

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/1043 of 26 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Bonded anchor for use in concrete

BEHA GmbH Feldstraße 2a 06458 Selke Aue OT Hausneindorf DEUTSCHLAND

BEHA Werk 1

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-21/1043 English translation prepared by DIBt

Page 2 of 31 | 26 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 31 | 26 October 2022

Specific Part

1 Technical description of the product

The "BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete" is a bonded anchor consisting of a cartridge with injection mortar HQC300 or WVB300 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm or an internal threaded anchor rod GS-M6 to GS-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/1043

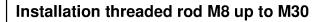
Page 4 of 31 | 26 October 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

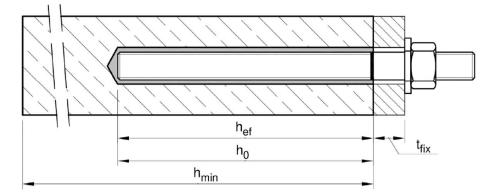
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

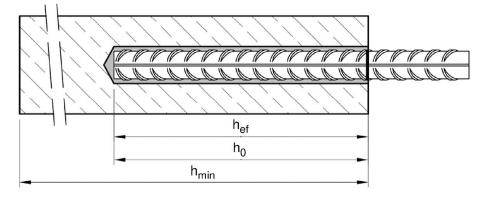
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

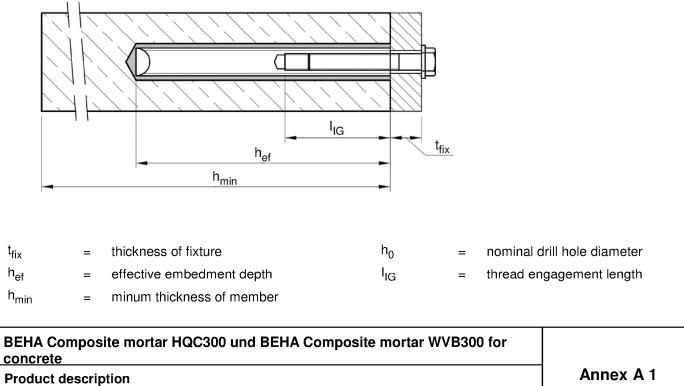
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 26 October 2022 by Deutsches Institut für Bautechnik

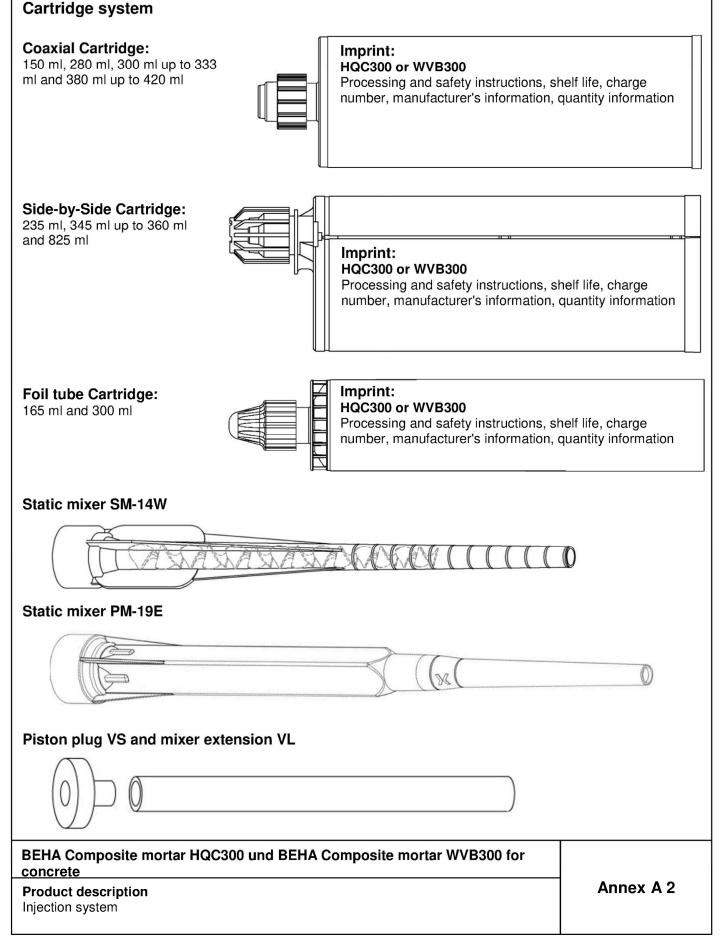

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider



prepositioned installation or


push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32



Installation internal threaded anchor rod GS-M6 up to GS-M20

Installed condition

Threaded rod M8 up to M30 w	ith washer and hexagon nut	
	Mark of the embedment depth	
h _{ef}	L _{ges}	
	EN 10204:2004. The document shall be stored.	
Internal threaded rod GS-M6 t	o GS-M20	
Threaded rod or screw	Producer marking	
	Producer marking: e.g. M8	
	 Marking Internal thread Mark M8 Thread size (Internal thread) A4 additional mark for stainless steel HCR additional mark for high-corrosion resi 	stance steel
Filling washer VFS	Mixer reduction nozzle MR	
36		₽
BEHA Composite mortar HQC300 concrete Product description	und BEHA Composite mortar WVB300 for	Annex A 3
Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle		

