                                       |
|                                                         |                                                                                                                                                                                                                                                            | Property<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                             | characteristic characteristic fracture<br>ultimate strength yield strength elongation                                                             |                                                                                                                              |                                                                        |                                                                                                                                                                                               |                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                            | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | 400                                                                                                                                               |                                                                                                                              | 240                                                                    | A5 > 8 %                                                                                                                                                                                      | EN ISO 683-4:2018<br>EN 10263:2001                                                                       |
| 1                                                       | Threaded rod                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | 400                                                                                                                                               |                                                                                                                              | 320                                                                    | A5 > 8 %                                                                                                                                                                                      | Commercial standar                                                                                       |
|                                                         |                                                                                                                                                                                                                                                            | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f <sub>uk</sub><br>[N/mm²]                                                                                                                                                                                  | 500                                                                                                                                               | f <sub>yk</sub><br>[N/mm²]                                                                                                   | 300                                                                    | A <sub>5</sub> > 8 %                                                                                                                                                                          | threaded rod:                                                                                            |
|                                                         |                                                                                                                                                                                                                                                            | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | 500                                                                                                                                               | ] []                                                                                                                         | 400                                                                    | A5 > 8 %                                                                                                                                                                                      | EN ISO 898-1:2013                                                                                        |
|                                                         |                                                                                                                                                                                                                                                            | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | 800                                                                                                                                               |                                                                                                                              | 640                                                                    | A5 > 8 %                                                                                                                                                                                      |                                                                                                          |
|                                                         |                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for class 4                                                                                                                                                                                                 | 4.6 or 4.8                                                                                                                                        | rods                                                                                                                         |                                                                        |                                                                                                                                                                                               |                                                                                                          |
| 2                                                       | Hexagon nut                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for class 4                                                                                                                                                                                                 | 4.6, 4.8, 5                                                                                                                                       | 5.6 or 5.8 rd                                                                                                                | ods                                                                    |                                                                                                                                                                                               | EN ISO 898-2:2012                                                                                        |
|                                                         |                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for class 4                                                                                                                                                                                                 | 4.6, 4.8, 5                                                                                                                                       | 5.6, 5.8 or 8                                                                                                                | .8 rods                                                                |                                                                                                                                                                                               |                                                                                                          |
| 3                                                       | Washer                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e.g.: EN I<br>EN ISO 8                                                                                                                                                                                      |                                                                                                                                                   | 2000, EN I                                                                                                                   | SO 709                                                                 | 3:2000, EN I                                                                                                                                                                                  | SO 7094:2000,                                                                                            |
|                                                         |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A5 > 8%                                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                              |                                                                        |                                                                                                                                                                                               |                                                                                                          |
| 4                                                       | Internally threaded                                                                                                                                                                                                                                        | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             | -4                                                                                                                                                |                                                                                                                              | ات م ما                                                                | A₅ > 8%                                                                                                                                                                                       | EN 100 000 4:0040                                                                                        |
| 4<br>Stain                                              | Internally threaded<br>anchor rod                                                                                                                                                                                                                          | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                             |                                                                                                                                                   | d or sheraro                                                                                                                 |                                                                        | A5 > 8%                                                                                                                                                                                       | EN ISO 683-4:2018                                                                                        |
| Stain<br>Stain                                          |                                                                                                                                                                                                                                                            | 8.8<br>C<br>Steel HCR<br>Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RC II (e.g.<br>RC III (e.g<br>RC V (e.g<br>charact                                                                                                                                                          | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic                                                                                                  | 1.4307 / 1.<br>/ 1.4404 / 1<br>/ 1.4565)<br>characte                                                                         | 4311 / 1<br>.4571 /<br>eristic                                         | A <sub>5</sub> > 8%<br>.4567 / 1.454<br>1.4578)<br>fracture                                                                                                                                   |                                                                                                          |
| Stain<br>Stain                                          | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4<br>corrosion resistant                                                                                                                                                                        | 8.8<br>Steel HCR C<br>Property<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RC II (e.g.<br>RC III (e.g<br>RC V (e.g                                                                                                                                                                     | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength                                                                                      | 1.4307 / 1.<br>/ 1.4404 / 1<br>/ 1.4565)                                                                                     | 4311 / 1<br>.4571 /<br>eristic<br>ength                                | A <sub>5</sub> > 8%<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation                                                                                                                     |                                                                                                          |
| Stain<br>Stain                                          | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4                                                                                                                                                                                               | 8.8<br>steel HCR C<br>Property<br>class<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RC II (e.g.<br>RC III (e.g<br>RC V (e.g<br>charact<br>ultimate                                                                                                                                              | 1.4301 /<br>1.4401 /<br>1.4529 /<br>teristic<br>strength<br>500                                                                                   | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str                                                              | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210                         | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$                                                                                                              | 41)                                                                                                      |
| Stain<br>Stain                                          | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4<br>corrosion resistant                                                                                                                                                                        | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RC II (e.g.<br>RC III (e.g<br>RC V (e.g<br>charact<br>ultimate                                                                                                                                              | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength<br>500<br>700                                                                        | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str                                                              | 4311 / 1<br>.4571 /<br>eristic<br>ength                                | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                                                                               | 41)<br>EN 10088-1:2014                                                                                   |
| Stain<br>Stain                                          | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4<br>corrosion resistant                                                                                                                                                                        | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FRC II (e.g.<br>FRC III (e.g.<br>FRC V (e.g.<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]                                                                                              | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength<br>500<br>700<br>800                                                                 | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str                                                              | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450                  | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$                                                                                                              | 41)<br>EN 10088-1:2014                                                                                   |
| Stain<br>Stain<br>High                                  | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4<br>corrosion resistant<br>Threaded rod <sup>2)</sup>                                                                                                                                          | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RC II (e.g.<br>RC III (e.g<br>RC V (e.g<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class s                                                                                    | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods                                                      | 1.4307 / 1.<br>( 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>f <sub>yk</sub><br>[N/mm <sup>2</sup> ]                   | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450                  | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                                                                               | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014                                          |
| Stain<br>Stain                                          | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4<br>corrosion resistant                                                                                                                                                                        | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRC II (e.g.<br>FRC III (e.g.<br>FRC V (e.g.<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class t                                                                               | 1.4301 /<br>1.4401 /<br>1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods<br>50 or 70 r                                            | 1.4307 / 1.<br>( 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>f <sub>yk</sub><br>[N/mm <sup>2</sup> ]                   | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450                  | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                                                                               | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014                                          |
| Stain<br>Stain<br>High                                  | anchor rod<br>nless steel A2 <sup>1)</sup><br>nless steel A4<br>corrosion resistant<br>Threaded rod <sup>2)</sup>                                                                                                                                          | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RC II (e.g.<br>RC III (e.g.<br>RC V (e.g<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class t<br>for class t<br>for class t<br>e.g.: EN I                                       | 1.4301 /<br>1.4401 /<br>1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods<br>50 or 70 r<br>50, 70 or 7<br>50, 70 or 7              | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>f <sub>yk</sub><br>[N/mm <sup>2</sup> ]<br>ods<br>80 rods | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450<br>600<br>SO 709 | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                                                 | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014                                          |
| Stain<br>Stain<br>High<br>1                             | anchor rod anchor rod anchor rod aless steel A2 <sup>1)</sup> aless steel A4 corrosion resistant Threaded rod <sup>2)</sup> Hexagon nut <sup>2)</sup> Washer                                                                                               | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RC II (e.g.<br>RC III (e.g.<br>RC V (e.g.<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class s<br>for class s<br>for class s<br>e.g.: EN I<br>EN ISO 7                          | 1.4301 /<br>1.4401 /<br>1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods<br>50 or 70 r<br>50, 70 or 7<br>50, 70 or 7              | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>[N/mm <sup>2</sup> ]<br>ods<br>80 rods                    | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450<br>600<br>SO 709 | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                                                 | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014<br>EN ISO 3506-2:2020<br>EN 10088-1:2014 |
| Stain<br>Stain<br>High<br>1                             | anchor rod<br>hless steel A2 <sup>1)</sup><br>hless steel A4<br>corrosion resistant<br>Threaded rod <sup>2)</sup><br>Hexagon nut <sup>2)</sup>                                                                                                             | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RC II (e.g.<br>RC III (e.g.<br>RC V (e.g.<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class s<br>for class s<br>for class s<br>e.g.: EN I<br>EN ISO 7                          | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods<br>50 or 70 r<br>50, 70 or 7<br>SO 7089:<br>094:2000 | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>f <sub>yk</sub><br>[N/mm <sup>2</sup> ]<br>ods<br>80 rods | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450<br>600<br>SO 709 | $A_5 > 8\%$<br>.4567 / 1.454<br>1.4578)<br>fracture<br>elongation<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$<br>$A_5 > 8\%$                                                                 | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014<br>EN ISO 3506-2:2020                    |
| Stain<br>Stain<br>High<br>1<br>2<br>3<br>4              | anchor rod anchor rod anchor rod aless steel A2 <sup>1)</sup> aless steel A4 corrosion resistant Threaded rod <sup>2)</sup> Hexagon nut <sup>2)</sup> Washer Internally threaded                                                                           | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RC II (e.g.<br>RC III (e.g.<br>RC V (e.g.<br>characi<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class &<br>for class &<br>for class &<br>for class &<br>e.g.: EN I<br>EN ISO 7<br>IG-M20 | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods<br>50 or 70 r<br>50, 70 or 7<br>SO 7089:<br>094:2000 | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>f <sub>yk</sub><br>[N/mm <sup>2</sup> ]<br>ods<br>80 rods | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450<br>600<br>SO 709 | $A_5 > 8\%$ .4567 / 1.454         1.4578)         fracture elongation $A_5 > 8\%$ | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014<br>EN ISO 3506-2:2020<br>EN 10088-1:2014 |
| Stain<br>Stain<br>High<br>1<br>1<br>2<br>3<br>4<br>Prop | anchor rod         nless steel A2       1)         nless steel A4       corrosion resistant         Threaded rod       2)         Hexagon nut       2)         Washer       Internally threaded anchor rod         Internally threaded anchor rod       70 | 8.8<br>steel HCR C<br>Property<br>class<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>50<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>80<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7 | RC II (e.g.<br>RC III (e.g.<br>RC V (e.g.<br>charact<br>ultimate<br>f <sub>uk</sub><br>[N/mm <sup>2</sup> ]<br>for class §<br>for class §<br>for class §<br>e.g.: EN I<br>EN ISO 7<br>IG-M20<br>IG-M6 to    | 1.4301 /<br>. 1.4401 /<br>. 1.4529 /<br>teristic<br>strength<br>500<br>700<br>800<br>50 rods<br>50 or 70 r<br>50, 70 or 7<br>SO 7089:<br>094:2000 | 1.4307 / 1.<br>/ 1.4404 / 1<br>1.4565)<br>characte<br>yield str<br>f <sub>yk</sub><br>[N/mm <sup>2</sup> ]<br>ods<br>80 rods | 4311 / 1<br>.4571 /<br>eristic<br>ength<br>210<br>450<br>600<br>SO 709 | $A_5 > 8\%$ .4567 / 1.454         1.4578)         fracture elongation $A_5 > 8\%$ | 41)<br>EN 10088-1:2014<br>EN ISO 3506-1:2020<br>EN 10088-1:2014<br>EN ISO 3506-2:2020<br>EN 10088-1:2014 |



#### Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32 1 V 11 V $(\mathbf{5})$ 1 1 1 1 1 1 1 1 1 1 hef Minimum value of related rip area f<sub>R,min</sub> according to EN 1992-1-1:2004+AC:2010 \_ Rip height of the bar shall be in the range $0,05d \le h \le 0,07d$ \_ (d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Material reinforcing bar Part Designation Material Rebar Rebar Bars and de-coiled rods class B or C 5 EN 1992-1-1:2004+AC:2010, fyk and k according to NDP or NCI acc. EN 1992-1-1/NA Annex C $\mathbf{f}_{uk} = \mathbf{f}_{tk} = \mathbf{k} \cdot \mathbf{f}_{yk}$

## Injection System VME basic for concrete

**Product description** Product description and material reinforcing bar Annex A5



| Specification of intended use         |                                                                                                                                                        |                                                  |                   |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|--|--|
| Injections System VME basic           | tem VME basic Threaded rod Internally threade<br>anchor rod                                                                                            |                                                  |                   |  |  |
| Static and quasi-static action        | M8 - M30                                                                                                                                               | VMU-IG M6 -<br>VMU-IG M20                        | Ø8 - Ø32          |  |  |
|                                       | crac                                                                                                                                                   | ked or uncracked conc                            | rete              |  |  |
| Base material                         | Concrete strength classes C20/25 to C50/60<br>compacted, reinforced or unreinforced normal weight conc<br>(without fibers) acc. to EN 206:2013+A1:2016 |                                                  |                   |  |  |
| Hole drilling                         | hammer drilling /                                                                                                                                      | compressed air drilling                          | / vacuum drilling |  |  |
| Temperature range I: -40°C to +40°C   |                                                                                                                                                        | ng term temperature +2<br>short term temperature |                   |  |  |
| Temperature range II: -40°C to +60°C  | max. long term temperature +35°C and<br>max. short term temperature +60°C                                                                              |                                                  |                   |  |  |
| Temperature range III: -40°C to +70°C |                                                                                                                                                        | ng term temperature +4<br>short term temperature |                   |  |  |

## Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all materials
- For all other conditions: Intended use of Materials according to Annex A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

## Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be fastened. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports etc.)
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work
- Fasteners are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

## Installation:

- · Dry or wet concrete or waterfilled drill holes (not seawater)
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- Overhead installation allowed
- Fastener installation carried out by appropriately qualified personnel and under the responsibility of the person competent for technical matters on site
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod

## Injection System VME basic for concrete

Intended Use Specifications

#### Deutsches Institut für Bautechnik

| Table B1: Installation parameters for threaded rods |                              |                        |      |     |                                  |                          |     |     |                       |     |     |
|-----------------------------------------------------|------------------------------|------------------------|------|-----|----------------------------------|--------------------------|-----|-----|-----------------------|-----|-----|
| Threaded rod                                        |                              |                        |      | M8  | M10                              | M12                      | M16 | M20 | M24                   | M27 | M30 |
| Diameter of thread                                  | led rod                      | $d=d_{nom}$            | [mm] | 8   | 10                               | 12                       | 16  | 20  | 24                    | 27  | 30  |
| Nominal drill hole                                  | diameter                     | d₀                     | [mm] | 10  | 12                               | 14                       | 18  | 22  | 28                    | 30  | 35  |
| Effective encharge                                  | ro donth                     | <b>h</b> ef,min        | [mm] | 60  | 60                               | 70                       | 80  | 90  | 96                    | 108 | 120 |
| Effective anchorag                                  |                              | <b>h</b> ef,max        | [mm] | 160 | 200                              | 240                      | 320 | 400 | 480                   | 540 | 600 |
| Diameter of clearance hole in                       | Pre-setting installation     | d <sub>f</sub> ≤       | [mm] | 9   | 12                               | 14                       | 18  | 22  | 26                    | 30  | 33  |
| the fixture                                         | Through setting installation | d <sub>f</sub> ≤       | [mm] | 12  | 14                               | 16                       | 20  | 24  | 30                    | 33  | 40  |
| Installation torque                                 | m                            | ax.T <sub>inst</sub> ≤ | [Nm] | 10  | 20                               | 40<br>(35) <sup>1)</sup> | 60  | 100 | 170                   | 250 | 300 |
| Minimum thicknes                                    | s of member                  | $\mathbf{h}_{min}$     | [mm] |     | <sub>ef</sub> + 30 m<br>: 100 mr |                          |     |     | h <sub>ef</sub> + 2d₀ | 1   |     |
| Minimum spacing                                     |                              | Smin                   | [mm] | 40  | 50                               | 60                       | 75  | 95  | 115                   | 125 | 140 |
| Minimum edge dis                                    | tance                        | Cmin                   | [mm] | 35  | 40                               | 45                       | 50  | 60  | 65                    | 75  | 80  |

<sup>1)</sup> Max. installation torque for M12 with steel grade 4.6

## Table B2: Installation parameters for internally threaded anchor rods

| Internally threaded anchor rod               |                        |      | IG-M 6 | IG-M 8        | IG-M 10 | IG-M 12           | IG-M 16 | IG-M 20 |
|----------------------------------------------|------------------------|------|--------|---------------|---------|-------------------|---------|---------|
| Inner diameter of threaded rod               | d2                     | [mm] | 6      | 8             | 10      | 12                | 16      | 20      |
| Outer diameter of threaded rod <sup>1)</sup> | d=d <sub>nom</sub>     | [mm] | 10     | 12            | 16      | 20                | 24      | 30      |
| Nominal drill hole diameter                  | d <sub>0</sub>         | [mm] | 12     | 14            | 18      | 22                | 28      | 35      |
| Effective encharge denth                     | <b>h</b> ef,min        | [mm] | 60     | 70            | 80      | 90                | 96      | 120     |
| Effective anchorage depth ——                 | h <sub>ef,max</sub>    | [mm] | 200    | 240           | 320     | 400               | 480     | 600     |
| Diameter of clearance<br>hole in the fixture | d <sub>f</sub> ≤       | [mm] | 7      | 9             | 12      | 14                | 18      | 22      |
| Installation torque m                        | ax.T <sub>inst</sub> ≤ | [Nm] | 10     | 10            | 20      | 40                | 60      | 100     |
| Minimum screw-in depth                       | lıg                    | [mm] | 8      | 8             | 10      | 12                | 16      | 20      |
| Minimum thickness of member                  | $\mathbf{h}_{min}$     | [mm] |        | 30 mm<br>0 mm |         | h <sub>ef</sub> + | - 2d₀   |         |
| Minimum spacing                              | Smin                   | [mm] | 50     | 60            | 75      | 95                | 115     | 140     |
| Minimum edge distance                        | Cmin                   | [mm] | 40     | 45            | 50      | 60                | 65      | 80      |

<sup>1)</sup> With metric thread acc. to EN 1993-1-8:2005+AC:2009

## Table B3: Installation parameters for rebar

| Rebar                                      |                       |           | Ø 8      | Ø 10           | Ø 12      | Ø 14 | Ø 16 | Ø 20            | Ø 24  | Ø 25 | Ø 28 | Ø 32 |
|--------------------------------------------|-----------------------|-----------|----------|----------------|-----------|------|------|-----------------|-------|------|------|------|
| Diameter of rebar                          | $d=d_{nom}$           | [mm]      | 8        | 10             | 12        | 14   | 16   | 20              | 24    | 25   | 28   | 32   |
| Nominal drill hole diameter <sup>1)</sup>  | d <sub>0</sub>        | [mm]      | 10 12    | 12 14          | 14 16     | 18   | 20   | 25              | 32    | 32   | 35   | 40   |
| Effective encharage depth                  | $\mathbf{h}_{ef,min}$ | [mm]      | 60       | 60             | 70        | 75   | 80   | 90              | 96    | 100  | 112  | 128  |
| Effective anchorage depth -                | <b>h</b> ef,max       | [mm]      | 160      | 200            | 240       | 280  | 320  | 400             | 480   | 500  | 560  | 640  |
| Minimum thickness of<br>member             | $\mathbf{h}_{min}$    | [mm]      |          | 30 mm<br>00 mm | ו         |      |      | h <sub>ef</sub> | + 2d₀ |      |      |      |
| Minimum spacing                            | Smin                  | [mm]      | 40       | 50             | 60        | 70   | 75   | 95              | 120   | 120  | 130  | 150  |
| Minimum edge distance                      | Cmin                  | [mm]      | 35       | 40             | 45        | 50   | 50   | 60              | 70    | 70   | 75   | 85   |
| <sup>1)</sup> For diameter Ø8, Ø10 and Ø12 | ooth nomi             | nal drill | hole dia | meter ca       | in be use | ed   |      |                 |       |      |      |      |
| Injection System VME b                     | asic foi              | cond      | crete    |                |           |      |      |                 |       |      |      |      |

Intended use Installation parameters

#### Deutsches Institut für Bautechnik

| Threaded rod | Internally threaded<br>anchor rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rebar      | Drill bit Ø    | Brush Ø                 | min. Brush ∅            |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------------------|-------------------------|
| 3            | Constraint | 4444444444 |                | d <sup>₽</sup> [=₩₩₩₩₩₩ | M                       |
| [-]          | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ø [mm]     | <b>d₀</b> [mm] | <b>d</b> ₅ [mm]         | d <sub>b,min</sub> [mm] |
| M8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8          | 10             | 11,5                    | 10,5                    |
| M10          | VMU-IG M 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 / 10     | 12             | 13,5                    | 12,5                    |
| M12          | VMU-IG M 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 / 12    | 14             | 15,5                    | 14,5                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12         | 16             | 17,5                    | 16,5                    |
| M16          | VMU-IG M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14         | 18             | 20,0                    | 18,5                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16         | 20             | 22,0                    | 20,5                    |
| M20          | VMU-IG M12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 22             | 24,0                    | 22,5                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20         | 25             | 27,0                    | 25,5                    |
| M24          | VMU-IG M16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 28             | 30,0                    | 28,5                    |
| M27          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 30             | 31,8                    | 30,5                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 / 25    | 32             | 34,0                    | 32,5                    |
| M30          | VMU-IG M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28         | 35             | 37,0                    | 35,5                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32         | 40             | 43,5                    | 40,5                    |

