

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0969 of 16 May 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Connector Hilti HUS4-H

Connector for Strengthening of existing concrete structures by concrete overlay

Hilti AG Liechtenstein Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Coorporation

17 pages including 3 annexes which form an integral part of this assessment

EAD 332347-00-0601-v01, Edition 03/2021

ETA-21/0969 issued on 27 January 2022

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-21/0969 English translation prepared by DIBt

Page 2 of 17 | 16 May 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 17 | 16 May 2022

European Technical Assessment ETA-21/0969 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Connector Hilti HUS4-H is a concrete screw made of galvanized steel anchored into a predrilled cylindrical drill hole in existing concrete. The special thread of the concrete screw cuts an internal thread into the member while setting. The Hilti HUS4-H is connecting two layers of concrete cast at different times (existing concrete and concrete overlay). The side with head of concrete screw is finally embedded in the concrete overlay.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Existing concrete, characteristic resistance to tension load (static and quasi-static loading): - resistances, robustness, edge distance to prevent splitting	See Annex C1 and C2
 minimum edge distance and spacing 	See Annex B2, B3 and B4
Existing concrete, characteristic resistance for seismic performance categories C1 and C2	See Annex C4
Concrete overlay, characteristic resistance to tension load (static and quasi-static loading):	
 resistances, edge distance to prevent splitting 	See Annex C3
 minimum edge distance and spacing 	See Annex B2, B3 and B4
Concrete overlay, characteristic resistance for seismic performance categories C1 and C2	See Annex C5
Shear interface parameter under static and quasi-static, fatigue and seismic cyclic loading	
- material and geometric parameters	See Annex C6
- factor for fatigue cyclic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

European Technical Assessment ETA-21/0969

Page 4 of 17 | 16 May 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

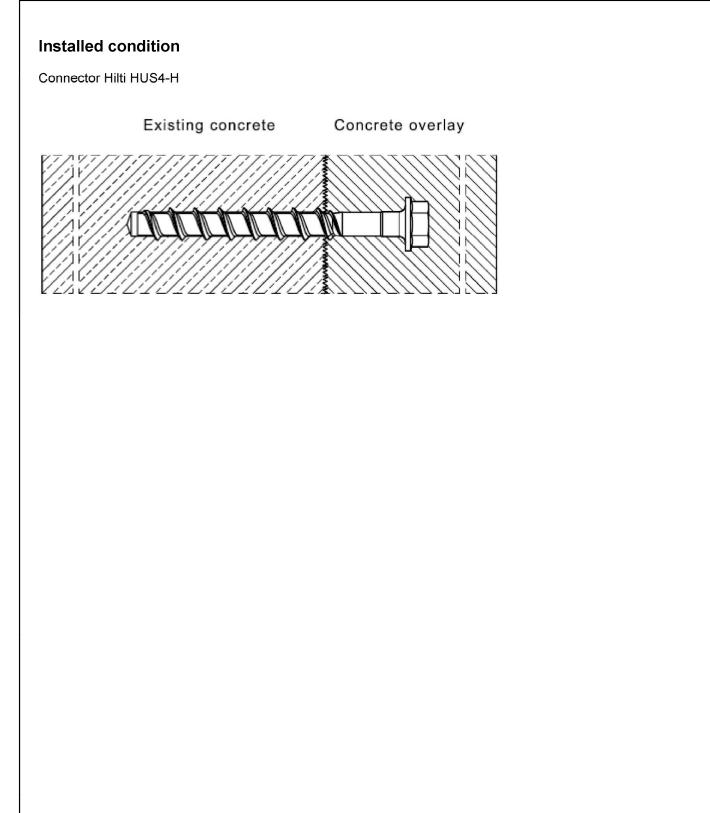
In accordance with European Assessment Document EAD No. 332347-00-0601-v01 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

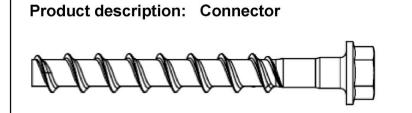
Issued in Berlin on 16 May 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin

beglaubigt: Tempel

Page 5 of European Technical Assessment ETA-21/0969 of 16 May 2022

English translation prepared by DIBt



Connector Hilti HUS4-H

Product description Installed condition Annex A1

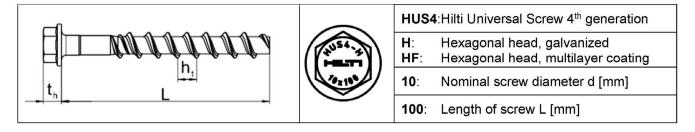


Table A1: Materials

Part	Material
Connector HUS4-H	Carbon steel Rupture elongation A₅ ≤ 8%

Table A2: Connector dimensions and marking HUS4-H

Connector HUS4-	Н			8			10			12			14		1	6
Nominal diameter	d	[mm]		8			10			12			14		1	6
Nominal		\mathbf{h}_{nom}	1	2	3	1	2	3	1	2	3	1	2	3	1	2
embedment depth		[mm]	40	60	70	55	75	85	60	80	100	65	85	100	85	130
Length of connector min / max	L	[mm]	1	00 / 1	50	1(00 / 30)5	1(00 / 1	50	1:	30 / 1	50	140	/ 205
Thickness of head	th	[mm]		7,6			9,1			10,4			11,8		14	1,5