) 0 10684:2004+AC:2009 or el Characteristic steel Elongation at fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ ss 4.6 or 4.8 ss 5.6 or 5.8 ss 8.8 ardized EN ISO 7093:2000 or EN ISO 7094:2000) ardized el Characteristic steel Elongation at fracture $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014) 8 acc. to EN 10088-1:2014)
el rengthCharacteristic steel yield strengthElongation at fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ ss 4.6 or 4.8ss 5.6 or 5.8ss 8.8sardizedEN ISO 7093:2000 or EN ISO 7094:2000)rardizedel rengthCharacteristic steel yield strength $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014)
el rengthCharacteristic steel yield strengthElongation at fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ ss 4.6 or 4.8ss 5.6 or 5.8ss 8.8sardizedEN ISO 7093:2000 or EN ISO 7094:2000)rardizedel rengthCharacteristic steel yield strength $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014)
rength yield strength fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ ss 4.6 or 4.8 ss 5.6 or 5.8 ss 5.6 or 5.8 ss 8.8 ardized EN ISO 7093:2000 or EN ISO 7094:2000) el Characteristic steel yield strength Elongation at fracture $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014) Elongation at
rength yield strength fracture $f_{yk} = 240 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 320 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 300 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ ss 4.6 or 4.8 ss 5.6 or 5.8 ss 5.6 or 5.8 ss 8.8 ardized EN ISO 7093:2000 or EN ISO 7094:2000) el Characteristic steel yield strength Elongation at fracture $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014) Elongation at
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ss 4.6 or 4.8 ss 5.6 or 5.8 ss 8.8 ardized EN ISO 7093:2000 or EN ISO 7094:2000) ardized el Characteristic steel Elongation at fyk = 400 N/mm ² A ₅ > 8% $f_{yk} = 640 N/mm^2$ A ₅ > 8% 1, acc. to EN 10088-1:2014)
$\begin{array}{c c} ss 5.6 \text{ or } 5.8 \\ \hline ss 8.8 \\ \hline ardized \\ \hline EN ISO 7093:2000 \text{ or } EN ISO 7094:2000) \\ \hline ardized \\ \hline el \\ rength \\ \hline yield strength \\ \hline f_{yk} = 400 \text{ N/mm}^2 \\ \hline f_{yk} = 640 \text{ N/mm}^2 \\ \hline f_{yk} = 640 \text{ N/mm}^2 \\ \hline f_{yk} = 8\% \\ \hline 1, \text{ acc. to } EN 10088-1:2014) \\ \hline \end{array}$
ss 8.8rardizedEN ISO 7093:2000 or EN ISO 7094:2000)rardizedelCharacteristic steelglind strengthElongation at fracturefyk = 400 N/mm²A5 > 8%1, acc. to EN 10088-1:2014)
ardizedEN ISO 7093:2000 or EN ISO 7094:2000)ardizedelCharacteristic steel yield strengthfyk = 400 N/mm²A5 > 8%fyk = 640 N/mm²A5 > 8%1, acc. to EN 10088-1:2014)
EN ISO 7093:2000 or EN ISO 7094:2000)ardizedElongation at fractureelCharacteristic steel yield strengthElongation at fracturefyk = 400 N/mm²A5 > 8%fyk = 640 N/mm²A5 > 8%1, acc. to EN 10088-1:2014)
el rengthCharacteristic steel yield strengthElongation at fracture $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014)
rength yield strength fracture $f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014)
$f_{yk} = 400 \text{ N/mm}^2$ $A_5 > 8\%$ $f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014)
$f_{yk} = 640 \text{ N/mm}^2$ $A_5 > 8\%$ 1, acc. to EN 10088-1:2014)
1, acc. to EN 10088-1:2014)
8, acc. to EN 10088-1:2014) N 10088-1: 2014) el Characteristic steel Elongation at
1
1
ss 80 57 or 1.4541, acc. to EN 10088-1:2014 52 or 1.4578, acc. to EN 10088-1:2014 10088-1: 2014
EN ISO 7093:2000 or EN ISO 7094:2000)
EN ISO 7093:2000 or EN ISO 7094:2000)
EN ISO 7093:2000 or EN ISO 7094:2000) e steel el Characteristic steel Elongation at
EN ISO 7093:2000 or EN ISO 7094:2000)e steelelCharacteristic steelrengthyield strengthElongation at fracture
EN ISO 7093:2000 or EN ISO 7094:2000) e steel el Characteristic steel Elongation at
N 10088-1: 2014) el Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ ss 50 ss 70 ss 80 57 or 1.4541, acc. to EN 10088-1::

Reinforcing bar: ø8 up to ø32	
Ainimum value of related rip area f _{R,min} acco Rib height of the bar shall be in the range 0,0	brding to EN 1992-1-1:2004+AC:2010 $0.5d \le h_{rib} \le 0.07d$
d: Nominal diameter of the bar; h _{rib} : Rib heig Table A2: Materials Reinforcing	ght of the bar)
art Designation	Material
ebar	
Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Product description Materials reinforcing bar Annex A 5

HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling Femperature Range Fasteners subject to (seismic act Base material HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling		32, S-M20 +40°C ¹⁾ +80°C ²⁾ +120°C ³⁾	Base material No performan No performan Performance	ce assessed
HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling Temperature Range Fasteners subject to (seismic act Base material HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	Ø8 to Ø3 GS-M6 to G3 I: - 40°C to II: - 40°C to III: - 40°C to tion): Performance Ca	80, 32, S-M20 +40°C ¹⁾ +80°C ²⁾ +120°C ³⁾ attegory C1	No performan Performance	ce assessed
Fasteners subject to (seismic act Base material HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	II: - 40°C to III: - 40°C to tion): Performance Ca	+80°C ²⁾ +120°C ³⁾	Performance	
Base material HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	Performance Ca			Category C2
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling				Category C2
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M	Cracked and un		
HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M3		cracked concrete	
	Ø8 to Ø	•	No performan	ice assessed
Femperature Range	I: - 40°C to II: - 40°C to III: - 40°C to	+80°C ²⁾	No performan	ce assessed
 ²⁾ (max. long-term temperature +50°C a ³⁾ (max. long-term temperature +72°C a Base material: Compacted, reinforced or uni EN 206:2013 + A1:2016. Strength classes C20/25 to C Use conditions (Enviromental co Structures subject to dry intel For all other conditions accorr class: Stainless steel Stahl A 	and max. short-term temp reinforced normal weig C50/60 according to EN onditions): rmal conditions (all mat rding to EN 1993-1-4:2	perature +120°C) ght concrete witho N 206:2013 + A1:2 terials). 2006+A1:2015 cor	2016. responding to corrosic	on resistance
 Stainless steel Stahl A Stainless steel Stahl A High corrosion resistar 	4 according to Annex A	A 4, Table A1: CF	RC III	
BEHA Composite mortar HQC3	00 und BEHA Comp	osite mortar W	/B300 for	

Z98489.22

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:
 - HQC300:-10°C up to +40°C for the standard variation of temperature after installation.WVB300:-20°C up to +10°C for the standard variation of temperature after installation.