## Table B5: Retaining washer

| Drill bit Ø       |          | Installation direction an<br>use |                            |     |  |
|-------------------|----------|----------------------------------|----------------------------|-----|--|
| <b>d₀</b><br>[mm] | [-]      | ₽                                | •                          | 1   |  |
| 10                |          |                                  |                            |     |  |
| 12                |          |                                  | 0                          |     |  |
| 14                |          | retaining                        | <b>y washer</b><br>uired   |     |  |
| 16                |          | 4-                               |                            |     |  |
| 18                | VM-IA 18 |                                  |                            |     |  |
| 20                | VM-IA 20 |                                  |                            |     |  |
| 22                | VM-IA 22 |                                  |                            |     |  |
| 25                | VM-IA 25 |                                  |                            |     |  |
| 28                | VM-IA 28 | h <sub>ef</sub> ><br>250mm       | h <sub>ef</sub> ><br>250mm | all |  |
| 30                | VM-IA 30 | 20011111                         | 20011111                   |     |  |
| 32                | VM-IA 32 |                                  |                            |     |  |
| 35                | VM-IA 35 |                                  |                            |     |  |
| 40                | VM-IA 40 |                                  |                            |     |  |

## Vacuum drill bit

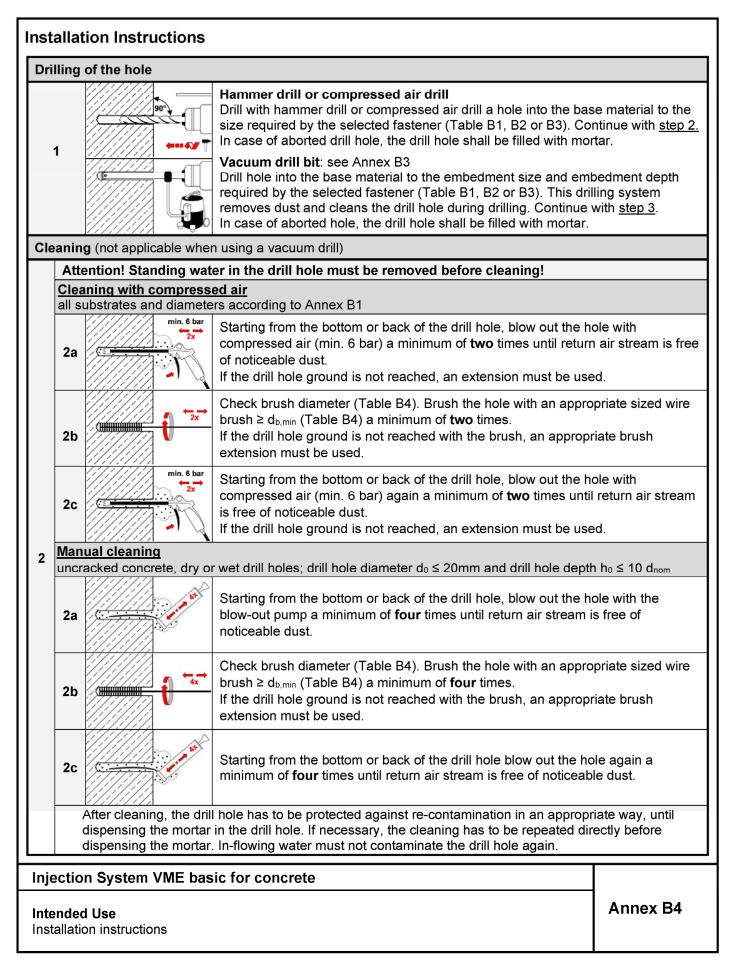
Drill bit diameter (d<sub>0</sub>): all diameters

Vacuum drill bit (MKT Hollow drill bit SB, Würth Extraction Drill Bit or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s (150 m<sup>3</sup>/h)



Recommended compressed air tool (min 6 bar) Drill bit diameter (d<sub>0</sub>): all diameters




**Blow-out pump (volume 750ml)** Drill bit diameter (d<sub>0</sub>): 10 mm to 20 mm Drill hole depth (h<sub>0</sub>):  $\leq$  10 d<sub>nom</sub> for uncracked concrete



## Intended Use

Cleaning and setting tools







| Inj | ection   |                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | WE J     | Attach the supplied static mixer to the cartridge and load the cartridge into the correct dispensing tool.<br>For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.                                                                                                                |
| 4   | hef      | Prior to inserting the rod into the filled drill hole, the position of the embedment depth shall be marked on the threaded rod or rebar.                                                                                                                                                                                                                                         |
| 5   | min.3x ➡ | Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.                                                                                                                                                                      |
| 6a  |          | Starting from the bottom or back of the cleaned drill hole fill the hole up to<br>approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle<br>as the hole fills to avoid air pockets. If the drill hole ground is not reached, an<br>appropriate extension nozzle shall be used. Observe working times given in<br>Table B6.                             |
| 6b  |          | <ul> <li>Retaining washer and mixer nozzle extensions shall be used according to Table B5 for the following applications:</li> <li>Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage depth h<sub>ef</sub> &gt; 250mm</li> <li>Overhead installation: Drill bit-Ø d₀ ≥ 18 mm</li> </ul> |

## Injection System VME basic for concrete

Intended Use Installation instructions (continuation)



| Inst | allation instruction     | s (continuation)                                                                                                                                                                                                                                                                                       |
|------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set  | tting the fastening eler | nent                                                                                                                                                                                                                                                                                                   |
| 7    |                          | Push the fastening element into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached.                                                                                                                                                    |
|      |                          | The fastener shall be free of dirt, grease, oil or other foreign material.                                                                                                                                                                                                                             |
| 8    |                          | After installation, the annular gap between anchor rod and concrete must be<br>completely filled with mortar, in the case of push-through installation also in the<br>fixture. If these requirements are not fulfilled, repeat application before end of<br>working time!                              |
|      |                          | For overhead installation, the fastener should be fixed (e.g. by wedges).                                                                                                                                                                                                                              |
| 9    | X                        | Allow the adhesive to cure to the specified time prior to applying any load or torque.<br>Do not move or load the fastener until it is fully cured (attend Table B6).                                                                                                                                  |
| 10   |                          | Remove excess mortar.                                                                                                                                                                                                                                                                                  |
| 11   | Tinst                    | The fixture can be mounted after curing time. Apply installation torque ≤ max. T <sub>inst</sub> according to Table B1 or B2.                                                                                                                                                                          |
| 12   |                          | In case of pre-setting installation, the annular gap between anchor rod and fixture<br>may optionally be filled with mortar. Therefore, replace regular washer by washer<br>with bore and plug on reducing adapter on static mixer.<br>Annular gap is completely filled, when excess mortar seeps out. |

## Table B6: Working time and curing time

|                       | Marking time | Minimum         | curing time  |
|-----------------------|--------------|-----------------|--------------|
| Concrete temperature  | Working time | dry concrete    | wet concrete |
| +5°C to +9°C          | 80 min       | 60 h            | 120 h        |
| +10°C to +14°C        | 60 min       | 48 h            | 96 h         |
| +15°C to +19°C        | 40 min       | 24 h            | 48 h         |
| +20°C to +24°C        | 30 min       | 12 h            | 24 h         |
| +25°C to +34°C        | 12 min       | 10 h            | 20 h         |
| +35°C to +39°C        | 8 min        | 7 h             | 14 h         |
| +40°C                 | 8 min        | 4 h             | 8 h          |
| Cartridge temperature |              | + 5°C to + 40°C |              |

## Injection System VME basic for concrete

## Intended Use

Installation instructions (continuation) / Working and curing time

#### Deutsches Institut für Bautechnik

| Threa                 | ded rod                             |                       |       | M8         | M10        | M12  | M16 | M20 | M24 | M27 | M30 |
|-----------------------|-------------------------------------|-----------------------|-------|------------|------------|------|-----|-----|-----|-----|-----|
| Steel                 | failure                             |                       | -     |            |            |      |     | 1   |     |     |     |
| Cross                 | sectional area                      | As                    | [mm²] | 36,6       | 58,0       | 84,3 | 157 | 245 | 353 | 459 | 561 |
| Chara                 | cteristic resistance under tensi    | on load <sup>1)</sup> |       |            |            |      |     |     |     |     |     |
| ed                    | Property class 4.6 and 4.8          | N <sub>Rk,s</sub>     | [kN]  | 15<br>(13) | 23<br>(21) | 34   | 63  | 98  | 141 | 184 | 224 |
| Steel,<br>zinc plated | Property class 5.6 and 5.8          | N <sub>Rk,s</sub>     | [kN]  | 18<br>(17) | 29<br>(27) | 42   | 78  | 122 | 176 | 230 | 280 |
| zin                   | Property class 8.8                  | N <sub>Rk,s</sub>     | [kN]  | 29<br>(27) | 46<br>(43) | 67   | 125 | 196 | 282 | 368 | 449 |
| steel                 | A2, A4 and HCR<br>Property class 50 | N <sub>Rk,s</sub>     | [kN]  | 18         | 29         | 42   | 79  | 123 | 177 | 230 | 281 |
| Stainless s           | A2, A4 and HCR<br>Property class 70 | N <sub>Rk,s</sub>     | [kN]  | 26         | 41         | 59   | 110 | 171 | 247 | _3) | _3) |
| Stair                 | A4 and HCR<br>Property class 80     | N <sub>Rk,s</sub>     | [kN]  | 29         | 46         | 67   | 126 | 196 | 282 | _3) | _3) |
| Partia                | I factor <sup>2)</sup>              |                       |       |            |            |      |     |     |     |     |     |
|                       | Property class 4.6                  | <b>ΎΜ</b> ε,Ν         | [-]   |            |            |      | 2   | ,0  |     |     |     |
| ted                   | Property class 4.8                  | γMs,N                 | [-]   |            |            |      | 1   | ,5  |     |     |     |
| Steel,<br>zinc plated | Property class 5.6                  | γMs,N                 | [-]   |            |            |      | 2   | ,0  |     |     |     |
| zin                   | Property class 5.8                  | ŶMs,N                 | [-]   |            |            |      | 1   | ,5  |     |     |     |
|                       | Property class 8.8                  | γMs,N                 | [-]   |            |            |      | 1   | ,5  |     |     |     |
| steel                 | A2, A4 and HCR<br>Property class 50 | ŶMs.N                 | [-]   |            |            |      | 2,  | 86  |     |     |     |
| Stainless s           | A2, A4 and HCR<br>Property class 70 | γMs,N                 | [-]   |            |            | 1,   | 87  |     |     | _3) | _3) |
| Stain                 | A4 and HCR<br>Property class 80     | γMs,N                 | [-]   |            |            | 1    | ,6  |     |     | _3) | _3) |