Connector Hilti HUS4-H

Product description Materials and connector dimensions Annex A2

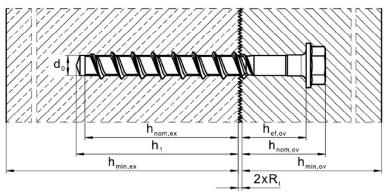
Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings
- Seismic performance category C1 and C2
- Surface roughness "very smooth" to "very rough" of the shear interface acc. to EOTA Technical Report TR 066, Edition November 2020

Base materials:

Connector for use to strengthen existing concrete by concrete overlay. Both concrete is compacted reinforced or unreinforced normal weight concrete without fibres with strength classes in the range C20/25 to C50/60 all in accordance with EN 206:2013+A1:2016; cracked and uncracked concrete.


Design:

- The design of an anchorage and the specification of the fastener is under the control of an engineer experienced in anchorages and concrete work.
- Post-installed shear connections are designed in accordance with EOTA Technical Report TR 066, Edition November 2020.
- For the concrete overlay following requirements on the mixture apply:
 - Concrete compressive strength of the new concrete shall be higher than the concrete compressive strength of the existing concrete.
 - Use of concrete with low shrinkage is recommended.
 - Slump of fresh concrete $f \ge 380$ mm, a slump value $f \ge 450$ mm is recommended, if applicable.

Installation:

- The fastener installation is executed by trained personnel, ensuring that the Installation instruction and the specifications are observed.
- Hammer drilling with cleaning for sizes 8 to 16.
- Hammer drilling with Hilti hollow drill bit TE-CD for sizes 12 and 14.
- Hammer drilling without cleaning for sizes 8 to 14.
- The requirements for construction works given in EOTA Technical Report TR 066, Edition November 2020 have to be considered.

Installation parameters

- h_{nom,ex} Nominal embedment depth in existing concrete
- h₁ Depth of drill hole
- hex Thickness of existing concrete Rt Roughness according EOTA Technical Report TR 066:2020-11
- h_{ef,ov} Effective embedment depth in concrete overlay
- $\begin{array}{ll} h_{nom,ov} & \text{Overall embedment depth in concrete overlay} \\ h_{ov} & \text{Thickness of concrete overlay} \end{array}$

Connector Hilti HUS4-H

Intended Use

Annex B1

Specifications and Installation parameters

Connector HUS4-H					8		10				
Existing concrete											
						h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	hnom3
Nominal embedmenth depth	h	$\mathbf{h}_{nom,ex}$	[mm]	40	60	70	55	75	85		
Nominal drill hole diameter		do	[mm]		8			10			
Cutting diameter of drill bit		d _{cut} ≤	[mm]		8,45			10,45			
Wrench size		S	[mm]		13			15			
Depth of drill hole for		h₁ ≥	[mm]			(h _{nom} +	10 mm)				
cleaned hole hammer drillin	g	111 =	[mm]	50	70	80	65	85	95		
Depth of drill hole for		h₁ ≥	[mm]	(h _{nom} + 10 mm) + 2 * d ₀							
uncleanded hole hammer d	rilling	111 4	[]	66	86	96	85	105	115		
Minimum thickness of concr	rete	h _{min.ex} ≥	[mm]			(h₁ + 3	30 mm)				
member		mini,ex —	[]	80	100	120	100	130	140		
Minimum spacing		s _{min,ex} ≥	[mm]		35		40				
Minimum edge distance		C _{min,ex} ≥	[mm]		35			40			
Hilti Setting tool 1)				= -	W 6 AT-A 2 AT-A22		SIW 22T-A SIW 6 AT-A22 SIW 6.2 AT-A22 SIW 8.1 AT gear 1 SIW 9-A22				
Concrete overlay											
Effective embedment	min	h _{ef,ov}	[mm]			4	0				
depth max		I IET,OV	[]	$L - h_{nom,ex} - 2 \cdot R_t^{2}$							
Overall embedment depth		h _{nom,ov}	[mm]	h _{ef,ov} + t _h							
Min. thickness of concrete c	overlay	h _{min,ov} ≥	[mm]			h _{nom,ov}	+ C _{nom} ³⁾				
Minimum spacing		S _{min,ov} ≥	[mm]		40		45				
Minimum edge distance		C _{min,ov} ≥	[mm]	$10 + c_{nom}^{3)}$				15 + c _{nom} ³⁾			

¹⁾ Installation with other impact screw driver of equivalent power is possible.

²⁾ "Rt" Roughness according to EOTA Technical Report TR 066:2020-11.

