

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/1068 of 28 February 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Capsule Adhesive Anchor HB-VZ

Bonded fasteners for use in concrete

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Herstellwerk HB1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-21/1068 English translation prepared by DIBt

Page 2 of 15 | 28 February 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 28 February 2022

Specific Part

1 Technical description of the product

The Capsule Adhesive Anchor HB-VZ is a bonded fastener consisting of a glass capsule HB-VZ-P and a threaded rod HB-V-A according to Annex A1.

The glass capsule HB-VZ-P is placed in the hole and the threaded rod HB-V-A is driven by machine as specified in Annex B4.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C3
Displacements under short-term and long-term loading	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/1068

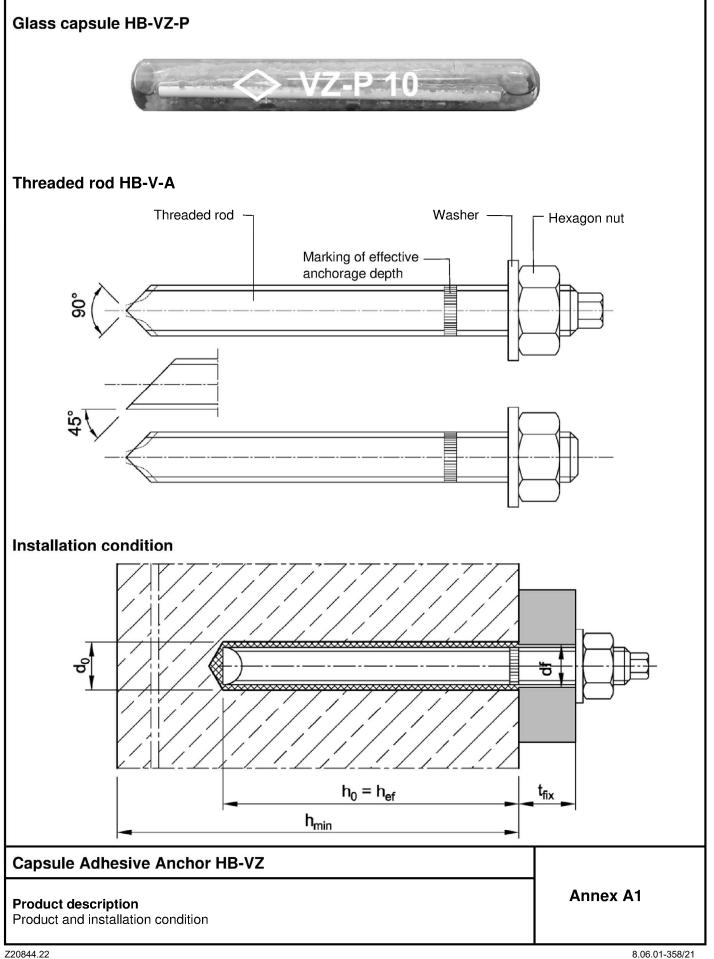
Page 4 of 15 | 28 February 2022

English translation prepared by DIBt

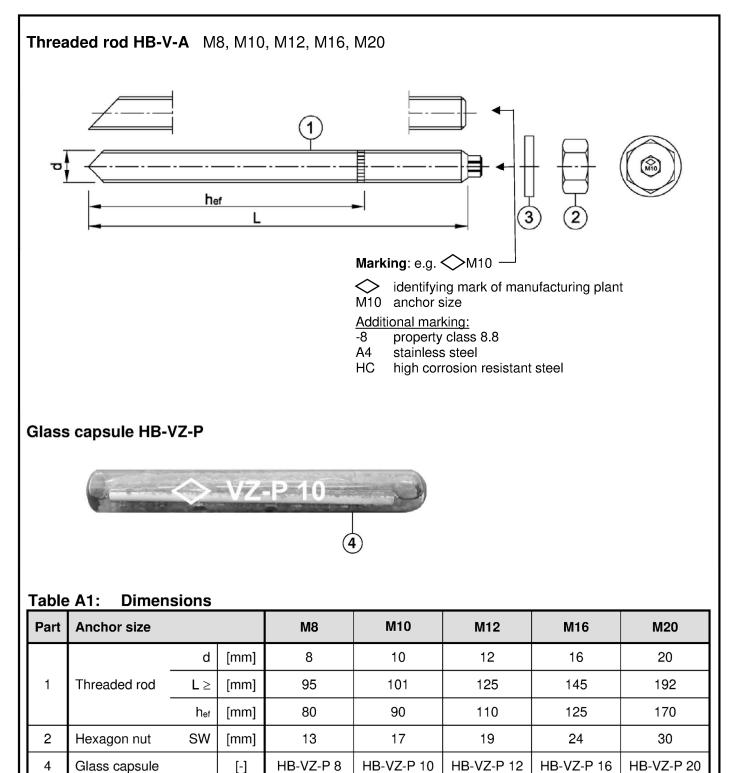
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 28. Februar 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Capsule Adhesive Anchor HB-VZ

Product description

Marking and dimensions

Annex A2

Part	Designation		Materials	\$					
electr not-d	ip galvanized ≥ 40	5 μm acc. to 0 μm (50 μn 5 μm acc. to	n in averaç	ge) acc. to		461:2009 a	nd EN ISO	10684:2004+AC:2009	
		Property characteristic characteristic yield fracture class ultimate strength strength elongation		fracture elongation	EN 10277:2018,				
1	Threaded rod	5.8	f _{uk}	500	f _{yk}	400	A ₅ > 8 %	EN 10263:2001, EN 10025-2:2019	