<sup>1)</sup> The characteristic resistances apply for all anchor rods with the cross sectional area A<sub>s</sub> specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

<sup>2)</sup> In absence of other national regulations

<sup>3)</sup> Fastener version not part of the ETA

## Injection System VME basic for concrete

## Performance

Characteristic values for threaded rods under tension loads



| Threade               | ed rod                               |                       |       | M8         | M10        | M12  | M16 | M20 | M24 | M27  | M30  |
|-----------------------|--------------------------------------|-----------------------|-------|------------|------------|------|-----|-----|-----|------|------|
| Steel fa              | ilure                                |                       |       |            |            |      |     |     |     |      |      |
| Cross se              | ectional area                        | As                    | [mm²] | 36,6       | 58,0       | 84,3 | 157 | 245 | 353 | 459  | 561  |
| Charact               | eristic resistances under shear load | 1 <sup>1)</sup>       |       |            | •          |      |     |     |     |      |      |
| Steel fa              | ilure <u>without</u> lever arm       |                       |       |            |            |      |     |     |     |      |      |
| ed                    | Property class 4.6 and 4.8           | $V^0_{Rk,s}$          | [kN]  | 9<br>(8)   | 14<br>(13) | 20   | 38  | 59  | 85  | 110  | 135  |
| Steel,<br>zinc plated | Property class 5.6 and 5.8           | V <sup>0</sup> Rk,s   | [kN]  | 11<br>(10) | 17<br>(16) | 25   | 47  | 74  | 106 | 138  | 168  |
| zin                   | Property class 8.8                   | $V^0{\sf Rk},{\sf s}$ | [kN]  | 15<br>(13) | 23<br>(21) | 34   | 63  | 98  | 141 | 184  | 224  |
| SS                    | A2, A4 and HCR, property class 50    | V <sup>0</sup> Rk,s   | [kN]  | 9          | 15         | 21   | 39  | 61  | 88  | 115  | 140  |
| Stainless<br>steel    | A2, A4 and HCR, property class 70    | V <sup>0</sup> Rk,s   | [kN]  | 13         | 20         | 30   | 55  | 86  | 124 | _3)  | _3)  |
| Ste                   | A4 and HCR, property class 80        | V <sup>0</sup> Rk,s   | [kN]  | 15         | 23         | 34   | 63  | 98  | 141 | _3)  | _3)  |
| Steel fa              | ilure <u>with</u> lever arm          |                       |       |            |            |      |     |     |     |      |      |
| p∈                    | Property class 4.6 and 4.8           | M <sup>0</sup> Rk,s   | [Nm]  | 15<br>(13) | 30<br>(27) | 52   | 133 | 260 | 449 | 666  | 900  |
| Steel,<br>zinc plated | Property class 5.6 and 5.8           | M <sup>0</sup> Rk,s   | [Nm]  | 19<br>(16) | 37<br>(33) | 65   | 166 | 324 | 560 | 833  | 1123 |
| zin                   | Property class 8.8                   | M <sup>0</sup> Rk,s   | [Nm]  | 30<br>(26) | 60<br>(53) | 105  | 266 | 519 | 896 | 1333 | 1797 |
| SS                    | A2, A4 and HCR, property class 50    | M⁰ <sub>Rk,s</sub>    | [Nm]  | 19         | 37         | 66   | 167 | 325 | 561 | 832  | 1125 |
| Stainless<br>steel    | A2, A4 and HCR, property class 70    | M <sup>0</sup> Rk,s   | [Nm]  | 26         | 52         | 92   | 232 | 454 | 784 | _3)  | _3)  |
| Sta                   | A4 and HCR, property class 80        | M <sup>0</sup> Rk,s   | [Nm]  | 30         | 59         | 105  | 266 | 519 | 896 | _3)  | _3)  |
| Partial f             | actor <sup>2)</sup>                  |                       |       |            |            |      |     |     |     |      |      |
|                       | Property class 4.6                   | γMs,∨                 | [-]   |            |            |      | 1,  | 67  |     |      |      |
| Steel,<br>zinc plated | Property class 4.8                   | γMs,∨                 | [-]   |            |            |      | 1,  | 25  |     |      |      |
| Steel,<br>nc plate    | Property class 5.6                   | γMs,∨                 | [-]   |            |            |      | 1,  | 67  |     |      |      |
| zino                  | Property class 5.8                   | γMs,∨                 | [-]   |            |            |      | 1,  | 25  |     |      |      |
|                       | Property class 8.8                   | γMs,∨                 | [-]   |            |            |      | 1,  | 25  |     |      |      |
| SS                    | A2, A4 and HCR, property class 50    | γMs,∨                 | [-]   |            |            |      | 2,  | 38  |     |      |      |
| Stainless<br>steel    | A2, A4 and HCR, property class 70    | γ̂Ms,∨                | [-]   |            |            | 1    | ,56 |     |     | _3)  | _3)  |
| ŝ                     | A4 and HCR, property class 80        | γMs,∨                 | [-]   |            |            | 1    | ,33 |     |     | _3)  | _3)  |

<sup>1)</sup> The characteristic resistances apply for all anchor rods with the cross sectional area A<sub>s</sub> specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN\_ISO 10684:2004 + AC:2009), the values in brackets are valid

<sup>2)</sup> In absence of other national regulations

<sup>3)</sup> Fastener version is not part of the ETA

## Injection System VME basic for concrete

### Performance

Characteristic values for threaded rods under shear loads



| Table C3: Char     | acteristic values of <b>c</b> | oncrete d            | cone fai | lure and splitting failure                              |
|--------------------|-------------------------------|----------------------|----------|---------------------------------------------------------|
| Threaded rods /    | Internally threaded anc       | hor rods / I         | Rebars   | all sizes                                               |
| Concrete cone fa   | ailure                        |                      |          |                                                         |
| Factor k           | uncracked concrete            | $\mathbf{k}_{ucr,N}$ | [-]      | 11,0                                                    |
| Factor k₁          | cracked concrete              | k <sub>cr,N</sub>    | [-]      | 7,7                                                     |
| Edge distance      |                               | C <sub>cr,N</sub>    | [mm]     | 1,5 ∙ h <sub>ef</sub>                                   |
| Spacing            |                               | S <sub>cr,N</sub>    | [mm]     | 2,0 • c <sub>cr,N</sub>                                 |
| Splitting failure  |                               |                      |          |                                                         |
| Characteristic res | istance                       | $N^0_{Rk,sp}$        | [kN]     | min(N <sub>Rk,p</sub> ;N <sup>0</sup> <sub>Rk,c</sub> ) |
|                    | h/h <sub>ef</sub> ≥ 2,0       |                      |          | 1,0 • h <sub>ef</sub>                                   |
| Edge distance      | 2,0 > h/h <sub>ef</sub> > 1,3 | <b>C</b> cr,sp       | [mm]     | 2 ⋅ h <sub>ef</sub> (2,5 - h / h <sub>ef</sub> )        |
|                    | h/h <sub>ef</sub> ≤ 1,3       |                      |          | 2,4 ⋅ h <sub>ef</sub>                                   |
| Spacing            |                               | <b>S</b> cr,sp       | [mm]     | 2,0 • c <sub>cr,sp</sub>                                |

Injection System VME basic for concrete

## Performance Characteristic values of concrete cone failure and splitting failure



| Threaded rod                                               |                    |                      |                   |            | M8     | M10 | M12    | M16            | M20                          | M24 | M27 | M30 |
|------------------------------------------------------------|--------------------|----------------------|-------------------|------------|--------|-----|--------|----------------|------------------------------|-----|-----|-----|
| Steel failure                                              |                    |                      |                   | 1          |        |     |        |                |                              |     |     |     |
| Characteristic resistar                                    | nce                |                      | N <sub>Rk,s</sub> | [kN]       |        |     | -<br>- | A₅<br>or see 1 | • f <sub>uk</sub><br>Table C | 1   |     |     |
| Partial factor                                             |                    |                      | γMs,N             | [-]        |        |     |        |                | able C1                      |     |     |     |
| Combined pull-out a                                        | nd c               | oncrete failur       |                   |            |        |     |        |                |                              |     |     |     |
| Characteristic bond                                        |                    |                      |                   | concrete ( | C20/25 | ;   |        |                |                              |     |     |     |
|                                                            | I                  | 40°C / 24°C          |                   |            | 15     | 15  | 15     | 14             | 14                           | 13  | 13  | 13  |
| Temperature range                                          |                    | 60°C / 35°C          | $	au_{Rk,ucr}$    | [N/mm²]    | 10     | 10  | 10     | 9,5            | 9,5                          | 9,0 | 9,0 | 9,0 |
|                                                            |                    | 70°C / 43°C          |                   |            | 7,0    | 7,0 | 7,0    | 6,5            | 6,5                          | 6,0 | 6,0 | 6,0 |
| Characteristic bond                                        | resis              | tance in <u>crac</u> | <u>ked</u> coi    | ncrete C2  | 0/25   |     |        | 1              |                              |     |     |     |
|                                                            | I                  | 40°C / 24°C          |                   |            | 7,0    | 7,0 | 7,0    | 7,0            | 7,0                          | 6,0 | 6,0 | 6,0 |
| Temperature range                                          |                    | 60°C / 35°C          | $	au_{Rk,cr}$     | [N/mm²]    | 5,0    | 5,0 | 5,0    | 5,0            | 5,0                          | 4,5 | 4,5 | 4,5 |
|                                                            |                    | 70°C / 43°C          |                   |            | 3,5    | 3,5 | 3,5    | 3,5            | 3,5                          | 3,0 | 3,0 | 3,0 |
| Reduction factor $\psi^{0}s$                               | <sub>us</sub> in ( | concrete C20/        | /25               |            |        |     |        |                |                              |     |     |     |
|                                                            | I                  | 40°C / 24°C          |                   |            |        |     |        |                |                              |     |     |     |
| Temperature range                                          | II                 | 60°C / 35°C          | $\psi^0$ sus      | [-]        |        |     |        | 0,             | 60                           |     |     |     |
|                                                            |                    | 70°C / 43°C          |                   |            |        |     |        |                |                              |     |     |     |
|                                                            |                    |                      |                   | C25/30     |        |     |        | 1,             | 02                           |     |     |     |
|                                                            |                    |                      |                   | C30/37     |        |     |        | 1,             | 04                           |     |     |     |
| Increasing factors for                                     | $	au_{Rk}$         |                      |                   | C35/45     |        |     |        | 1,             | 07                           |     |     |     |
| τ <sub>Rk</sub> = ψ <sub>c</sub> .τ <sub>Rk</sub> (C20/25) |                    |                      | Ψc                | C40/50     |        |     |        | 1,             | 08                           |     |     |     |
|                                                            |                    |                      |                   | C45/55     |        |     |        | 1,             | 09                           |     |     |     |
|                                                            |                    |                      |                   | C50/60     |        |     |        | 1,             | 10                           |     |     |     |
| Concrete cone failur                                       | e                  |                      |                   | 1          |        |     |        |                |                              |     |     |     |
| Relevant parameter                                         |                    |                      |                   |            |        |     |        | see Ta         | able C3                      |     |     |     |
| Splitting failure                                          |                    |                      |                   |            |        |     |        |                |                              |     |     |     |
| Relevant parameter                                         |                    |                      |                   |            |        |     |        | see Ta         | able C3                      |     |     |     |
| Installation factor                                        |                    |                      |                   |            |        |     |        |                |                              |     |     |     |
| Dry or wet concrete o water filled drill hole              | r                  |                      | γinst             | [-]        |        |     |        | 1              | ,4                           |     |     |     |