³⁾ "c_{nom}" Nominal concrete cover according to EN 1992-1-1:2004 + AC:2010

Connector Hilti HUS4-H

Intended use Installation parameters Annex B2

Connector size HUS4-H				12		14		
Existing concrete								
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmenth depth	$\mathbf{h}_{nom,ex}$	[mm]	60	80	100	65	85	100
Nominal drill hole diameter	d₀	[mm]		12			14	
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12,5			14,5	
Wrench size	S	[mm]		17			21	
Depth of drill hole for	h₁ ≥	[mm]			(h _{nom} +	10 mm)		
cleaned hole hammer drilling	111 =	[11111]	70	90	110	75	95	110
Depth of drill hole for	h₁≥	[mm]		(h	_{nom} + 10 r	nm) + 2 *	d₀	
uncleanded hole hammer drilling		[]	94	114	134	103	123	138
Minimum thickness of concrete	h _{min.ex} ≥	[mm]			(h₁ + 3	0 mm)		
member	mini,ex —	[]	110	130	150	120	160	200
Minimum spacing	S _{min,ex} ≥	[mm]		50			60	
Minimum edge distance	C _{min,ex} ≥	[mm]		50			60	
Hilti Setting tool ¹⁾			SIV	SIW 22T-/ V 6.2 AT-/ SIW 8.1 A SIW 9-A2:	422 Т	SIV	SIW 22T-/ V 6.2 AT-/ SIW 8.1 A SIW 9-A2	A22 T
Concrete overlay								
Effective embedment depth max	— h _{ef,ov}	[mm]			4 L – h _{nom,}			
Overall embedment depth	h _{nom,ov}	[mm]			h _{ef,ov}	/ + t h		
Min. thickness of concrete overlay	h _{min,ov} ≥	[mm]			h _{nom,ov}	+ C _{nom} ³⁾		
Minimum spacing	S _{min,ov} ≥	[mm]		50			60	
Minimum edge distance	C _{min,ov} ≥	[mm]		$15 + c_{nom}^3$)		15 + c _{nom} ³	5)

¹⁾ Installation with other impact screw driver of equivalent power is possible.

²⁾ "Rt" Roughness according to EOTA Technical Report TR 066:2020-11.