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Intended Use

Specifications (Continued)

Annex B 2

Table B1: Installation parameters for threaded rod											
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of elemen	iameter of element d = d _{nom}			8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective enclosed		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	ni depin	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned installation $d_{f} \leq$		[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through in	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			ł	hef + 2do)		
Minimum spacing		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ance	c _{min}	[mm]	40	50	60	80	100	120	135	150
		<u>.</u>									

Table B2: Installation parameters for reinforcing bar

Reinforcing bar			Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]		+ 30 mm 00 mm	1			h _{ef} + 2	2d ₀		
Minimum spacing	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160
1) to a the second and a local the star all a second as	, a star la serie a se										-

1) both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod			GS-M6	GS-M8	GS-M10	GS-M12	GS-M16	GS-M20
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of anchor rod ¹⁾	d = d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	tive embedment denth h _{ef,min}		60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	01	h _{ef} + 30 mm ≥ 100 mm		h _{ef} +	- 2d ₀	
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Intended Use

Installation parameters

Annex B 3

	C C C C C C C				mmm	and the second second				
hreaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _t Brush	- 20	d _{b,min} min. Brush - Ø	Piston plug		on direction f piston plu	
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		↓	\rightarrow	t
M8	8		10	BLB10	12	10,5				
M10	8 / 10	GS-M6	12	BLB12	14	12,5		No plug	required	
M12	10/12	GS-M8	14	BLB14		14,5		i to piug	. oqui ou	
	12		16	BLB16	18	16,5	<u>e 112</u> 1808	1	,	
M16	14	GS-M10	18	BLB18	20	18,5	VS18	-		
1400	16	00.110	20	BLB20	22	20,5	VS20	-		
M20		GS-M12	24	BLB24	26	24,5	VS24			
140.4	20	00.1440	25	BLB25	27	25,5	VS25	h _{ef} >	h _{ef} >	all
M24	05	GS-M16	28	BLB28	30	28,5	VS28	250 mm	250 mm	
M27	25	GS-M20	32	BLB32	34	32,5	VS32	-		
		(1S-1/20)	35	BLB35	37	35,5	VS35	-		
-	-	allation to	40 ols	BLB40		40,5	VS40			
Cleaning land pur	32 g and insta		ols	BLB40		40,5 Compressed (min 6 bar)				
Cleaning Hand purr Volume 75	32 g and inst a np 0 ml, h _o ≥ 10 c	allation to	ols	BLB40	(Compressed (min 6 bar)	air tool			
Cleaning Hand purr	32 g and inst a np 0 ml, h _o ≥ 10 c	allation to d _s , d _o ≤ 20mm)	ols	BLB40	(Compressed	air tool			
Cleaning Hand purr Volume 75 Orf Brush BL	32 g and instanp 0 ml, h _o ≥ 10 c B	allation to d _s , d ₀ ≤20mm)	ols			Compressed (min 6 bar)	air tool			

Table B5:	Worki	ng time and c	uring time HQC300	
Tempera	ture in bas	Minimum curing time ¹⁾		
	Т		t _{gel}	t _{cure}
- 10°C	to	- 6 °C	90 min ²⁾	24 h
- 5 °C	to	- 1 °C	90 min	14 h
0°C	to	+ 4 °C	45 min	7 h
+ 5 °C	to	+ 9 °C	25 min	2 h
+ 10 °C	to	+ 19°C	15 min	80 min
+ 20 °C	to	+ 29 °C	6 min	45 min
+ 30 °C	to	+ 34 °C	4 min	25 min
+ 35 °C	to	+ 39 °C	2 min	20 min
	+40°C		1,5 min	15 min
Cartr	idge tempe	erature	+5°C to	+40°C

1) The minimum curing time is only valid for dry base material.

In wet base material the curing time must be doubled.

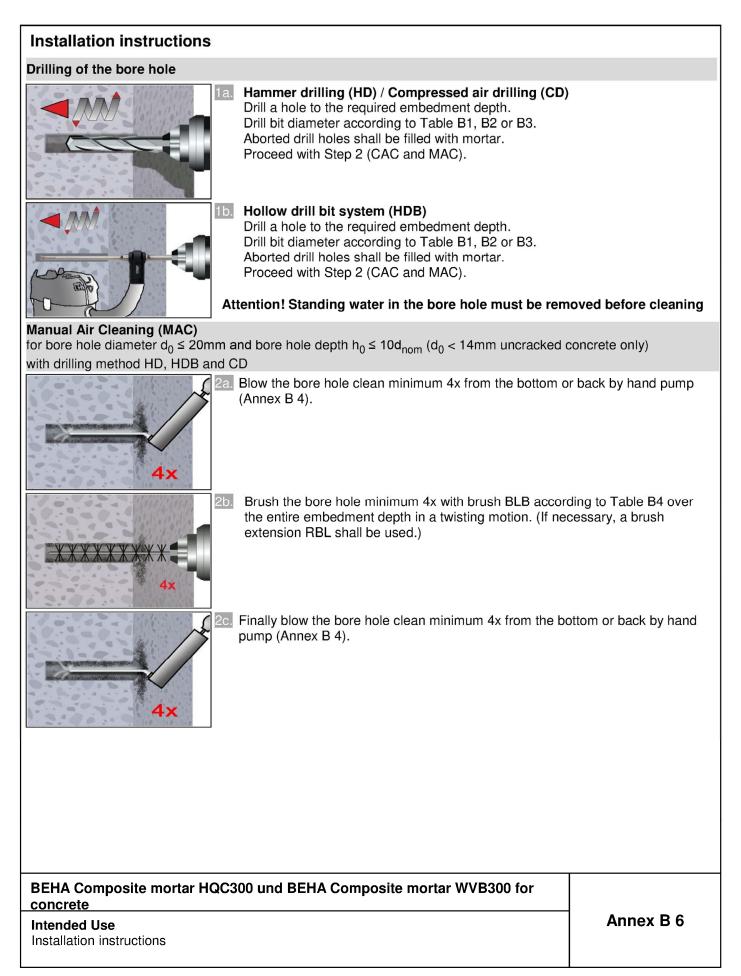
²⁾ Cartridge temperature must be at least $+15^{\circ}C$