## Injection System VME basic for concrete

### Performance

Characteristic values of tension loads for threaded rods



| Threaded rod                                                                                     |                     |       | M8 | M10 | M12                    | M16                   | M20                                           | M24 | M27                       | M30         |
|--------------------------------------------------------------------------------------------------|---------------------|-------|----|-----|------------------------|-----------------------|-----------------------------------------------|-----|---------------------------|-------------|
| Steel failure without lever an                                                                   | m                   |       |    |     |                        |                       |                                               |     |                           |             |
| Characteristic resistance<br>steel, zinc plated,<br>class 4.6, 4.8, 5.6 and 5.8                  | $V^0_{Rk,s}$        | [kN]  |    |     |                        |                       | A₅ ∙ f <sub>uk</sub><br>Γable C2              |     |                           |             |
| Characteristic resistance<br>steel, zinc plated, class 8.8,<br>stainless steel A2, A4<br>and HCR | V <sup>0</sup> Rk,s | [kN]  |    |     |                        |                       | A₅ ∙ f <sub>uk</sub><br>Γable C2              |     |                           |             |
| Ductility factor                                                                                 | <b>k</b> 7          | [-]   |    |     |                        | 1                     | ,0                                            |     |                           |             |
| Partial factor                                                                                   | γMs,∨               | [-]   |    |     |                        | see Ta                | ble C2                                        |     |                           |             |
| Steel failure <u>with</u> lever arm                                                              |                     |       |    |     |                        |                       |                                               |     |                           |             |
| Characteristic bending resistance                                                                | M <sup>0</sup> Rk,s | [Nm]  |    |     |                        |                       | V <sub>el</sub> ∙ f <sub>uk</sub><br>īable C2 |     |                           |             |
| Elastic section modulus                                                                          | Wel                 | [mm³] | 31 | 62  | 109                    | 277                   | 541                                           | 935 | 1387                      | 1874        |
| Partial factor                                                                                   | γMs,∨               | [-]   |    |     |                        | see Ta                | ble C2                                        |     |                           |             |
| Concrete pry-out failure                                                                         |                     |       |    |     |                        |                       |                                               |     |                           |             |
| Pry-out factor                                                                                   | k <sub>8</sub>      | [-]   |    |     |                        | 2                     | ,0                                            |     |                           |             |
| Concrete edge failure                                                                            |                     |       |    |     |                        |                       |                                               |     | 1                         |             |
| Effective length of fastener                                                                     | lf                  | [mm]  |    |     | min (h <sub>ef</sub> ; | 12 d <sub>nom</sub> ) |                                               |     | m<br>(h <sub>ef</sub> ;30 | in<br>)0mm) |
| Outside diameter of fastener                                                                     | $d_{nom}$           | [mm]  | 8  | 10  | 12                     | 16                    | 20                                            | 24  | 27                        | 30          |
| Installation factor                                                                              | γinst               | [-]   |    |     |                        | . 1                   | ,0                                            |     | •                         |             |

Injection System VME basic for concrete

## Performance

Characteristic values of shear loads for threaded rods



| Internally threaded a                                                                                                                     | anchor                 | rod                                    |                   |                  | VMU-IG<br>M6 | VMU-IG<br>M8 | VMU-IG<br>M10 | VMU-IG<br>M12 | VMU-IG<br>M16 | VMU-IG<br>M20     |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|-------------------|------------------|--------------|--------------|---------------|---------------|---------------|-------------------|
| Steel failure 1)                                                                                                                          |                        |                                        |                   |                  | ,            |              |               |               |               |                   |
| Characteristic resistar                                                                                                                   | nce,                   | 5.8                                    | N <sub>Rk,s</sub> | [kN]             | 10           | 17           | 29            | 42            | 76            | 123               |
| steel, zinc plated, pro                                                                                                                   | perty cl               | ass 8.8                                | $N_{Rk,s}$        | [kN]             | 16           | 27           | 46            | 67            | 121           | 196               |
| Partial factor                                                                                                                            |                        |                                        | γMs,N             | [-]              |              |              | 1,            | 5             |               |                   |
| Characteristic resistar<br>steel A4 / HCR, prope                                                                                          |                        | ////                                   | N <sub>Rk,s</sub> | [kN]             | 14           | 26           | 41            | 59            | 110           | 124 <sup>2)</sup> |
| Partial factor                                                                                                                            |                        |                                        | γMs,N             | [-]              |              |              | 1,87          |               |               | 2,86              |
| Combined pull-out a                                                                                                                       | nd cor                 | crete failure                          |                   |                  |              |              |               |               |               |                   |
| Characteristic bond                                                                                                                       | resista                | nce in <u>uncra</u>                    | <u>cked</u> co    | oncrete C        | 20/25        |              |               |               |               |                   |
|                                                                                                                                           | l:                     | 40°C / 24°C                            |                   |                  | 15           | 15           | 14            | 14            | 13            | 13                |
| Temperature range                                                                                                                         | II:                    | 60°C / 35°C                            | $	au_{Rk,ucr}$    | [N/mm²]          | 10           | 10           | 9,5           | 9,5           | 9,0           | 9,0               |
|                                                                                                                                           | 111:                   | 70°C / 43°C                            |                   |                  | 7,0          | 7,0          | 6,5           | 6,5           | 6,0           | 6,0               |
| Characteristic bond                                                                                                                       |                        |                                        | <u>ed</u> conc    | rete C20         |              | [            |               |               |               |                   |
|                                                                                                                                           | l:                     | 40°C / 24°C                            |                   |                  | 7,0          | 7,0          | 7,0           | 7,0           | 6,0           | 6,0               |
| Temperature range                                                                                                                         | II:                    | 60°C / 35°C                            | $	au_{Rk,cr}$     | [N/mm²]          |              | 5,0          | 5,0           | 5,0           | 4,5           | 4,5               |
|                                                                                                                                           | III:                   | 70°C / 43°C                            |                   |                  | 3,5          | 3,5          | 3,5           | 3,5           | 3,0           | 3,0               |
| Reduction factor $\psi^{0}s$                                                                                                              |                        |                                        | 5                 | 1                |              |              |               |               |               |                   |
| _                                                                                                                                         | <u> :</u>              | 40°C / 24°C                            |                   |                  |              |              |               |               |               |                   |
| Temperature range                                                                                                                         | <u> </u>               | 60°C / 35°C                            | $\Psi^0$ sus      | [-]              |              |              | 0,6           | 50            |               |                   |
|                                                                                                                                           | III:                   | 70°C / 43°C                            |                   | 005/20           |              |              | 1 (           | 22            |               |                   |
|                                                                                                                                           |                        |                                        |                   | C25/30<br>C30/37 |              |              | 1,0<br>1,0    |               |               |                   |
| Increasing factors for                                                                                                                    |                        |                                        |                   | C35/45           |              |              | 1,0           |               |               |                   |
| Increasing factors for $\tau_{Rk} = \psi_c \cdot \tau_{Rk}(C20/25)$                                                                       | ίRk                    |                                        | $\psi_{c}$        | C40/50           |              |              | 1,0           |               |               |                   |
| , , , , , , , , , , , , , , , , , , ,                                                                                                     |                        |                                        |                   | C45/55           |              |              | 1,0           |               |               |                   |
|                                                                                                                                           |                        |                                        |                   | C50/60           |              |              | 1,1           |               |               |                   |
| Concrete cone failur                                                                                                                      | 'e                     |                                        |                   |                  |              |              |               |               |               |                   |
| Relevant parameter                                                                                                                        |                        |                                        |                   |                  |              |              | see Ta        | ble C3        |               |                   |
| Splitting failure                                                                                                                         |                        |                                        |                   |                  | •            |              |               |               |               |                   |
| Relevant parameter                                                                                                                        |                        |                                        |                   |                  |              |              | see Ta        | ble C3        |               |                   |
| Installation factor                                                                                                                       |                        |                                        |                   |                  | •            |              |               |               |               |                   |
| Dry or wet concrete of water filled drill hole                                                                                            | r                      |                                        | γinst             | [-]              |              |              | 1,            | 4             |               |                   |
| <sup>1)</sup> Fastening screws or thre<br>internally threaded anchor<br>internally threaded anchor<br><sup>2)</sup> For VMU-IG M20: prope | or rod. T<br>or rod ar | he characteristic<br>d the fastening e | tension r         |                  |              |              |               |               |               |                   |
| Injection System \                                                                                                                        | /ME ba                 | asic for cond                          | crete             |                  |              |              |               |               |               |                   |
| <b>Performance</b><br>Characteristic values                                                                                               |                        |                                        |                   |                  |              |              |               |               | Annex         | C6                |