³⁾ "c_{nom}" Nominal concrete cover according to EN 1992-1-1:2004 + AC:2010

Connector Hilti HUS4-H

Intended use Installation parameters Annex B3

Deutsches Institut für Bautechnik

Nominal embedmenth depth $h_{nom,ex}$ $[mm]$ h_{nom1} h_{nom2} Nominal drill hole diameterdo $[mm]$ 16Cutting diameter of drill bit $d_{cut} \leq [mm]$ 16,5Wrench sizes $[mm]$ 16,5Depth of drill hole for cleaned hole hammer drilling $h_1 \geq [mm]$ $(h_{nom} + 10 \text{ mm})$ Minimum thickness of concrete member $h_{min,ex} \geq [mm]$ $(h_1 + 30 \text{ mm})$ Minimum spacing $s_{min,ex} \geq [mm]$ 90Minimum edge distance $c_{min,ex} \geq [mm]$ 65Hilti Setting tool 1)SIW 22T-A SIW 6.2 AT-A22 SIW 8.1 AT SIW 9-A22Concrete overlay $min max$ $h_{ef,ov}$ Effective embedment depth $min max$ $h_{ef,ov}$ mm Min. thickness of concrete overlay $h_{min,ov} \geq [mm]$ 40 L - $h_{nom,ev} - 2 \cdot R_t^{2}$ Overall embedment depth $h_{nom,ov} \geq [mm]$ $h_{nom,ov} + c_{nom}^{3}$ Minimum spacing $s_{min,v} \geq [mm]$ $h_{nom,ov + c_{nom}^{3}$	Connector size HUS4-H			1	6	
Nominal embedmenth depth $h_{nom,ex}$ [mm]85130Nominal drill hole diameter d_0 [mm]16Cutting diameter of drill bit $d_{cut} \leq$ [mm]16,5Wrench sizes[mm]24Depth of drill hole for cleaned hole hammer drilling $h_1 \geq$ [mm] $(h_{nom} + 10 \text{ mm})$ Minimum thickness of concrete member $h_{min,ex} \geq$ [mm] $(h_1 + 30 \text{ mm})$ Minimum spacing $s_{min,ex} \geq$ [mm]90Minimum edge distance $c_{min,ex} \geq$ [mm]65Hilti Setting tool 1) $SIW 22T-A$ $SIW 22T-A$ Effective embedment depth min max $h_{ef,ov}$ min Moreal embedment depth min max $h_{ef,ov}$ 40 L - $h_{nom,ex} - 2 \cdot Rt^{2}$ $L - h_{nom,ex} - 2 \cdot Rt^{2}$ Overall embedment depth $h_{nom,ov}$ [mm] $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov \geq}$ [mm] $h_{nom,ov + c_{nom}^{3}$ Minimum spacing $s_{min,ov \geq}$ [mm] $h_{cov + t_h}$	Existing concrete					
Nominal drill hole diameterdo[mm]16Cutting diameter of drill bit $d_{cut} \leq$ [mm]16,5Wrench sizes[mm]24Depth of drill hole for cleaned hole hammer drilling $h_1 \geq$ [mm] $(h_{nom} + 10 \text{ mm})$ Optimum thickness of concrete member $h_{min,ex} \geq$ [mm] $(h_1 + 30 \text{ mm})$ Minimum spacing $s_{min,ex} \geq$ [mm] 90 Minimum edge distance $c_{min,ex} \geq$ [mm] 90 Minimum edge distance $c_{min,ex} \geq$ [mm] 65 Hilti Setting tool 1) $SIW 22T-A$ $SIW 22T-A$ Effective embedment depth $\frac{min}{max}$ $h_{ef,ov}$ $mm]$ 40 $L - h_{nom,ex} - 2 \cdot Rt^{2}$ Overall embedment depth $h_{nom,ov}$ $mm]$ $h_{nom,ov} + t_h$ $h_{nom,ov + c_{nom}^{3}$ Minimum spacing $s_{min,ov} \geq$ $mm]$ $h_{nom,ov + c_{nom}^{3}$ $h_{nom,ov + c_{nom}^{3}$				h _{nom1}	h _{nom2}	
Cutting diameter of drill bit $d_{cut} \le$ $[mm]$ 16,5Wrench sizes $[mm]$ 24Depth of drill hole for cleaned hole hammer drilling $h_1 \ge$ $[mm]$ $(h_{nom} + 10 \text{ mm})$ Minimum thickness of concrete member $h_{min,ex} \ge$ $[mm]$ $(h_1 + 30 \text{ mm})$ Minimum spacing $s_{min,ex} \ge$ $[mm]$ 90 Minimum edge distance $c_{min,ex} \ge$ $[mm]$ 90 Minimum edge distance $c_{min,ex} \ge$ $[mm]$ 65 Hilti Setting tool 1) $SIW 22T-A$ $SIW 22T-A$ SIW 6.2 AT-A22 $SIW 8.1 \text{ AT}$ $SIW 9-A22$ Concrete overlay $min \ max$ $h_{ef,ov}$ $[mm]$ Effective embedment depth $h_{nom,ov}$ $[mm]$ 40 L - $h_{nom,ex} - 2 \cdot Rt^{2}$ 0 $h_{nom,ov + th$ Min. thickness of concrete overlay $h_{min,ov \ge}$ $[mm]$ $h_{oom,ov + c_{nom}^{3}$ Minimum spacing $s_{min,ov \ge}$ $[mm]$ $h_{oom,ov + c_{nom}^{3}$	Nominal embedmenth depth	$\mathbf{h}_{nom,ex}$	[mm]	85	130	
Wrench sizes[mm]24Depth of drill hole for cleaned hole hammer drilling $h_1 \ge$ [mm] $(h_{nom} + 10 \text{ mm})$ Minimum thickness of concrete member $h_{min,ex} \ge$ [mm] 95 140 Minimum spacing $s_{min,ex} \ge$ [mm] 130 195 Minimum edge distance $c_{min,ex} \ge$ [mm] 90 Minimum edge distance $c_{min,ex} \ge$ [mm] 90 Minimum edge distance $c_{min,ex} \ge$ [mm] 65 Hilti Setting tool 1) $SIW 22T-A$ $SIW 22T-A$ Effective embedment depth $\frac{min}{max}$ $h_{ef,ov}$ mm $L - h_{nom,ex} - 2 \cdot Rt^{2}$ $A0$ $L - h_{nom,ex} - 2 \cdot Rt^{2}$ Overall embedment depth $h_{nom,ov}$ mm $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov \ge$ mm $h_{com,ov + c_{nom}^{3}$ Minimum spacing $s_{min,ov \ge}$ mm 65	Nominal drill hole diameter	do	[mm]	1	6	
$\begin{array}{c c c c c c c } \hline \mbox{L} & \mbox{L} & \mbox{L} & \mbox{I} & $	Cutting diameter of drill bit	d _{cut} ≤	[mm]	16	,5	
$\begin{array}{c c c c c c c } \mbox{Cleaned hole hammer drilling} & h_1 \geq & [mm] & 95 & 140 \\ \hline \mbox{Minimum thickness of concrete} & & & & & & & & & & & & & & & & & & &$	Wrench size	S	[mm]	2	4	
Minimum thickness of concrete member $h_{min,ex} \ge [mm]$ $(h_1 + 30 mm)$ Minimum spacing $s_{min,ex} \ge [mm]$ 130 195 Minimum edge distance $c_{min,ex} \ge [mm]$ 90 Minimum edge distance $c_{min,ex} \ge [mm]$ 65 Hilti Setting tool 1) $SIW 22T-A$ $SIW 22T-A$ SIW 6.2 AT-A22 $SIW 8.1 AT$ $SIW 9-A22$ Concrete overlayEffective embedment depth $\frac{min}{max}$ $h_{ef,ov}$ $[mm]$ 40 L - $h_{nom,ex} - 2 \cdot Rt^{2}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	Depth of drill hole for cleaned hole hammer drilling	h₁ ≥	[mm] -	,		
member11130195Minimum spacing $s_{min,ex} \ge [mm]$ 90Minimum edge distance $c_{min,ex} \ge [mm]$ 65Hilti Setting tool 1) $SIW 22T-A$ $SIW 22T-A$ Hilti Setting tool 1) $SIW 6.2 AT-A22$ $SIW 8.1 AT$ SIW 9-A22 $SIW 9-A22$ $SIW 9-A22$ Concrete overlayEffective embedment depth min max hef,ov $[mm]$ $A0$ $L - h_{nom,ex} - 2 \cdot Rt^{2}$ Overall embedment depth $h_{nom,ov}$ $mm]$ $hef,ov + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	Minimum thickness of concrete		[]			
Minimum edge distance $c_{min,ex} \ge [mm]$ 65Hilti Setting tool 1)SIW 22T-A SIW 6.2 AT-A22 SIW 8.1 AT SIW 9-A22Concrete overlayEffective embedment depth $\frac{min}{max}$ $h_{ef,ov}$ $[mm]$ 40 $L - h_{nom,ex} - 2 \cdot Rt^{2}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	member	∩min,ex <	[mm] [130	195	
Hilti Setting tool 1)SIW 22T-A SIW 6.2 AT-A22 SIW 8.1 AT SIW 9-A22Concrete overlay $\frac{\min}{\max}$ hef,ov $\lim_{l \to 0} \frac{40}{L - h_{nom,ex} - 2 \cdot Rt^{2)}}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ 40 L - $h_{nom,ex} - 2 \cdot Rt^{2)}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3)}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	Minimum spacing	s _{min,ex} ≥	[mm]	90		
Hilti Setting tool 1)SIW 6.2 AT-A22 SIW 8.1 AT SIW 9-A22Concrete overlay $\frac{\min}{\max}$ hef,ov \lim_{max} \lim_{max} \lim_{max} $\frac{40}{L - h_{nom,ex} - 2 \cdot Rt^{2)}}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3)}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	Minimum edge distance	C _{min,ex} ≥	[mm]	65		
Effective embedment depth $\frac{\min}{\max}$ \max $h_{ef,ov}$ $[mm]$ 40 $L - h_{nom,ex} - 2 \cdot Rt^{2)}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3)}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	Hilti Setting tool ¹⁾			SIW 6.2 SIW 8	AT-A22 .1 AT	
Effective embedment depth $h_{ef,ov}$ $[mm]$ $L - h_{nom,ex} - 2 \cdot Rt^{2)}$ Overall embedment depth $h_{nom,ov}$ $[mm]$ $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge [mm]$ $h_{nom,ov} + c_{nom}^{3)}$ Minimum spacing $s_{min,ov} \ge [mm]$ 65	Concrete overlay		·			
Overall embedment depth $h_{nom,ov}$ [mm] $h_{ef,ov} + t_h$ Min. thickness of concrete overlay $h_{min,ov} \ge$ [mm] $h_{nom,ov} + c_{nom}^{3)}$ Minimum spacing $s_{min,ov} \ge$ [mm]65	Effective embedment depth	– h _{ef,ov}	[mm] -	-	-	
Minimum spacing s _{min.ov} ≥ [mm] 65	Overall embedment depth	h _{nom,ov}	[mm]			
	Min. thickness of concrete overlay	h _{min,ov} ≥	[mm]	h _{nom,ov} + c _{nom} ³⁾		
Minimum edge distance $c_{min,ov} \ge [mm]$ $20 + c_{nom}^{3)}$	Minimum spacing	s _{min,ov} ≥	[mm]	65		
	Minimum edge distance	C _{min,ov} ≥	[mm]	20 + 0	Cnom ³⁾	