Table B6: Working time and curing time WVB300

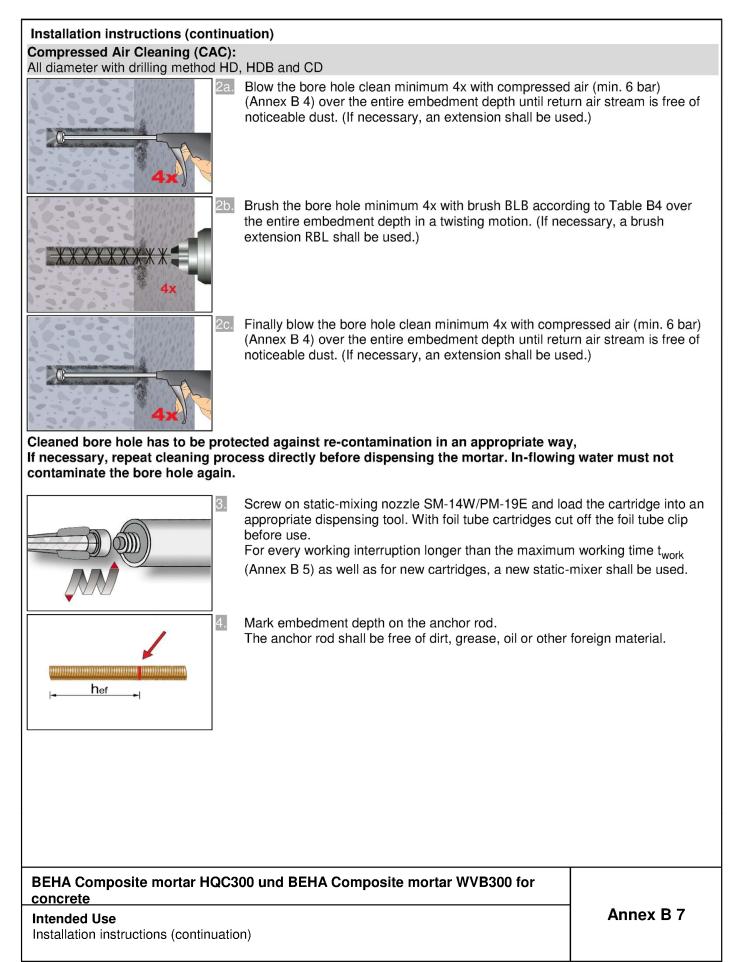
Tempera	ature in bas	e material	Maximum working time	Minimum curing time 1)
	Т		t _{gel}	t _{cure}
- 20 °C	to	- 16 °C	75 min	24 h
- 15°C	to	- 11 °C	55 min	16 h
- 10 °C	to	- 6 °C	35 min	10 h
- 5 °C	to	- 1 °C	20 min	5 h
0°C	to	+ 4 °C	10 min	2,5 h
+ 5 °C	to	+ 9 °C	6 min	80 min
	+ 10 °C		6 min	60 min
Carl	tridge tempe	rature	-20°C to	o +10°C

 The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

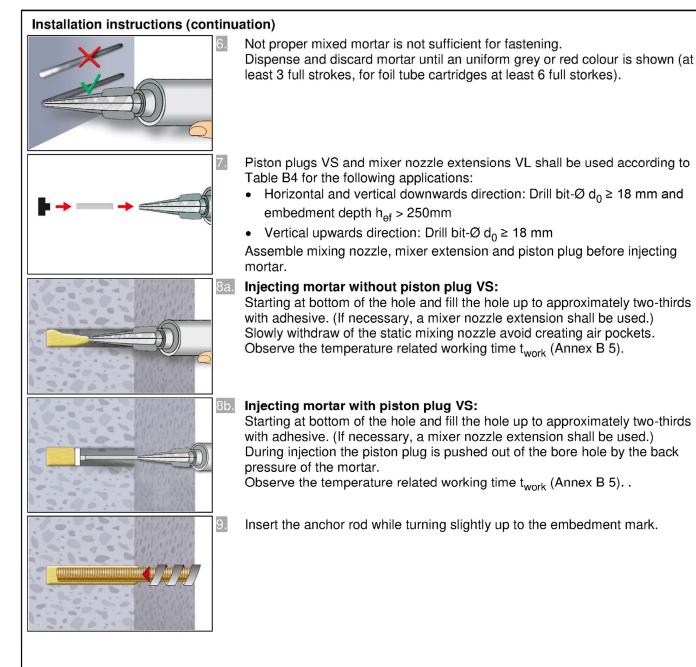
BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for


concrete

Intended Use


Working time and curing time

Annex B 5



BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Intended Use

Installation instructions (continuation)

Annex B 8

ſ

Installation instructions (continu	lation)
10.	Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also. Otherwise, the installation must be repeated starting from step 7 before the maximum working time t _{work} has expired.
	For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).
+20°C	Temperature related curing time t _{cure} (Annex B 5) must be observed. Do not move or load the fastener during curing time.
12.	Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3). In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Intended Use

Installation instructions (continuation)

Annex B 9

Th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561
Ch	aracteristic tension resistance, Steel failu	re ¹⁾									
Ste	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ste	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	aracteristic tension resistance, Partial fac	tor ²⁾									
Ste	eel, Property class 4.6 and 5.6	γMs,N	[-]				2,0	0			
	eel, Property class 4.8, 5.8 and 8.8	γMs,N	[-]	2.			1,				
	ainless steel A2, A4 and HCR, class 50	γMs,N	[-]				2,8				
	ainless steel A2, A4 and HCR, class 70	γMs,N	[-]				1,8				
	ainless steel A4 and HCR, class 80	γMs,N	[-]				1,6	6			
Cł	aracteristic shear resistance, Steel failure	, ¹⁾									1
Ε	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
out l	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
5	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk,s}		19	37	66	167	325	561	832	1125
With	Stainless steel A2, A4 and HCR, class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	aracteristic shear resistance, Partial facto									II	
	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2				
	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3				
	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5				
	ainless steel A4 and HCR, class 80	γMs,V	[-]				1,3				

²⁾ in absence of national regulation

3) Fastener type not part of the ETA

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Table C2:	Characteristic v	alues of te	nsion load	Is under static and quasi-static actior
Fastener				All Anchor types and sizes
Concrete cone fa	ailure			
Uncracked concre	ete	k _{ucr,N}	[-]	11,0
Cracked concrete	9	k _{cr,N}	[-]	7,7
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		1 2	1	
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