| Interr                | nally threaded ar                                                                                         | ichor rod                       |                                      |                                       | VMU-IG<br>M6                          | VMU-IG<br>M8               | VMU-IG<br>M10                         | VMU-IG<br>M12 | VMU-IG<br>M16 | VMU-IG<br>M20                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|----------------------------|---------------------------------------|---------------|---------------|--------------------------------|
| Steel                 | failure <u>without</u> l                                                                                  | ever arm <sup>1)</sup>          |                                      |                                       |                                       |                            |                                       |               |               |                                |
| ted                   | Characteristic resistance                                                                                 | property<br>class 5.8           | V <sup>0</sup> Rk,s                  | [kN]                                  | 6                                     | 10                         | 17                                    | 25            | 45            | 74                             |
| Steel,<br>zinc plated | Characteristic resistance                                                                                 | property<br>class 8.8           | V <sup>0</sup> Rk,s                  | [kN]                                  | 8                                     | 14                         | 23                                    | 34            | 60            | 98                             |
| л.                    | Partial factor                                                                                            |                                 | γMs,∨                                | [-]                                   |                                       |                            | 1,                                    | 25            |               |                                |
| Stainless<br>steel    | Characteristic<br>resistance<br>A4 / HCR                                                                  | property<br>class 70            | V <sup>0</sup> Rk,s                  | [kN]                                  | 7                                     | 13                         | 20                                    | 30            | 55            | 62 <sup>2)</sup>               |
| Sta                   | Partial factor                                                                                            |                                 | γMs,∨                                | [-]                                   |                                       |                            | 1,56                                  |               |               | 2,38                           |
| Ductil                | ity factor                                                                                                |                                 | <b>k</b> 7                           | [-]                                   |                                       |                            | 1                                     | ,0            |               |                                |
| Steel                 | failure <u>with</u> leve                                                                                  | r arm <sup>1)</sup>             |                                      |                                       |                                       |                            |                                       |               |               |                                |
| ,<br>ted              | Characteristic<br>bending<br>resistance                                                                   | property<br>class 5.8           | M <sup>0</sup> Rk,s                  | [Nm]                                  | 8                                     | 19                         | 37                                    | 66            | 167           | 325                            |
| Steel,<br>zinc plated | Characteristic<br>bending<br>resistance                                                                   | property<br>class 8.8           | M <sup>0</sup> Rk,s                  | [Nm]                                  | 12                                    | 30                         | 60                                    | 105           | 267           | 519                            |
|                       | Partial factor                                                                                            |                                 | γMs,∨                                | [-]                                   |                                       |                            | 1,:                                   | 25            |               |                                |
| Stainless<br>steel    | Characteristic<br>bending<br>resistance<br>A4 / HCR                                                       | property<br>class 70            | M <sup>0</sup> Rk,s                  | [Nm]                                  | 11                                    | 26                         | 53                                    | 92            | 234           | 643 <sup>2)</sup>              |
| Ś                     | Partial factor                                                                                            |                                 | γMs,∨                                | [-]                                   |                                       |                            | 1,56                                  |               |               | 2,38                           |
| Conc                  | rete pry-out failu                                                                                        | ire                             |                                      |                                       |                                       |                            |                                       |               |               |                                |
| Pry-o                 | ut factor                                                                                                 |                                 | kଃ                                   | [-]                                   |                                       |                            | 2                                     | ,0            |               |                                |
| Conc                  | rete edge failure                                                                                         |                                 |                                      |                                       |                                       |                            |                                       |               |               |                                |
| Effect                | tive length of faste                                                                                      | ener                            | lf                                   | [mm]                                  |                                       | mi                         | n (h <sub>ef</sub> ;12 d <sub>n</sub> | om)           |               | min (h <sub>ef</sub><br>300mm) |
| Outsid                | de diameter of fas                                                                                        | stener                          | $\mathbf{d}_{nom}$                   | [mm]                                  | 10                                    | 12                         | 16                                    | 20            | 24            | 30                             |
| Install               | lation factor                                                                                             |                                 | $\gamma_{inst}$                      | [-]                                   |                                       |                            | 1                                     | ,0            |               |                                |
| intern<br>class       | ning screws or threa<br>ally threaded anchor<br>are valid for the inter<br>MU-IG M20: Internal<br>Fasteni | rod (exceptio<br>nally threaded | n: VMU-l(<br>I anchor i<br>d: proper | G M20). 1<br>rod and th<br>ty class 5 | The character<br>ne fastening (<br>0; | ristic shear re<br>element | esistance for                         |               |               |                                |

## Performance

Characteristic values of shear loads for internally threaded anchor rod



| Reinforcing bar                                                                                                           |                                    |                    | Ø 8   | Ø 10 | Ø 12 | Ø 14 | Ø 16   | Ø 20                   | Ø 24 | Ø 25 | Ø 28  | Ø 32 |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|-------|------|------|------|--------|------------------------|------|------|-------|------|
| Steel failure                                                                                                             |                                    |                    |       |      |      |      |        | •                      |      |      |       |      |
| Characteristic resistance                                                                                                 | N <sub>Rk,s</sub>                  | [kN]               |       |      |      |      | As •   | f <sub>uk</sub> 1)     |      |      |       |      |
| Cross sectional area                                                                                                      | As                                 | [mm <sup>2</sup> ] | 50    | 79   | 113  | 154  | 201    | 314                    | 452  | 491  | 616   | 804  |
| Partial factor                                                                                                            | γMs,N                              | [-]                |       |      |      |      |        | <b>4</b> <sup>2)</sup> |      |      |       | L    |
| Combined pull-out and concrete                                                                                            |                                    |                    |       |      |      |      | ,      |                        |      |      |       |      |
| Characteristic bond resistance in                                                                                         | uncracke                           | <u>d</u> concret   | e C20 | )/25 |      |      |        |                        |      |      |       |      |
| l: 40°C / 24                                                                                                              | ۱°C                                |                    | 14    | 14   | 14   | 12   | 12     | 12                     | 12   | 11   | 11    | 11   |
| Temperature range II: 60°C / 35                                                                                           |                                    | [N/mm²]            | 9,5   | 9,5  | 9,5  | 8,5  | 8,5    | 8,5                    | 7,5  | 7,5  | 7,5   | 7,5  |
| III: 70°C / 43                                                                                                            | 3°C                                |                    | 6,0   | 6,0  | 6,0  | 6,0  | 6,0    | 5,5                    | 5,5  | 5,5  | 5,0   | 5,0  |
| Characteristic bond resistance in                                                                                         | cracked c                          | oncrete (          | 220/2 | 5    | 1    |      |        |                        |      |      |       |      |
| l: 40°C / 24                                                                                                              | ۱°C                                |                    | 6,0   | 7,0  | 7,0  | 6,5  | 6,5    | 6,0                    | 6,0  | 6,0  | 5,5   | 5,5  |
| Temperature range II: 60°C / 35                                                                                           |                                    | [N/mm²]            | 4,0   | 4,5  | 4,5  | 4,5  | 4,0    | 4,0                    | 4,0  | 4,0  | 3,5   | 3,5  |
| III: 70°C / 43                                                                                                            | 3°C                                |                    | 2,5   | 2,5  | 2,5  | 2,5  | 2,5    | 2,5                    | 2,5  | 2,5  | 2,5   | 2,5  |
| Reduction factor $\psi^{0}_{sus}$ in concrete                                                                             | C20/25                             |                    |       | 11   | I    | I    |        |                        | 1    |      |       |      |
| l: 40°C / 24                                                                                                              | l°C                                |                    |       |      |      |      |        |                        |      |      |       |      |
| Temperature range II: 60°C / 35                                                                                           | <sup>5°</sup> C ψ <sup>0</sup> sus | [-]                |       |      |      |      | 0,     | 60                     |      |      |       |      |
| III: 70°C / 43                                                                                                            | ·                                  |                    |       |      |      |      |        |                        |      |      |       |      |
|                                                                                                                           | I                                  | C25/30             |       |      |      |      | 1,     | 02                     |      |      |       |      |
|                                                                                                                           |                                    | C30/37             |       |      |      |      | 1,     | 04                     |      |      |       |      |
| Increasing factor for $\tau_{Rk}$                                                                                         |                                    | C35/45             |       |      |      |      | 1,     | 07                     |      |      |       |      |
| $\tau_{\rm Rk} = \psi_c \cdot \tau_{\rm Rk} (C20/25)$                                                                     | Ψc                                 | C40/50             |       |      |      |      | 1,     | 08                     |      |      |       |      |
|                                                                                                                           |                                    | C45/55             |       |      |      |      | 1,     | 09                     |      |      |       |      |
|                                                                                                                           |                                    | C50/60             |       |      |      |      |        | 10                     |      |      |       |      |
| Concrete cone failure                                                                                                     |                                    |                    |       |      |      |      |        |                        |      |      |       |      |
| Relevant parameter                                                                                                        |                                    |                    |       |      |      | s    | ее Та  | ble C                  | 3    |      |       |      |
| Splitting failure                                                                                                         |                                    |                    |       |      |      |      |        |                        |      |      |       |      |
| Relevant parameter                                                                                                        |                                    |                    |       |      |      | s    | see Ta | ble C                  | 3    |      |       |      |
| Installation factor                                                                                                       |                                    | I                  |       |      |      |      |        |                        |      |      |       |      |
| Dry or wet concrete or<br>water filled drill hole                                                                         | $\gamma$ inst                      | [-]                |       |      |      |      | 1      | ,4                     |      |      |       |      |
| <sup>1)</sup> f <sub>uk</sub> shall be taken from the specifications c<br><sup>2)</sup> In absence of national regulation | of reinforcing                     | bars               |       |      |      |      |        |                        |      |      |       |      |
|                                                                                                                           |                                    |                    |       |      |      |      |        |                        |      |      |       |      |
|                                                                                                                           |                                    |                    |       |      |      |      |        |                        |      |      |       |      |
| Injection System VME basic for                                                                                            | or concret                         | e                  |       |      |      |      |        |                        |      |      |       |      |
| <b>Performance</b><br>Characteristic values of <b>tension lo</b> a                                                        | ads for reb                        | ar                 |       |      |      |      |        |                        |      | Anne | ex C8 | 3    |