Table B3: Installation parameters HUS4-H size 16

¹⁾ Installation with other impact screw driver of equivalent power is possible.

²⁾ "Rt" Roughness according to EOTA Technical Report TR 066:2020-11.

³⁾ "c_{nom}" Nominal concrete cover according to EN 1992-1-1:2004 + AC:2010

Intended use Installation parameters Annex B4

ole drilling and cleaning		
ammer drilling (HD) all size	es (size 16 with c	eaning only)
	With cleaning Drill hole dep	th h₁ according to Table B1 to B3.
	Drill hole dep ¹⁾ moving the dri h₁ is achieved. T activated in the o (MPII).	s allowed when 3x ventilation ¹⁾ after drilling is executed. th $h_1 = h_{nom} + 10 \text{ mm} + 2 \text{ * } d_0 \text{ according to Table B1 to B3}$. I bit in and out of the drill hole 3 times after the recommended drilling depth his procedure shall be done with both revolution and hammer functions drilling machine. For more details read the relevant installation instruction
ammer drilling with Hilti ho	low drill bit (HDB) TE-CD size 12 to 14.
	No cleaning r Drill hole dep	needed. th h₁ according to Table B1 to B3
onnector setting		
<u> </u>		Install the screw anchor by impact screw driver.
h1 hef.ov	•	Set the HUS4-H to the desired anchoring embedment depth $h_{\text{nom,ex}}$ in existing concrete and ensure the desired embedment depth $h_{\text{ef,ov}}$ for concrete overlay.
		After connector installation, the rebar connections can be done to the connectors.
		Observe the required condition of the surface before casting and the use of the correct concrete composition.