Annex C 2

	ded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f		atapag	N	ELCN 17			Δ • f	, (or s	ee Tab			
	cteristic tension resi	stance	N _{Rk,s}	[kN]			^A s ⁺ι	6516				
1296 - 0.00 200 2 Million 100	factor	annorata failura	γ _{Ms,N}	[-]				see Ta	ible C1			
	ined pull-out and cteristic bond resist		d concrete (20/25								
Unara					10	10	10	10	10		10	0.0
ge	I: 40°C/24°C	Dry, wet			10	12	12	12	12	11	10	9,0
e rang	II: 80°C/50°C	concrete			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5
Temperature range	III: 120°C/72°C		⁻ ^τ Rk,ucr	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
mper	I: 40°C/24°C	flooded bore			7,5	8,5	8,5	8,5	N N	lo Perfo	ormand	e
Tei	II: 80°C/50°C	hole			5,5	6,5	6,5	6,5		Asse		
Chara	III: 120°C/72°C		operate C20)/25	4,0	5,0	5,0	5,0				
Unara				J/25	4.0	5.0	E E	EE	E E	E E	0.5	0.5
ge	I: 40°C/24°C	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range	II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
ature	III: 120°C/72°C		⁻ ^τ Rk,cr	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
upera	I: 40°C/24°C	flooded bore			4,0	4,0	5,5	5,5		lo Perfo	ormano	è
Ter	II: 80°C/50°C	hole			2,5	3,0	4,0	4,0		Asse		.0
<u> </u>	III: 120°C/72°C				2,0	2,5	3,0	3,0				
Reduk	tion factor $\psi^0{}_{sus}$ in	cracked and und	racked cond	crete C20/25								
ture	I: 40°C/24°C	Dry, wet						0,	73			
Temperature range	II: 80°C/50°C	concrete and flooded bore	ψ^0 sus	[-]				0,	65			
Ter	III: 120°C/72°C	hole						0,	57			
Increa	sing factors for con	crete	Ψc	[-]				(f _{ck} / 2	20) 0,11			
Chara	cteristic bond resist	ance depending		τ _{Rk,ucr} =			Ψ_{c}	• τ _{Rk,u}	_{cr} (C20/	25)		
on the	concrete strength of	class		τ _{Rk,cr} =			Ψα	• ^τ Rk,c	cr(C20/2	25)		
	ete cone failure											
	ant parameter							see Ta	ble C2			
Splitti Beleva	ant parameter							see Ta	ble C2			
	ation factor							000 10				
for dry	and wet concrete				1,0				1,2			
for floo	oded bore hole		γinst	[-]		1,	,4		N	lo Perfo Asse		e
BEH	A Composite mo	ortar HQC300 u	nd BEHA (Composite n	nortar	WVB:	300 fo	r	1			
conc	-			•			-					

Z98489.22

Table C4: Characteristic	values	of sh	ear lo	ads ui	nder s	tatic a	nd qu	asi-st	atic acti	on
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]			0,6 •	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ Rk,s	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	;1		
Ductility factor	k7	[-]					1,0			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} • f _{uk}	(or see	Table C	21)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	۱ _f	[mm]		n	nin(h _{ef} ; 1	2 • d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for <u>concrete</u>

Annex C 4

Performances

Characteristic values of shear loads under static and quasi-static action (Threaded rod)

Steel failure¹⁾ Characteristic tension resistan	ls			GS-M6	GS-M8	GS-M10	GS-M12	GS-M16	GS-M20
Characteristic tension resistan									
	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor, strength class 5.	8 and 8.8	γ _{Ms,N}	[-]			1	,5		
Characteristic tension resistan					00			110	104
Steel A4 and HCR, Strength c		N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial factor		γ _{Ms,N}	[-]			1,87			2,86
Combined pull-out and conc									
Characteristic bond resistance	in uncracked c	oncrete	C20/25			T		1	
φ <u>I: 40°C/24°C</u>	Dry, wet			12	12	12	12	11	9,0
II: 80°C/50°C	concrete			9,0	9,0	9,0	9,0	8,5	6,5
B B B B B B B B B B B B B B B B B B B		^τ Rk,ucr	[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0
II: 40°C/50°C III: 120°C/72°C III: 120°C/24°C III: 80°C/50°C	flooded bore		· ·	8,5 6,5	8,5 6,5	8,5 6,5	No Port	ormance A	
⊢ <u>III: 120°C/72°C</u>	hole			5,0	5,0	5,0		ormance F	12262260
Characteristic bond resistance	in cracked con	L crete C2	20/25	5,0	5,0				
1: 40°C/24°C				5,0	5,5	5,5	5,5	5,5	6,5
II: 80°C/50°C	Dry, wet			3,5	4,0	4,0	4,0	4,0	4,5
B III: 120°C/72°C	concrete			2,5	3,0	3,0	3,0	3,0	3,5
B B B B B B B B B B B B B B B B B B B	<i>a</i>	^τ Rk,cr	[N/mm ²]	4,0	5,5	5,5		11555 1 1616	
II: 80°C/50°C III: 120°C/72°C III: 120°C/72°C III: 80°C/50°C III: 80°C/50°C	flooded bore hole			3,0	4,0	4,0	No Perf	ormance A	ssessec
III: 120°C/72°C				2,5	3,0	3,0			
Reduktion factor $\psi^0{}_{sus}$ in crac	cked and uncra	cked cor	crete C2	0/25					
₽ I: 40°C/24°C	Dry, wet					0,	73		
I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C	concrete and flooded bore	Ψ^0_{sus}	[-]			0,	65		
⊑ –	hole						57		
ncreasing factors for concrete		Ψc	[-]			(f _{ck} / 2	20) ^{0,11}		
Characteristic bond resistance	depending on	τ	Rk,ucr =			Ψc ^{•τ} Rk,u	_{icr} (C20/25)		
he concrete strength class	, 0		τ _{Rk,cr} =				_{cr} (C20/25)		
Concrete cone failure			rugor						
Relevant parameter						see Ta	able C2		
Splitting failure									
Relevant parameter						see Ta	able C2		
nstallation factor						· · ·			
or dry and wet concrete		γ _{inst}	[-]			1	,2		
or flooded bore hole				2 8 8	1,4	perty class		ormance A	

Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod) Annex C 5

Internal threaded anchor rods				GS-M6	GS-M8	GS-M10	GS-M12	GS-M16	GS-M20
Steel failure without lever arm ¹⁾	C.								
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	nd 8.8	γMs,V	[-]		<u>,</u>		1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure		1							
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		۱ _f	[mm]		min((h _{ef} ; 12 ∙ d	nom)		min (h _{ef} ; 300mr
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]				1,0		
 Fastenings (incl. nut and washe The characteristic tension resist For GS-M20 strength class 50 is 	ance for	steel failur	e is valic	for the int	ernal threa	ided rod ar	nd the faste	ning eleme	nt.
BEHA Composite mortar H			4 Com	nooito m		/P200 fo	-		