### Deutsches Institut für Bautechnik

| <b>Steel failure <u>without</u> lever</b><br>Characteristic shear<br>resistance     |                     |            |      | Ø 10 | Ø 12 |                      | ~                  | ~                      | Ø 24 | Ø 25  | Ø 28                  | Ø 32      |
|-------------------------------------------------------------------------------------|---------------------|------------|------|------|------|----------------------|--------------------|------------------------|------|-------|-----------------------|-----------|
|                                                                                     | arm                 |            |      |      |      |                      |                    |                        |      |       |                       |           |
|                                                                                     | $V^0_{Rk,s}$        | [kN]       |      |      |      | (                    | D,50 • A           | ∖s • f <sub>uk</sub> ¹ | )    |       |                       |           |
| Cross sectional area                                                                | As                  | [mm²]      | 50   | 79   | 113  | 154                  | 201                | 314                    | 452  | 491   | 616                   | 804       |
| Partial factor                                                                      | γMs,∨               | [-]        |      |      |      |                      | 1,5                | <b>5</b> <sup>2)</sup> |      |       |                       |           |
| Ductility factor                                                                    | <b>k</b> 7          | [-]        |      |      |      |                      | 1                  | 0                      |      |       |                       |           |
| Steel failure <u>with</u> lever arm                                                 | າ                   |            |      |      |      |                      |                    |                        |      |       |                       |           |
| Characteristic bending<br>resistance                                                | M <sup>0</sup> Rk,s | [Nm]       |      |      |      |                      | 1,2 • W            | el • f <sub>uk</sub> 1 | )    |       |                       |           |
| Elastic section modulus                                                             | Wel                 | [mm³]      | 50   | 98   | 170  | 269                  | 402                | 785                    | 1357 | 1534  | 2155                  | 3217      |
| Partial factor                                                                      | γMs,∨               | [-]        |      |      |      |                      | 1,8                | 5 <sup>2)</sup>        |      |       |                       |           |
| Concrete pry-out failure                                                            |                     |            |      |      |      |                      |                    |                        |      |       |                       |           |
| Pry-out factor                                                                      | k <sub>8</sub>      | [-]        |      |      |      |                      | 2                  | 0                      |      |       |                       |           |
| Concrete edge failure                                                               |                     |            |      |      |      |                      |                    |                        |      |       |                       |           |
| Effective length of rebar                                                           | lf                  | [mm]       |      |      | min  | (h <sub>ef</sub> ;12 | d <sub>nom</sub> ) |                        |      | min ( | h <sub>ef</sub> ; 300 | )<br>Dmm) |
| Outside diameter of rebar                                                           | $d_{nom}$           | [mm]       | 8    | 10   | 12   | 14                   | 16                 | 20                     | 24   | 25    | 28                    | 32        |
| Installation factor                                                                 | γinst               | [-]        |      |      |      |                      | 1                  | 0                      |      |       |                       |           |
| f <sub>uk</sub> shall be taken from the specif<br>In absence of national regulation | ications of r       | einforcing | bars |      |      |                      |                    |                        |      |       |                       |           |



| Threaded rod                                                                                                                                                                                                                    |                                                                                                                                   |                                                    | M8                                                               | M10<br>IG-M6                                                               | M12<br>IG-M8                                  | M16<br>IG- M10                | M20<br>IG-M12         | M24<br>IG-M16                       | M27        | M30<br>IG-M20        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|-----------------------|-------------------------------------|------------|----------------------|
| Displacement facto<br>uncracked concrete,                                                                                                                                                                                       |                                                                                                                                   | uasi-static a                                      | action                                                           |                                                                            |                                               |                               |                       |                                     |            |                      |
| Temperature range                                                                                                                                                                                                               | δ <sub>N0</sub> -factor                                                                                                           |                                                    | 0,028                                                            | 0,029                                                                      | 0,030                                         | 0,033                         | 0,035                 | 0,038                               | 0,039      | 0,041                |
| : 40°C / 24°C                                                                                                                                                                                                                   | $\delta_{N\infty}$ -factor                                                                                                        |                                                    | 0,028                                                            | 0,029                                                                      | 0,030                                         | 0,033                         | 0,035                 | 0,038                               | 0,039      | 0,041                |
| Temperature range                                                                                                                                                                                                               | $\delta_{N0}$ -factor                                                                                                             |                                                    | 0,038                                                            | 0,039                                                                      | 0,040                                         | 0,044                         | 0,047                 | 0,051                               | 0,052      | 0,055                |
| l: 60°C / 35°C                                                                                                                                                                                                                  | $\delta_{N\infty}$ -factor                                                                                                        | $\left[\frac{1}{N/mm^2}\right]$                    | 0,047                                                            | 0,049                                                                      | 0,051                                         | 0,055                         | 0,059                 | 0,064                               | 0,067      | 0,070                |
| Temperature range                                                                                                                                                                                                               | $\delta_{N0}$ -factor                                                                                                             |                                                    | 0,042                                                            | 0,043                                                                      | 0,044                                         | 0,048                         | 0,052                 | 0,056                               | 0,057      | 0,061                |
| III: 70°C / 43°C                                                                                                                                                                                                                | $\delta_{N\infty}$ -factor                                                                                                        |                                                    | 0,052                                                            | 0,054                                                                      | 0,056                                         | 0,061                         | 0,065                 | 0,070                               | 0,074      | 0,077                |
| Displacement facto<br>cracked concrete, sta                                                                                                                                                                                     |                                                                                                                                   | si-static acti                                     | on                                                               |                                                                            |                                               |                               |                       |                                     |            |                      |
| Temperature range                                                                                                                                                                                                               | δ <sub>N0</sub> -factor                                                                                                           |                                                    | 0,069                                                            | 0,071                                                                      | 0,072                                         | 0,074                         | 0,076                 | 0,079                               | 0,081      | 0,082                |
| : 40°C / 24°C                                                                                                                                                                                                                   | $\delta_{N\infty}$ -factor                                                                                                        |                                                    | 0,193                                                            | 0,115                                                                      | 0,122                                         | 0,128                         | 0,135                 | 0,142                               | 0,155      | 0,171                |
| Temperature range                                                                                                                                                                                                               | $\delta_{N0}$ -factor                                                                                                             | _ mm _                                             | 0,092                                                            | 0,095                                                                      | 0,096                                         | 0,099                         | 0,102                 | 0,106                               | 0,109      | 0,110                |
| I: 60°C / 35°C                                                                                                                                                                                                                  | $\delta_{N\infty}$ -factor                                                                                                        | $\left[\frac{1}{N/mm^2}\right]$                    | 0,259                                                            | 0,154                                                                      | 0,163                                         | 0,172                         | 0,181                 | 0,189                               | 0,207      | 0,229                |
| Temperature range                                                                                                                                                                                                               | δ <sub>N0</sub> -factor                                                                                                           |                                                    | 0,101                                                            | 0,105                                                                      | 0,106                                         | 0,109                         | 0,112                 | 0,117                               | 0,120      | 0,121                |
| II: 70°C / 43°C                                                                                                                                                                                                                 | δ <sub>N∞</sub> -factor                                                                                                           |                                                    | 0,285                                                            | 0,169                                                                      | 0,179                                         | 0,189                         | 0,199                 | 0,208                               | 0,228      | 0,252                |
| <sup>1)</sup> Calculation of the d<br>$\delta_{N0} = \delta_{N0}$ - factor $\cdot \tau$<br>$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$                                                                          | ,                                                                                                                                 | τ: acting                                          |                                                                  | ess for ten                                                                |                                               |                               |                       | 0,200                               | 0,220      | 0,202                |
| $\delta_{N0} = \delta_{N0} - factor \cdot \tau$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot \tau$ $Table C11: Displet$                                                                                                  | acement f                                                                                                                         | actor und                                          | bond stre                                                        | ess for ten                                                                | sion                                          |                               |                       | 0,200                               | 0,220      | 0,202                |
| $\delta_{N0} = \delta_{N0} - factor \cdot \tau$ $\delta_{N\infty} = \delta_{N\infty} - factor \cdot \tau$ $Table C11: Displet$                                                                                                  | ;                                                                                                                                 | actor und                                          | bond stre                                                        | ess for ten                                                                | sion                                          | od)<br>M16                    | M20<br>IG-M12         | M24<br>IG-M16                       | M27        | M30                  |
| $\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}} \text{-} \text{factor} \cdot \tau \\ \delta_{\text{N\infty}} &= \delta_{\text{N\infty}} \text{-} \text{factor} \cdot \tau \end{split}$ <b>Table C11: Displ</b> (thread) | acement f<br>ded rod ar<br>r <sup>1)</sup>                                                                                        | actor und<br>interna                               | bond stre<br>der <b>she</b><br>lly thre<br>M8                    | ess for ten<br>ear load<br>aded ar<br>M10<br>IG-M6                         | sion<br>Inchor ro<br>M12<br>IG-M8             | od)<br>M16                    | M20                   | M24                                 |            | M30                  |
| δN0 = δN0- factor · τ $δN∞ = δN∞- factor · τTable C11: Displ(threaThreaded rodDisplacement factocracked and uncrack$                                                                                                            | acement f<br>ded rod ar<br>r <sup>1)</sup><br>ted concrete,<br>δνο-factor                                                         | actor und<br>nd interna<br>static and              | bond stre<br>der <b>she</b><br>lly thre<br>M8                    | ess for ten<br>ear load<br>aded ar<br>M10<br>IG-M6                         | sion<br>Inchor ro<br>M12<br>IG-M8             | od)<br>M16                    | M20                   | M24                                 |            | M30                  |
| $ δ_{N0} = δ_{N0} - factor + τ $ $ δ_{N\infty} = δ_{N\infty} - factor + τ $ Table C11: Displ (threa<br>(threa<br>Threaded rod<br>Displacement facto<br>cracked and uncrack<br>All temperature                                   | acement f<br>ded rod ar<br>r <sup>1)</sup><br>ted concrete,<br>δνο-factor                                                         | actor und<br>interna                               | bond stre<br>der <b>she</b><br>lly thre<br><b>M8</b><br>quasi-st | ess for ten<br>ear load<br>aded ar<br>M10<br>IG-M6<br>atic action          | sion<br>nchor ro<br>M12<br>IG-M8              | od)<br>M16<br>IG- M10         | M20<br>IG-M12         | M24<br>IG-M16                       | M27        | M30<br>IG-M2<br>0,03 |
| δ <sub>N0</sub> = δ <sub>N0</sub> - factor · τ<br>δ <sub>N∞</sub> = δ <sub>N∞</sub> - factor · τ<br><b>Table C11: Displ</b><br>(threa<br>Threaded rod                                                                           | acement f<br>ded rod an<br>r <sup>1)</sup><br>ted concrete,<br>$\delta_{V0}$ -factor<br>$\delta_{V\infty}$ -factor<br>isplacement | actor und<br>ad interna<br>static and<br>[mm/(kN)] | bond stre<br>der <b>she</b><br>lly thre<br><b>M8</b><br>quasi-st | ess for ten<br>ear load<br>aded ar<br>IG-M6<br>atic action<br>0,06<br>0,08 | sion<br>nchor ro<br>M12<br>IG-M8<br>n<br>0,05 | od)<br>M16<br>IG- M10<br>0,04 | M20<br>IG-M12<br>0,04 | <b>M24</b><br><b>IG-M16</b><br>0,03 | <b>M27</b> | M30<br>IG-M2         |