Connector Hilti HUS4-H	
Intended use Installation instructions	Annex B5

Table C1: Essential characteristics of connector Hilti HUS4-H in existing concrete under static and quasi-static tension load

Connector	HUS4-H				. 8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal em	nbedment depth	$\mathbf{h}_{nom,ex}$	[mm]	40	60	70	55	75	85	
Steel failur	re									
Characteris	tic resistance	$N_{Rk,s,ex}$	[kN]		36,0			55,0		
Partial facto	or	$\gamma_{Ms,N,ex}^{1)}$	[-]	1,5						
Pull-out fai	ilure									
	tic resistance in concrete C20/25	$N_{Rk,p,ex}$	[kN]		$\geq N^{0}_{Rk,c^{2}} \qquad 13 \qquad 22 \qquad \geq N^{0}_{F}$					
	tic resistance in ncrete C20/25	$\mathbf{N}_{Rk,p,ex}$	[kN]	5,5 $\geq N^{0}_{Rk,c^{2}}$						
Increasing f N _{Rk,p} = N _{Rk,p}	factor for _{p(C20/25)} * Ψc,ex	Ψc,ex	[-]			(f _{ck}	./ 20) ^{0,5}			
Concrete c	one failure									
Effective er	nbedment depth	h _{ef,ex}	[mm]	30,6	47,6	56,1	42,5	59,5	68,0	
Factor for	uncracked concrete	kucr,N,ex	[-]				11,0			
	cracked concrete	$\mathbf{k}_{cr,N,ex}$	[-]				7,7			
Concrete cone	Edge distance	Ccr,N,ex	[mm]	n] 1,5 h _{ef}						
failure	Spacing	Scr,N,ex	[mm]	3 h _{ef}						
Splitting	Edge distance	C _{cr,sp,ex}	[mm]		1,5 h _{ef}			1,65 h _e	f	
failure	Spacing	Scr,sp,ex	[mm]		3 h _{ef}			3,3 h _{ef}		
Installation	factor	γinst,ex	[-]		1,0		1,2		1,0	

¹⁾ In absence of other national regulations.

²⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Connector Hilti HUS4-H

Annex C1

Performances

Essential characteristics in existing concrete under static and quasi-static tension load

Table C2	2: Essential under sta	characte					HUS4-	H in ex	cisting	concre	te
Connector	HUS4-H				12			14			6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
Nominal en depth	nbedment	h _{nom,ex}	[mm]	60	80	100	65	85	100	85	130
Steel failu	re										
Characteris	stic resistance	N _{Rk,s,ex}	[kN]		79,0			101,5		10	7,7
Partial facto	or	$\gamma_{Ms,N,ex}^{1)}$	[-]					1,5			
Pull-out fa	ilure										
Characteris in uncracke C20/25	stic resistance ed concrete	$\mathbf{N}_{Rk,p,ex}$	[kN]			≥ N ⁽	⁰ Rk,c ²⁾			22	46
Characteris in cracked C20/25	stic resistance concrete	$N_{Rk,p,ex}$	[kN]	10			≥ N ⁰ Rk,c ²	?)		17	34
Increasing N _{Rk,p} = N _{Rk,}	factor for _{p(C20/25)} * Ψc,ex	Ψc,ex	[-]				(fc	k /20) ^{0,5}			
Concrete o	one and splitti	ing failure									
Effective er depth	nbedment	h _{ef,ex}	[mm]	45,9	62,9	79,9	49,3	66,3	79,1	66,6	104,9
Factor for	uncracked concrete	kucr,N,ex	[-]					11,0			
Factor Ior	cracked concrete	kcr,N,ex	[-]					7,7			
Concrete cone	Edge distance	C _{cr,N,ex}	[mm]	1,5 h _{ef}							
failure	Spacing	Scr,N,ex	[mm]					3 h _{ef}			
Splitting	Edge distance	C _{cr,sp,ex}	[mm]	1,65 h _{ef} 1,60 h _{ef}							
failure	Spacing	Scr,sp,ex	[mm]		3,30 h _e	f			3,20 h	lef	
Installation	factor	$\gamma_{inst,ex}$	[-]					1,0			

 $^{1)}$ In absence of other national regulations. $^{2)}\,N^{0}{}_{Rk,c}$ according to EN 1992-4:2018

Connector Hilti HUS4-H

Annex C2

Performances

Essential characteristics in existing concrete under static and quasi-static tension load