		8.8	[N/mm ²]	800	[N/mm²]	640	A ₅ > 8 %		
2	Hovegop put	5	for class	5.8				EN ISO 898-2:2012	
2	Hexagon nut	8	for class	5.8, 8.8	EN 150 898-2:2012				
				teel, zinc plated					
	Washer		steel, zin	c plated					
Stain Stain		ant steel He	CR charac	cteristic	1	ristic steel	fracture		
Stain Stain	nless steel A2 nless steel A4	Property	CR charac ultimate		yield s	ristic steel trength 450	fracture elongation A5 > 8 %	EN 10088:2014 EN ISO 3506-1:2020	
Stain Stain High	nless steel A2 nless steel A4 corrosion resist	Property class	CR charac	cteristic strength	1	trength	elongation		
Stain Stain High	hless steel A2 hless steel A4 corrosion resist	Property class 70	CR charac ultimate f _{uk}	cteristic strength 700 800	yield s f _{yk}	trength 450	elongation $A_5 > 8 \%$		
Stain Stain High	nless steel A2 nless steel A4 corrosion resist	Property class 70 80	CR charac ultimate f _{uk} [N/mm²]	cteristic strength 700 800 70	yield s f _{yk}	trength 450	elongation $A_5 > 8 \%$	EN ISO 3506-1:2020	
Stain Stain High	hless steel A2 hless steel A4 corrosion resist	Property class 70 80 70	CR charac ultimate f _{uk} [N/mm²] for class for class stainless	cteristic strength 700 800 70 70, 80 steel or hig n resistant	yield s f _{yk} [N/mm²] gh corrosic	trength 450	elongation A ₅ > 8 % A ₅ > 8 %	EN ISO 3506-1:2020 EN 10088:2014	
Stain Stain High 1 2 3	hless steel A2 hless steel A4 corrosion resist Threaded rod Hexagon nut	Property class 70 80 70	CR charac ultimate f _{uk} [N/mm ²] for class for class stainless (corrosion	cteristic strength 700 800 70 70, 80 steel or hig n resistant	yield s f _{yk} [N/mm²] gh corrosic	trength 450 600 on resistan	elongation A ₅ > 8 % A ₅ > 8 %	EN ISO 3506-1:2020 EN 10088:2014 EN ISO 3506-2:2020	