Table C7: Chara	acteristic	values of	tensio	n Ioa	ds un	der s	tatic	and q	uasi-	statio	actio	on
Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												*
Characteristic tension resis	tance	N _{Rk,s}	[kN]				,	A _s ∙ f _{uk}	1)			
Cross section area		A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,4 ²⁾				
Combined pull-out and co	oncrete failu											
Characteristic bond resistar			te C20/25									
φ <u>I: 40°C/24°C</u>	Dry, wet			10	12	12	12	12	12	11	10	8,5
	concrete			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0
III: 120°C/72°C		^τ Rk,ucr	[N/mm ²]	5,5 7,5	6,5 8,5	6,5 8,5	6,5 8,5	6,5 8,5	6,5	6,0	5,0	4,5
E II: 80°C/50°C	flooded	5		7,5 5,5	6,5	6,5	6,5	6,5	- N	lo Perfe		e
⊢ <u>III: 120°C/72°C</u>	bore hole			4,0	5,0	5,0	5,0	5,0	1	Asse	essed	
Characteristic bond resistar	nce in cracke	ed concrete	C20/25	,	. ,	,	, ,		.			
<u>θ I: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
		^τ Rk,cr	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
<u>م تع I: 40°C/24°C</u> اI: 80°C/50°C	flooded			4,0 2,5	4,0 3,0	5,5 4,0	5,5 4,0	5,5 4,0	N	lo Perfe		e
H: 120°C/72°C	bore hole			2,0	2,5	3,0	3,0	3,0	1	Asse	essed	
Reduktion factor ψ^0_{sus} in c	cracked and	uncracked c	oncrete C		,0	0,0	0,0	0,0	1			
	Dry, wet							0,73				
ll: 80°C/S0°C	concrete and	Ψ ⁰ sus	[-]					0,65				
	flooded bore hole							0,57				
Increasing factors for concr		Ψc	[-]				(f _c	k / 20)	0,11			
Characteristic bond resistar			τ _{Rk,ucr} =					_{Rk,ucr} (C				
depending on the concrete class	strength		$\tau_{\rm Rk,cr} =$					Rk,cr(C				
Concrete cone failure												
Relevant parameter							see	e Table	C2			
Splitting												
Relevant parameter							see	e Table	C2			
Installation factor												
for dry and wet concrete				1,0				1	,2			
for flooded bore hole		^γ inst	[-]			1,4				lo Perfe Asse	ormanc essed	е
 f_{uk} shall be taken from th in absence of national reg 		ns of reinford	ang bars									
BEHA Composite mor concrete	tar HQC30	0 und BEH	IA Comp	osite	morta	r WVB	300 fc	or		Anne	х <u>С</u> 7	,
Performances Characteristic values of t (Reinforcing bar)	ension load	s under stat	tic and qu	asi-sta	tic acti	on						

Table C8: Characteristic	values	of shea	r Ioa	ds un	der st	tatic a	and q	uasi-	static	actio	n
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]				0,5	0 · A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]					1,5 ²⁾				
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	• w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Concrete pry-out failure											
Factor	k ₈	[-]					2,0				
Installation factor	γ _{inst}	[-]					1,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]		mi	n(h _{ef} ; 1	2 • d _{nor}	m)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γ _{inst}	[-]					1,0				
 f_{uk} shall be taken from the specification in absence of national regulation 	ons of reinfo	rcing bars	3								

Annex C 8

Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	e C20/25 und	ler static and quasi-	static acti	on						
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,07
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,11
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,17
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,11
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,17
Cracked concrete C	20/25 under	static and quasi-sta	tic action							
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,0)90			0,0)70		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,1	05			0,1	05		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	170		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,2	255			0,2	245		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,2	219			0,1	70		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0.2	255			0,2	245		
1) Calculation of the of $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C10:	displacement τ; · τ;	τ: action bond stress f ents under shea	or tension	I	M12	M16	1	I	M27	Ma
¹⁾ Calculation of the c $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C10: D Threaded rod	displacement τ; · τ; Displacem	τ: action bond stress f ents under shea	or tension I r load ¹⁾ M8	M10	M12	M16	M20	M24	M27	M3(
¹⁾ Calculation of the c $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C10: D Threaded rod	displacement τ; · τ; Displacem	τ: action bond stress f ents under shea der static and quasi-s	or tension Ir load ¹⁾ M8 Static actio	M10 on			M20	M24		
¹⁾ Calculation of the c $ δ_{N0} = δ_{N0} -factor $ $ δ_{N∞} = δ_{N∞} -factor $ Table C10: E Threaded rod Uncracked concrete All temperature	displacement τ; · τ; Displacem • C20/25 und δ _{vo} -factor	τ: action bond stress f ents under shea der static and quasi-s	or tension Ir load ¹⁾ M8 Static actio 0,06	M10 on 0,06	0,05	0,04	M20 0,04	M24	0,03	M30 0,03
¹⁾ Calculation of the c $ δ_{N0} = δ_{N0} -factor $ $ δ_{N∞} = δ_{N∞} -factor $ Table C10: E Threaded rod Uncracked concrete All temperature ranges	displacement τ; · τ; Displacem • C20/25 und δ _{vo} -factor δ _{v∞} -factor	τ: action bond stress f ents under shea der static and quasi-s [mm/kN] [mm/kN]	or tension Ir load ¹⁾ M8 Static action 0,06 0,09	M10 on 0,06 0,08			M20	M24		0,03
¹⁾ Calculation of the c $ δ_{N0} = δ_{N0} -factor $ $ δ_{N∞} = δ_{N∞} -factor $ Table C10: E Threaded rod Uncracked concrete All temperature ranges	 displacement τ; τ; oisplacem c20/25 und δvo-factor δv∞-factor c20/25 under 	τ: action bond stress f ents under shea der static and quasi-static [mm/kN] [mm/kN] static and quasi-static	or tension Ir load ¹⁾ M8 Static actio 0,06 0,09 tic action	M10 on 0,06 0,08	0,05	0,04	M20 0,04 0,06	M24 0,03 0,05	0,03	0,03
 ¹⁾ Calculation of the one o	displacement τ; · τ; Displacem • C20/25 und • C20/25 und • δv₀-factor • 20/25 under • δv₀-factor	τ: action bond stress f ents under shea der static and quasi-sta [mm/kN] static and quasi-sta [mm/kN]	or tension IT load ¹⁾ M8 Static action 0,06 0,09 tic action 0,12	M10 on 0,06 0,08 0,12	0,05 0,08 0,11	0,04 0,06 0,10	M20 0,04 0,06	M24 0,03 0,05 0,08	0,03 0,05 0,08	0,03
 ¹⁾ Calculation of the c δ_{N0} = δ_{N0}-factor δ_{N∞} = δ_{N∞}-factor Table C10: E Threaded rod Uncracked concrete All temperature ranges Cracked concrete C All temperature ranges 	displacement τ; · τ; Displacem • C20/25 und • C20/25 und • C20/25 und • C20/25 under • δv∞-factor • δv∞-factor • δv∞-factor • δv∞-factor	τ: action bond stress f ents under shea der static and quasi-static [mm/kN] [mm/kN] static and quasi-static	or tension Ir load ¹⁾ M8 Static actio 0,06 0,09 tic action	M10 on 0,06 0,08	0,05	0,04	M20 0,04 0,06	M24 0,03 0,05	0,03	0,03
 ¹⁾ Calculation of the c δ_{N0} = δ_{N0}-factor δ_{N∞} = δ_{N∞}-factor Table C10: E Threaded rod Uncracked concrete All temperature ranges Cracked concrete C All temperature 	displacement τ; · τ; Displacem C20/25 und δvo-factor δv∞-factor δv∞-factor δv∞-factor δv∞-factor δv∞-factor δv∞-factor δv∞-factor δv∞-factor	τ: action bond stress f ents under shea der static and quasi-sta [mm/kN] static and quasi-sta [mm/kN]	or tension IT load ¹⁾ M8 Static actio 0,06 0,09 tic action 0,12	M10 on 0,06 0,08 0,12	0,05 0,08 0,11	0,04 0,06 0,10	M20 0,04 0,06	M24 0,03 0,05 0,08	0,03 0,05 0,08	0,02