Z23007.22

Connector H	US4			8	10	12	14	16		
Steel failure										
Characteristic	resistance	$N_{Rk,s,ov}$	[kN]	36,0	36,0 55,0 79,0 101,5					
Partial factor		γMs,N,ov	[-]			1,5				
Pull-out failu	re									
Projected area	a of the head	Ah	[mm²]	187,1	249,1	320,5	510,9	637,3		
Feetenfen	uncracked concrete		[-]			10,5				
Factor for	cracked concrete	— k ₂	[-]	7,5						
Concrete cor	ne failure									
	Effective embedment depth		[mm]			40				
Enective emp	max	— h _{ef,ov}		L - h _{nom,ex} - 2·Rt ¹⁾						
Factor for	uncracked concrete	kucr,N,ov	[-]	12,7						
	cracked concrete	k _{cr,N,ov}	[-]	8,9						
Edge distance	9	Ccr,N,ov	[mm]			1,5 h _{ef}				
Spacing		Scr,N,ov	[mm]			3,0 h _{ef}				
Splitting failu	ire									
Edge distance)	C _{cr,sp,ov}	[mm]	3,0 h _{ef}						
Spacing		[mm]	6,0 h _{ef}							
Blow-out fail	ure									
Projected area	a of the head	Ah	[mm²]	187,1	249,1	320,5	510,9	637,3		
Factor for unc	racked concrete	— k 5	[-]			12,2				
Factor for crac	N 5	[-]			8,7					

 $^{1)}$ "Rt" Roughness according to EOTA Technical Report TR 066:2020-11

Connector Hilti HUS4-H

Performances

Essential characteristics in concrete overlay under static and quasi-static tension load

Annex C3

Table C4: Essential character under seismic per			ry C1		1		Γ	
Connector HUS4-H			ہ h _{nom2}	3 h _{nom3}	h _{nom2}	0 h _{nom3}	h _{nom2}	2 h _{nom3}
Nominal embedment depth	h _{nom,ex}	[mm]	60	70	75	85	80	100
Steel failure for tension load								
Characteristic resistance	NRk,s,C1,ex	[kN]	36,0 55,0			79	79,0	
Partial factor	$\gamma_{Ms,N}{}^{1)}$	[-]	1,5					
Pull-out failure		I						
Characteristic resistance in cracked concrete	$N_{Rk,p,C1,ex}$	[kN]	$\geq N^0_{Rk,c}^{2}$					
Connector HUS4-H			14			16		
			h _{nom2}	2	h _{nom3}	hnom	ı	h _{nom2}
Nominal embedment depth	h _{nom,ex}	[mm]	85		110	85		130
Steel failure for tension load				·			·	
Characteristic resistance	N _{Rk,s,C1,ex}	[kN]	101,5 107,7					
Partial factor	$\gamma_{Ms,N}$ 1)	[-]	1,5					
Pull-out failure								
Characteristic resistance in cracked concrete	NRk,p,C1,ex	[kN]		≥ N ⁰ Rk,c ²)	7,5		19,0

¹⁾ In absence of other national regulations.

 $^{2)}$ N°_{Rk,c} according to EN 1992-4:2018

Table C5: Essential characteristics of connector Hilti HUS4-H in existing concrete under seismic performance category C2

Connector HUS4-H			8	10	12	14		
			h _{nom3}	h _{nom3}	h _{nom3}	h _{nom3}		
Nominal embedment depth	h _{nom,ex}	[mm]	70	85	100	100		
Steel failure for tension		·						
Characteristic resistance	N _{Rk,s,C2,ex}	[kN]	36,0	55,0	79,0	101,5		
Partial factor	$\gamma_{Ms,N}$ 1)	[-]		1,5				
Pull-out failure		·						
Characteristic resistance in cracked concrete	NRk,p,C2,ex	[kN]	2,7	5,4	11,4	11,4		

¹⁾ In absence of other national regulations.

Connector Hilti HUS4-H Performances Essential characteristics in existing concrete under seismic performance category

Annex C4

C1 and C2

Table C6: Essential characte under seismic per				JS4-H in co	oncrete ov	verlay		
Connector HUS4-H			8	1	0	12		
Steel failure for tension load								
Characteristic resistance	N _{Rk,s,C1,ov}	[kN]	36,0	55	5,0	79,0		
Partial factor	$\gamma_{Ms,N}^{1)}$	[-]		1	,5			
Pull-out failure		I						
Characteristic resistance in cracked concrete	NRk,p,C1,ov	[kN]		≥ N _{Rk}	x,p,C1,ex			
Connector HUS4-H			1	4		16		
Steel failure for tension load		I			•			
Characteristic resistance	NRk,s,C1,ov	[kN]	10	1,5	1	107,7		
Partial factor	γMs,N ¹⁾	[-]		1	,5			
Pull-out failure		I						
Characteristic resistance in cracked concrete	N _{Rk,p,C1,ov}	[kN]		≥ N _{Rk}	s,p,C1,ex			
Table C7: Essential characte under seismic per			y C2			-		
Connector HUS4-H			8	10	12	14		
Steel failure for tension					1			
Characteristic resistance	N _{Rk,s,C2,ov}	[kN]	36,0	55,0	79,0	101,5		
Partial factor	$\gamma_{Ms,N}^{(1)}$	[-]		1	,5			
Pull-out failure								
Characteristic resistance in cracked concrete	N _{Rk,p,C2,ov}	[kN]	≥ N _{Rk,p,C2,ex}					
^{I)} In absence of other national regulations.								
Connector Hilti HUS4-H					A	nnex C5		
Performances Essential characteristics in concrete ov C1 and C2	erlay under se	eismic pe	rformance ca	ategory				