Capsule Adhesive Anchor HB-VZ

Product description Materials

Annex A3

Page 8 of European Technical Assessment ETA-21/1068 of 28 February 2022

English translation prepared by DIBt

Specifications of intended use									
Anchor size	M8	M10	M12	M16	M20				
Static or quasi-static action			~						
Base materials	· · ·	without fibers a sses C20/25 to	or unreinforced acc. to EN 2063 o C50/60, acc. or uncracked o	2013+A1:2016 to EN 206:201	6				
Temperature range I -40°C to +40°C	max long term temperature +24°C; max short term temperature +40°C								
Temperature range II -40°C to +80°C	max long term	max long term temperature +50°C; max short term temperature +80°C							

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all versions
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2015, Annex A, Table A.2:

-	V-A A2:	CRC II
-	V-A A4:	CRC III
-	V-A HCR:	CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

Installation:

- Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation

Capsule Adhesive Anchor HB-VZ

Intended use Specifications

Annex B1

Specifications

Deutsches Institut für Bautechnik

Anchor size			M8	M10	M12	M16	M20
Diameter of threaded rod	d=d _{nom}	[mm]	8	10	12	16	20
Nominal diameter of drill hole	d ₀	[mm]	10	12	14	18	22
Depth of drill hole	h ₀	[mm]	80	90	110	125	170
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170
Diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22
Cleaning Brush		[-]	RB 10	RB 12	RB 14	RB 18	RB 22
Diameter of Cleaning Brush	d₀ ≥	[mm]	10,5	12,5	14,5	18,5	22,5
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	150

Supplies

Г

Vacuum drill bit

Blow-out pump (volume 750ml)

Vacuum drill bit (MKT Hollow drill bit SB, Würth extraction drill bit or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s

Cleaning Brush RB

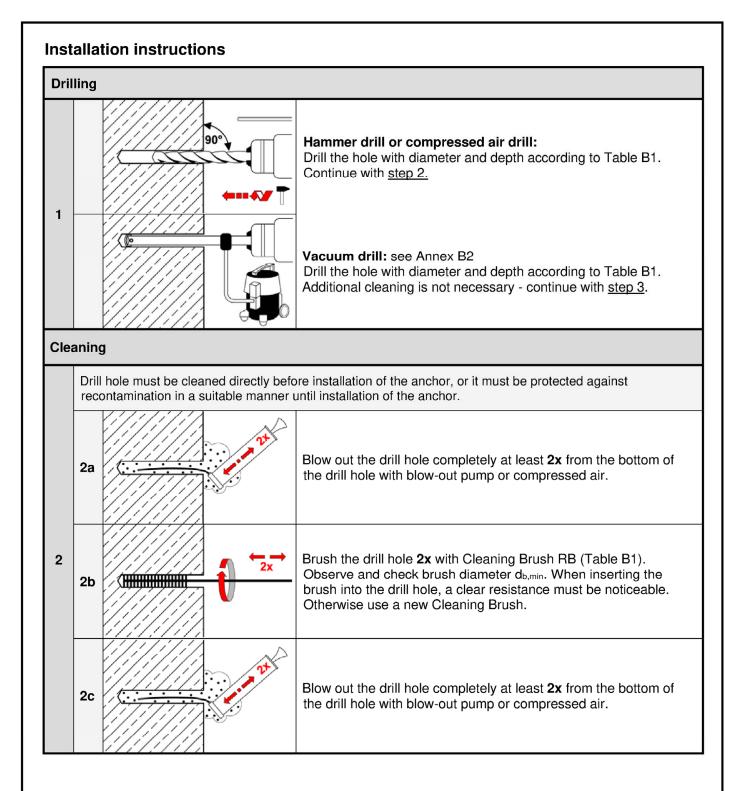
db

Table B2: Minimum member thickness, edge distance and spacing

Anchor size			M8	M10	M12	M16	M20
Minimum member thickness	h _{min}	[mm]	110	120	140	160	220
Minimum edge distance	Cmin	[mm]	40	45	45	50	55
Minimum spacing	Smin	[mm]	40	50	60	75	90