Z98489.22

(threaded rods)

Internal threaded	anchor rod		GS-M6	GS-M8	GS-M10	GS-M12	GS-M16	GS-M20
Uncracked concre	te C20/25 und	er static and quas	-static act	ion		1		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,023	0,026	0,031	0,036	0,041	0,049
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete	C20/25 under	static and quasi-s	tatic action	Î				
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,090			0,070		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,105			0,105		
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		
11.0000/5000		5 SM 8 K 1 S	10.000					
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245		
A CHARGE CONTRACTOR OF A CHARGE AND A CHAR		[mm/(N/mm ²)] [mm/(N/mm ²)]	0,255 0,219			0,245 0,170		
Temperature range III: 120°C/72°C ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	$\frac{\delta_{N0}\text{-factor}}{\delta_{N\infty}\text{-factor}}$ displacement $\cdot \tau$; $\cdot \tau$;		0,219 0,255 s for tension			,		
Temperature range III: 120°C/72°C ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12:	δN0-factor δN∞-factor displacement τ; τ; Displacement	[mm/(N/mm ²)] [mm/(N/mm ²)] τ: action bond stress	0,219 0,255 s for tension ear load ¹	GS-M8	GS-M10	0,170 0,245	GS-M16	GS-M2
Temperature range III: 120°C/72°C ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Internal threaded	δN0-factor δN∞-factor displacement τ; τ; triangle Displacement anchor rod	[mm/(N/mm²)] [mm/(N/mm²)] τ: action bond stress ents under she	0,219 0,255 s for tension ear load ¹ GS-M6	GS-M8	GS-M10	0,170	GS-M16	GS-M20
Temperature range III: 120°C/72°C ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Internal threaded Uncracked and cra	δN0-factor δN0-factor displacement τ; τ; triangle anchor rod cked concrete	[mm/(N/mm ²)] [mm/(N/mm ²)] τ: action bond stress ents under she e C20/25 under sta	0,219 0,255 s for tension ear load ¹ GS-M6 ttic and qu	asi-static a	ction	0,170 0,245 GS-M12	30 53 59	GS-M20 0.04
Temperature range III: 120°C/72°C ¹⁾ Calculation of the $\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: Internal threaded Uncracked and cra All temperature	δ_{N0} -factor δ_{N0} -factor displacement τ ; τ ; τ ; σ ;	[mm/(N/mm²)] [mm/(N/mm²)] τ: action bond stress ents under she	0,219 0,255 s for tension ear load ¹ GS-M6			0,170 0,245	GS-M16 0,04 0,06	GS-M20 0,04 0,06

Annex C 10

Performances Displacements under static and quasi-static action (Internal threaded anchor rod)

Anchor size rein	forcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concr	ete C20/25 ι	Inder static and	quasi-s	tatic act	ion				•		
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Cracked concrete	e C20/25 und	ler static and qu	uasi-stat	ic actior	1						
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,0)90				0,070			
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,1	05				0,105			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,2	219				0,170			
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,2	255				0,245			
1) Calculation of th $\delta_{N0} = \delta_{N0}$ -facto $\delta_{N\infty} = \delta_{N\infty}$ -facto Table C14:	r · τ; Dr · τ;	τ: action bonc			ebar)						
$δ_{N0} = δ_{N0}$ -facto $δ_{N∞} = δ_{N∞}$ -facto Table C14: Ι	r · τ; pr · τ; Displacen	τ: action bond			ebar) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 33
$δ_{N0} = \delta_{N0}$ -facto $\delta_{N\infty} = \delta_{N\infty}$ -facto Table C14: I Anchor size rein	r · τ; pr · τ; Displacen forcing bar	τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3
δN0 = δN0-facto δN∞ = δN∞-facto	r · τ; pr · τ; Displacen forcing bar	τ: action bond	hear lo Ø 8	øad ¹⁾ (r Ø 10	Ø 12	Ø 14	Ø 16	Ø 20 0,04	Ø 25	Ø 28	Ø 32 0,03
δ _{N0} = δ _{N0} -facto δ _{N∞} = δ _{N∞} -facto Table C14: I Anchor size rein Uncracked concr All temperature	r · τ; pr · τ; Displacen forcing bar ete C20/25 u	τ: action bond nent under s Inder static and [mm/kN]	hear lo Ø 8 quasi-si	oad ¹⁾ (r Ø 10 tatic acti	Ø 12						0,03
$\delta_{N0} = \delta_{N0} - facto\delta_{N\infty} = \delta_{N\infty} - factoTable C14: IAnchor size reinUncracked concr$	r · τ; pr · τ; Displacen forcing bar ete C20/25 u δνο-factor δν∞-factor	τ: action bond nent under s Inder static and [mm/kN] [mm/kN]	hear lo Ø 8 quasi-si 0,06 0,09	Ø 10 Ø 10 tatic acti 0,05 0,08	Ø 12 ion 0,05 0,08	0,04	0,04	0,04	0,03	0,03	
$\delta_{N0} = \delta_{N0}$ -facto $\delta_{N\infty} = \delta_{N\infty}$ -facto Table C14: I Anchor size rein Uncracked concr All temperature ranges	r · τ; pr · τ; Displacen forcing bar ete C20/25 u δνο-factor δν∞-factor	τ: action bond nent under s Inder static and [mm/kN] [mm/kN]	hear lo Ø 8 quasi-si 0,06 0,09	Ø 10 Ø 10 tatic acti 0,05 0,08	Ø 12 ion 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,03
$δ_{N0} = \delta_{N0}$ -facto $\delta_{N\infty} = \delta_{N\infty}$ -facto Table C14: I Anchor size rein Uncracked concr All temperature ranges Cracked concrete All temperature ranges ¹) Calculation of th	r + τ; pr + τ; Displacen forcing bar ete C20/25 u δ _{V0} -factor δ _{V∞} -factor δ _{V∞} -factor δ _{V∞} -factor δ _{V∞} -factor e displaceme	r: action bond nent under s Inder static and [mm/kN] [mm/kN] [mm/kN] [mm/kN] [mm/kN] [mm/kN]	hear lo Ø 8 quasi-si 0,06 0,09 uasi-stat 0,12 0,18	oad ¹⁾ (r Ø 10 tatic acti 0,05 0,08 ic action	Ø 12 ion 0,05 0,08	0,04	0,04	0,04	0,03	0,03	0,0;
$δ_{N0} = \delta_{N0}$ -facto $\delta_{N\infty} = \delta_{N\infty}$ -facto Table C14: I Anchor size rein Uncracked concr All temperature ranges Cracked concrete All temperature ranges	r · τ; pr · τ; Displacen forcing bar ete C20/25 u δ_{V0} -factor by -factor by -factor by -factor by -factor c20/25 unc c20/25 unc by -factor c20/25 unc c20/25 unc c20/	r: action bond nent under s Inder static and [mm/kN] [mm/kN] [mm/kN] [mm/kN]	hear lo Ø 8 quasi-si 0,06 0,09 uasi-stat 0,12 0,18	ad ¹⁾ (r Ø 10 tatic acti 0,05 0,08 ic action 0,12	Ø 12 ion 0,05 0,08 0,11	0,04 0,06 0,11	0,04 0,06 0,10	0,04 0,05 0,09	0,03 0,05 0,08	0,03 0,04 0,07	0,00