Electronic copy of the ETA by DIBt: ETA-21/0969

Table C8:Essential characteristics of connector Hilti HUS4-H size 8 to 16 for the
shear interface under static and quasi-static loading and seismic
performance category

5.7							
		8	1	0	1	2	
f _{yk}	[N/mm²]	606	63	39	6	13	
Ωk1	[-]		0	,8			
As	[mm ²]	47,5	68	8,9 103,1		3,1	
αk2	[-]		1,0				
nd relate	d minimui	m embedmen	t depth in exis	sting concre	te and	1	
h _{nom,ex} ≥	[mm]	60 7		5	80	85	
h _{ef,ov} ≥	[mm]	40	4	0	40	60,5	
αseis	[-]	0,46	0,:	50 0,50		0,52	
		1	4		16		
f yk	[N/mm²]	58	32				
Ωk1	[-]		0	,8			
As	[mm²]	13	139,5 173,2				
Ak2	[-]		1,	,0			
nd relate	d minimu	m embedmen	t depth in exis	sting concre	te and	1	
h _{nom,ex} ≥	[mm]	85	85	85		85	
h _{ef,ov} ≥	[mm]	40	60,5	40		60,5	
αseis	[-]	0,50	0,52	0,50		0,52	
	f_{yk} $α_{k1}$ A_s $α_{k2}$ nd relate $h_{nom,ex} ≥$ a_{seis} f_{yk} $α_{k1}$ A_s $α_{k2}$ nd relate $h_{nom,ex} ≥$ $h_{ef,ov} ≥$		8 f_{yk} $[N/mm^2]$ 606 α_{k1} $[-]$ A_s $[mm^2]$ 47,5 α_{k2} $[-]$ 47,5 α_{k2} $[-]$ 60 $h_{nom,ex} \ge$ $[mm]$ 60 $h_{ef,ov} \ge$ $[mm]$ 40 α_{seis} $[-]$ 0,46Imminimum embedmenni f_{yk} $[N/mm^2]$ 58 α_{k1} $[-]$ 13 α_{k1} $[-]$ 13 α_{k2} $[-]$ 13 α_{k2} $[-]$ 13 α_{k2} $[-]$ 85 $h_{nom,ex} \ge$ $[mm]$ 85 $h_{ef,ov} \ge$ $[mm]$ 40	8 1 f_{yk} [N/mm²] 606 63 α_{k1} [-] 0 0 A_s [mm²] 47,5 68 α_{k2} [-] 1 1 nd related minimum embedment depth in exist 1 1 1 $hnom,ex \ge$ [mm] 60 7 7 $h_{ef,ov} \ge$ [mm] 40 4 4 α_{seis} [-] 0,46 0,3 Ital α_{k1} [-] 0 A_s [mm²] 582 0 α_{k1} [-] 0 0 A_s [mm²] 139,5 0 α_{k2} [-] 1 1 nd related minimum embedment depth in exist 1 1 $h_{nom,ex} \ge$ [mm] 85 85 $h_{ef,ov} \ge$ [mm] 40 60,5	8 10 f_{yk} [N/mm²] 606 639 α_{k1} [-] 0,8 A_s [mm²] 47,5 68,9 α_{k2} [-] 1,0 nd related minimum embedment depth in existing concrest $h_{nom,ex} \ge$ [mm] 60 75 $h_{ef,ov} \ge$ [mm] 40 40 α_{seis} [-] 0,46 0,50 α_{seis} f_{yk} [N/mm²] 582 α_{k1} α_{k1} α_{k1} α_{k1} α_{k1} α_{k2} α_{k1} α_{k2} α_{k1} α_{k2} α_{k2} α_{k1} α_{k2} α_{k2} α_{k1} α_{k1} α_{k1} α_{k2} α_{k1} α_{k1} α_{k2} α_{k1} α_{k1} α_{k2} α_{k1} α_{k1} α_{k2} α_{k1}	8 10 1 fyk [N/mm²] 606 639 6 α_{k1} [-] 0,8 α_{k1} $(-]$ 0,8 As [mm²] 47,5 68,9 10 α_{k2} [-] 1,0 10 nd related minimum embedment depth in existing concrete and α_{k2} [-] 1,0 nom.ex [mm] 60 75 80 hef.ov ≥ [mm] 40 40 40 α_{seis} [-] 0,46 0,50 0,50 Image: a limit [-] 0,8 173,2 173,2 α_{k2} [-] 1,0 10 10 Image: a limit [-] 85 85 85 173,2 α_{k2} [mm] 85 85 85 10 hef.ov ≥	

Connector Hilti HUS4-H

Performances

Essential characteristics for the shear interface under shear load

Annex C6