Table B3: Curing time

Concre	te tem	perature	Minimum curing time
-20°C	to	-16°C	17 h
-15°C	to	-11°C	7 h
-10°C	to	-6°C	4 h
-5°C	to	-1°C	3 h
0°C	to	+4°C	50 min
+5°C	to	+9°C	25 min
+10°C	to	+19°C	15 min
+20°C	to	+29°C	6 min
+30°C	to	+40°C	6 min
Capsul	e tem	perature	-15°C to +40°C


Capsule Adhesive Anchor HB-VZ

Intended use

Installation parameters, edge distance and spacing, Curing time

Annex B2

Capsule Adhesive Anchor HB-VZ	
Intended use Installation instructions	Annex B3

	erting the threaded rod	
3		Insert the capsule into the drill hole.
4		Drive in the anchor rod using a hammer drill set on rotary impact. Stop immediately after reaching the setting depth.
5	°C	Observe curing time according to Table B3. Do not move or load the anchor until it is fully cured.
6		Remove excess adhesive.
7	Tinst	Install fixture and apply installation torque Tinst according to Table B1.

Capsule Adhesive Anchor HB-VZ

Intended Use

Installation instructions - continuation

Annex B4

Anchor size				M8	M10	M12	M16	M20	
Steel failure					•		•		
Characteristic resistance	e under tension load								
Steel,	Property class 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	
Stainless steel /	Property class 70	N _{Rk,s}	[kN]	26	41	59	110	172	
High corrosion resistant steel	Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	
Partial factor 1)									
Steel,	Property class 5.8	γMs,N	[-]	1,5					
zinc plated	Property class 8.8	γMs,N	[-]	1,5					
Stainless steel /	Property class 70	γMs,N	[-]	1,87					
High corrosion resistant steel	Property class 80	γMs,N	[-]	1,6					

¹⁾ In absence of other national regulations

Table C2: Characteristic steel resistance under shear load

Anchor size				M8	M10	M12	M16	M20
Characteristic resistance	es under shear load			1	1		1	
Steel failure without leve	r arm							
Steel,	Property class 5.8	V ⁰ _{Rk,s}	[kN]	11	17	25	47	73
zinc plated	Property class 8.8	V ⁰ Rk,s	[kN]	15	23	34	63	98
Stainless steel /	Property class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86
High corrosion resistant steel	Property class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98
Steel failure with lever an	m							
Steel,	Property class 5.8	M ⁰ Rk,s	[Nm]	19	37	65	166	325
zinc plated	Property class 8.8	M ⁰ Rk,s	[Nm]	30	60	105	266	519
Stainless steel /	Property class 70	M ⁰ Rk,s	[Nm]	26	52	92	233	454
High corrosion resistant steel	Property class 80	M ⁰ Rk,s	[Nm]	30	60	105	266	519
Partial factor 1)								
Steel,	Property class 5.8	γ̃Ms,V	[-]			1,25		
zinc plated	Property class 8.8	γMs,V	[-]	1,25				
Stainless steel /	Property class 70	γMs,V	[-]			1,56		
High corrosion resistant steel	Property class 80	γMs,V	[-]			1,33		