| Rebar                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                                          | Ø 8                                                               | Ø 10                                                   | Ø 12                                     | Ø 14                          | Ø 40          | Ø 20           | Ø 24           | Ø 25                         | Ø 28           | Ø 32         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|-------------------------------|---------------|----------------|----------------|------------------------------|----------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                        | 4)                                                                                                                                                             |                                                                          | 8 0                                                               | 010                                                    | Ø 12                                     | Ø 14                          | Ø 16          | Ø 20           | Ø 24           | Ø 25                         | Ø 28           | Ø 32         |
| Displacement factor<br>uncracked concrete, s                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                | asi-static ac                                                            | tion                                                              |                                                        |                                          |                               |               |                |                |                              |                |              |
| Temperature range l:<br>40°C / 24°C                                                                                                                                                                                                                                                                                                                                                                    | $\delta_{N0}$ -factor                                                                                                                                          | [mm<br>[N/mm <sup>2</sup> ]                                              | 0,028                                                             | 0,029                                                  | 0,030                                    | 0,031                         | 0,033         | 0,035          | 0,038          | 0,038                        | 0,040          | 0,043        |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub> -factor                                                                                                                                        |                                                                          | 0,015                                                             | 0,015                                                  | 0,016                                    | 0,017                         | 0,017         | 0,019          | 0,020          | 0,020                        | 0,021          | 0,023        |
| Temperature range II:<br>60°C / 35°C                                                                                                                                                                                                                                                                                                                                                                   | δ <sub>N0</sub> -factor                                                                                                                                        |                                                                          | 0,038                                                             | 0,039                                                  | 0,040                                    | 0,042                         | 0,044         | 0,047          | 0,051          | 0,051                        | 0,054          | 0,058        |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub> -factor                                                                                                                                        |                                                                          | 0,047                                                             | 0,049                                                  | 0,051                                    | 0,053                         | 0,055         | 0,059          | 0,065          | 0,065                        | 0,068          | 0,072        |
| Temperature range III:<br>70°C / 43°C                                                                                                                                                                                                                                                                                                                                                                  | δ <sub>N0</sub> -factor                                                                                                                                        |                                                                          | 0,042                                                             | 0,043                                                  | 0,044                                    | 0,046                         | 0,048         | 0,052          | 0,056          | 0,056                        | 0,059          | 0,064        |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub> -factor                                                                                                                                        |                                                                          | 0,052                                                             | 0,054                                                  | 0,056                                    | 0,058                         | 0,061         | 0,065          | 0,072          | 0,072                        | 0,075          | 0,079        |
| Displacement factor<br>cracked concrete, stat                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                | i-static actic                                                           | n                                                                 |                                                        |                                          |                               |               |                |                |                              |                |              |
| Temperaturbereich I:<br>40°C / 24°C                                                                                                                                                                                                                                                                                                                                                                    | δ <sub>N0</sub> -factor                                                                                                                                        | _                                                                        | 0,069                                                             | 0,071                                                  | 0,072                                    | 0,073                         | 0,074         | 0,076          | 0,079          | 0,079                        | 0,081          | 0,084        |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub> -factor                                                                                                                                        |                                                                          | 0,115                                                             | 0,122                                                  | 0,128                                    | 0,135                         | 0,142         | 0,155          | 0,171          | 0,171                        | 0,181          | 0,194        |
| Temperaturbereich II:<br>60°C / 35°C                                                                                                                                                                                                                                                                                                                                                                   | δ <sub>N0</sub> -factor                                                                                                                                        |                                                                          | 0,092                                                             | 0,095                                                  | 0,096                                    | 0,098                         | 0,099         | 0,102          | 0,106          | 0,106                        | 0,109          | 0,11         |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub> -factor                                                                                                                                        | [N/mm <sup>2</sup> ]                                                     | 0,154                                                             | 0,163                                                  | 0,172                                    | 0,181                         | 0,189         | 0,207          | 0,229          | 0,229                        | 0,242          | 0,26         |
| Temperaturbereich III:                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                          |                                                                   |                                                        |                                          | 0 100                         | 0 4 0 0       |                |                |                              |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N0</sub> -factor                                                                                                                                        | ·                                                                        | 0,101                                                             | 0,105                                                  | 0,106                                    | 0,108                         | 0,109         | 0,112          | 0,117          | 0,117                        | 0,120          | 0,124        |
|                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub> -factor                                                                                                                                        | -                                                                        | 0,101<br>0,169                                                    | 0,105<br>0,179                                         | 0,106<br>0,189                           | 0,108                         | 0,109         | 0,112<br>0,228 | 0,117<br>0,252 | 0,117                        | 0,120<br>0,266 | 0,124        |
| 70°Ċ / 43°C                                                                                                                                                                                                                                                                                                                                                                                            | δ <sub>N∞</sub> -factor<br>blacement<br>τ: a                                                                                                                   | acting bond s                                                            | 0,169<br>tress for                                                | 0,179<br>tensior                                       | 0,189                                    | 0,199                         |               |                |                |                              |                |              |
| 70°C / 43°C<br><sup>1)</sup> Calculation of the disp<br>$\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$ ;<br>$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$ ;                                                                                                                                                                                                                            | δ <sub>N∞</sub> -factor<br>blacement<br>τ: a                                                                                                                   | acting bond s                                                            | 0,169<br>tress for                                                | 0,179<br>tensior                                       | 0,189<br><b>ad</b> (re                   | 0,199<br>ebar)                | 0,208         | 0,228          | 0,252          | 0,252                        | 0,266          | 0,28         |
| 70°C / 43°C<br><sup>1)</sup> Calculation of the disp<br>δ <sub>N0</sub> = δ <sub>N0</sub> -factor · τ;<br>δ <sub>N∞</sub> = δ <sub>N∞</sub> - factor · τ;<br>Table C13: Displa<br>Rebar<br>Displacement factor                                                                                                                                                                                         | δ <sub>N∞</sub> -factor<br>blacement<br>τ: a<br>cement f                                                                                                       | acting bond s                                                            | 0,169<br>tress for<br>er <b>sh</b> (<br>Ø 8                       | 0,179<br>• tensior<br>ear lo<br>Ø 10                   | 0.189<br>ad (re                          | 0,199<br>ebar)                | 0,208         | 0,228          | 0,252          | 0,252                        | 0,266          | 0,28         |
| 70°C / 43°C<br><sup>1)</sup> Calculation of the disp<br>δ <sub>N0</sub> = δ <sub>N0</sub> -factor · τ;<br>δ <sub>N∞</sub> = δ <sub>N∞</sub> - factor · τ;<br>Table C13: Displa<br>Rebar<br>Displacement factor<br>cracked and uncracke                                                                                                                                                                 | δ <sub>N∞</sub> -factor<br>blacement<br>τ: a<br>cement f                                                                                                       | acting bond s                                                            | 0,169<br>tress for<br>er <b>sh</b> (<br>Ø 8                       | 0.179<br>tensior<br>ear lo<br>Ø 10                     | 0,189<br>ad (re<br>Ø 12                  | 0.199<br>ebar)<br>Ø <b>14</b> | 0.208<br>Ø 16 | 0,228          | 0.252          | 0.252<br>Ø <b>25</b>         | 0,266          | 0,28         |
| 70°C / 43°C<br><sup>1)</sup> Calculation of the disp<br>$\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$ ;<br>$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$ ;<br><b>Table C13: Displa</b><br><b>Rebar</b><br><b>Displacement factor</b><br>cracked and uncracked<br>All temperature                                                                                                      | δ <sub>N∞</sub> -factor<br>placement<br>τ: a<br>cement f                                                                                                       | acting bond s                                                            | 0,169<br>tress for<br>er <b>sh</b> a<br>Ø 8<br>quasi-s            | 0,179<br>tensior<br>ear lo<br>Ø 10<br>tatic ac<br>0,05 | 0,189<br>ad (re<br>Ø 12<br>ction<br>0,05 | 0.199<br>ebar)<br>Ø 14        | 0.208<br>Ø 16 | 0.228<br>Ø 20  | 0.252<br>Ø 24  | 0.252<br>Ø <b>25</b><br>0,03 | 0.266<br>Ø 28  | 0,28<br>Ø 3  |
| 70°C / 43°C<br><sup>1)</sup> Calculation of the disp<br>$\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$ ;<br>$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$ ;<br><b>Table C13: Displa</b><br><b>Rebar</b><br><b>Displacement factor</b><br>cracked and uncracked<br>All temperature                                                                                                      | $δ_{N\infty}$ -factor<br>placement<br>τ: a<br>cement f<br>cement f<br>of 1)<br>ed concrete<br>$\delta_{V0}$ -factor<br>$\delta_{V\infty}$ -factor<br>placement | acting bond s<br>factor und                                              | 0,169<br>tress for<br>er <b>sh</b><br>Quasi-s<br>0,06<br>0,09     | 0,179<br>tensior<br>ear lo<br>Ø 10<br>tatic ac<br>0,05 | 0,189<br>ad (re<br>Ø 12<br>ction<br>0,05 | 0.199<br>ebar)<br>Ø 14        | 0.208<br>Ø 16 | 0.228<br>Ø 20  | 0.252<br>Ø 24  | 0.252<br>Ø <b>25</b><br>0,03 | 0.266<br>Ø 28  | 0,28<br>Ø 3  |
| 70°C / 43°C<br><sup>1)</sup> Calculation of the disp<br>$\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$ ;<br>$\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$ ;<br><b>Table C13: Displa</b><br><b>Rebar</b><br><b>Displacement factor</b><br>cracked and uncracked<br>All temperature<br>ranges<br><sup>1)</sup> Calculation of the disp<br>$\delta_{V0} = \delta_{V0}$ -factor $\cdot V$ ; | $δ_{N \infty}$ -factor<br>placement<br>τ: a<br>cement f<br>cement f<br>concrete<br>$\delta_{V0}$ -factor<br>$\delta_{V \infty}$ -factor<br>placement<br>V:     | acting bond s<br>factor und<br>, static and<br>[mm/(kN)]<br>acting shear | 0,169<br>tress for<br>er <b>sh</b><br>Ø 8<br>0,06<br>0,09<br>load | 0,179<br>tensior<br>ear lo<br>Ø 10<br>tatic ac<br>0,05 | 0,189<br>ad (re<br>Ø 12<br>ction<br>0,05 | 0.199<br>ebar)<br>Ø 14        | 0.208<br>Ø 16 | 0.228<br>Ø 20  | 0.252<br>Ø 24  | 0.252<br>Ø <b>25</b><br>0,03 | 0.266<br>Ø 28  | 0,280<br>Ø 3 |