(Reinforcing bar)

Table C15: Characteristic values of tension loads under seismic action (performance category C1) M10 M12 M16 M20 M24 M27 M30 Threaded rod M8 Steel failure 1,0 • N_{Rk.s} Characteristic tension resistance N_{Rk,s,eq,C1} [kN] see Table C1 Partial factor γMs,N [-] Combined pull-out and concrete failure Characteristic bond resistance in uncracked and cracked concrete C20/25 40°C/24°C 3,7 3,7 4,5 1: 2.5 3,1 3,7 3,8 4,5 **Temperature** range Dry, wet II: 80°C/50°C 1,6 2.2 2.7 2.8 2.7 2,7 3,1 3,1 concrete III: 120°C/72°C 1,3 1,6 2,0 2,0 2,1 2,4 2,4 2,0 [N/mm²] ^τRk.eq.C1 I: 40°C/24°C 2,5 2,5 3,7 3,7 flooded bore No Performance 80°C/50°C 11: 1,6 1,9 2,7 2,7 hole Assessed III: 120°C/72°C 1,3 1,6 2.0 2,0 Increasing factors for concrete [-] Ψc 1.0 Characteristic bond resistance depending $\psi_{c} \cdot \tau_{\text{Rk,eq,C1}}(\text{C20/25})$ $\tau_{Rk,eq,C1} =$ on the concrete strength class Installation factor for dry and wet concrete 1,0 1,2 [-] No Performance Yinst for flooded bore hole 1,4 Assessed Table C16: Characteristic values of shear loads under seismic action (performance category C1)

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}							
Partial factor	γ _{Ms} ,v	[-]	see Table C1							
Factor for annular gap	α _{gap}	[-]	0,5 (1,0) ¹⁾							

¹⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

BEHA Composite mortar HQC300 und BEHA Composite mortar WVB300 for concrete	
Performances Characteristic values of tension loads and shear loads under seismic action	Annex

Annex C 12

(performance category C1) (Threaded rod)

	-		-		_								
Table C17: Characteristic values of tension loads under seismic action (performance category C1)													
Reinforcing bar			Ø8	Ø 10	0 0 1	2 Ø 14	Ø 16	5 Ø 20) Ø 25	5 Ø 28	Ø 32		
Steel failure			120	12.1	/ ~ ··	- ~ !	- ~ · ·	~~~~~	/ / / LC		1.0 02		
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]				1,	0 • A _s •	۰ f _{uk} 1)					
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	616	804		
Partial factor	^γ Ms,N	[-]					1,4²)					
Combined pull-out and concrete fai													
Characteristic bond resistance in uncra	acked and cra	acked co		-		07	07	07	0.0	4.5	4.5		
⊕ <u>I: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8 2,8	4,5	4,5		
$\begin{array}{c} 1. 40 \text{ C}/24 \text{ C} \\ \text{III: 80^{\circ}C/50^{\circ}C} \\ 111: 120^{\circ}C/72^{\circ}C \\ 111: 80^{\circ}C/24^{\circ}C \\ 111: 80^{\circ}C \\ 111$			13	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4		
E I: 40°C/24°C flooded	^τ Rk, eq,C1	[N/mm ²	2,5	2,5	3,7	3,7	3,7		No Performance Assessed				
E II: 80°C/50°C bore hole			1,6	1,9	2,7	2,7	2,7	_					
III: 120°C/72°C		<u>г</u> т	1,3	1,6	2,0	2,0	2,0						
Characteristic bond resistance	Ψc	[-]					1,0						
depending on the concrete strength class	τ _R	k,eq,C1 =				Ψ c •τ _F	₹k,eq,C1	(C20/2	25)				
Installation factor													
for dry and wet concrete	-		1,2					1,2					
for flooded bore hole	^γ inst	[-]			1,4		No Performano Assessed						
¹⁾ f _{uk} shall be taken from the specificati	ons of reinford	ing bars						-					
Table C18: Characteristic (performance			· load	s uno	der se	eismi		on					
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm		1											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]		$0,35 \cdot A_s \cdot f_{uk}^{2)}$									
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	491	616	804		
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾										
Factor for annular gap	α_{gap}	[-]	0,5 (1,0) ³⁾										
 f_{uk} shall be taken from the specificati in absence of national regulation Value in brackets valid for filled annu Annex A 3 is recommended 			er and	clearan	ce hole	in the f	ixture. I	Jse of s	special f	illing wa	sher		