¹⁾ In absence of other national regulations

Capsule Adhesive Anchor HB-VZ

Performance

Characteristic steel resistance under tension and shear load

Annex C1

Anchor size				M8	M10	M12	M16	M20	
Steel failure									
Characteristic resistance	under tension load								
Characteristic tension resistance			[kN]	see Table C1					
Partial factor			[-]	see Table C1					
Combined pull-out and c	oncrete failure								
Characteristic bond resis	tance in <u>uncracked</u> con	crete C2	20/25						
Temperature range I:	+24°C / +40°C	τRk,ucr	[N/mm²]	10,0	13,0	13,0	13,0	13,0	
Temperature range II:	+50°C / +80°C	$ au_{Rk,ucr}$	[N/mm²]	8,5	11,0	11,0	11,0	11,0	
Increasing factors for <u>uncracked</u> concrete $\tau_{Rk,ucr} = \psi_c \cdot \tau_{Rk,ucr}$ (C20/25)			[-]	$\left(\frac{f_{ck}}{20}\right)^{0,17}$					
Characteristic bond resis	tance in <u>cracked</u> concre	te C20/	25						
Temperature range I:	+24°C / +40°C	$ au_{Rk,cr}$	[N/mm²]	5,0	6,5	7,0	7,5	7,5	
Temperature range II:	+50°C / +80°C	$ au_{Rk,cr}$	[N/mm²]	4,5	5,5	6,0	6,0	6,0	
Increasing factors for <u>cracked</u> concrete $\tau_{Rk,cr} = \psi_c \cdot \tau_{Rk,cr} (C20/25)$		ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.14}$					
Reduction factor ψ^{0}_{sus} in (concrete C20/25								
Temperature range I:	+24°C / +40°C	$\psi^0{}_{\text{sus}}$	[-]	0,64					
Temperature range II:	+50°C / +80°C	$\psi^{0}{}_{sus}$	[-]	0,63					
Concrete cone failure									
Easter fan	uncracked concrete	k _{ucr,N}	[-]	11,0					
Factor for –	cracked concrete	k _{cr,N}	[-]	7,7					
Edge distance		Ccr,N	[mm]	1,5 h _{ef}					
Spacing		Scr,N	[mm]	3 h _{ef}					
Splitting failure									
_	h/h _{ef} ≥ 2,0		1,0 h _{ef}						
Edge distance	2,0> h/h _{ef} > 1,3	Ccr,sp	[mm]	2 ∙ h _{ef} (2,5 - h / h _{ef})					
	h/h _{ef} ≤ 1,3			2,4 h _{ef}					
Spacing		Scr,sp	[mm]	2 c _{cr,sp}					
Installation factor		γinst	[-]			1,2			

Performance

Characteristic values under tension load

Annex C2

Electronic copy of the ETA by DIBt: ETA-21/1068

Table C4: Characteristic values for shear loads										
Anchor size			M8	M10	M12	M16	M20			
Steel failure <u>without</u> lever arm										
Characteristic shear resistance	V ⁰ Rk,s	[kN]	see Table C2							
Ductility factor	k 7	[-]	1,0							
Partial factor	γMs,V	[-]	see Table C2							
Steel failure <u>with</u> lever arm										
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	see Table C2							
Partial factor	γMs,V	[-]	see Table C2							
Concrete pry-out failure	•		•							
Pry-out factor	k ₈	[-]	2,0							
Concrete edge failure	•		•							
Effective length of anchor	lf	[mm]	min (h _{ef} ;12 d _{nom})							
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20			
Installation factor	γinst	[-]	1,0							

Capsule Adhesive Anchor HB-VZ

Performance

Characteristic values under shear load

Annex C3

Anchor size			M8	M10	M12	M16	M20		
Displacement factor ¹⁾ for uncracked concrete									
Displacement	δ _{N0} -factor	[mm/(N/mm ²)]	0,015	0,031	0,035	0,015	0,046		
	δ _{N∞} -factor	[mm/(N/mm ²)]	0,085	0,067	0,067	0,067	0,067		
Displacement factor ¹⁾ for cracked concrete									
Displacement	δ_{N0} -factor	[mm/(N/mm ²)]	0,046	0,038	0,024	0,008	0,024		
	δ _{N∞} -factor	[mm/(N/mm ²)]	0,192	0,142	0,090	0,104	0,082		

Table C6: Displacements under shear load

Anchor size			M8	M10	M12	M16	M20
Displacement factor ¹⁾							
Diaplacement	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04
Displacement	δv∞-factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty} \text{-factor } \cdot V;$

Annex C4

Displacements