

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0788 of 20 April 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection System VME basic for rebar connections

Systems for post-installed rebar connections with mortar

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1,D und Werk 2,D

24 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

European Technical Assessment ETA-21/0788 English translation prepared by DIBt

Page 2 of 24 | 20 April 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z112114.21 8.06.01-249/21

European Technical Assessment ETA-21/0788 English translation prepared by DIBt

Page 3 of 24 | 20 April 2022

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Injection System VME basic for rebar connections" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 or the tension anchor ZA of sizes M12 to M24 according to Annex A and injection mortar VME basic are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1 and C 2
Characteristic resistance under seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3 and C 4

Z112114.21 8.06.01-249/21

European Technical Assessment ETA-21/0788 English translation prepared by DIBt

Page 4 of 24 | 20 April 2022

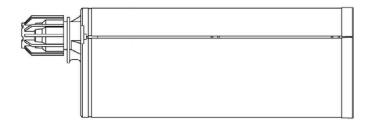
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

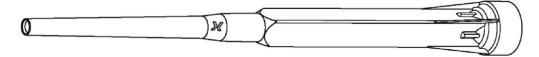

Issued in Berlin on 20 April 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider

Z112114.21 8.06.01-249/21

Cartridge: Injection Mortar VME basic

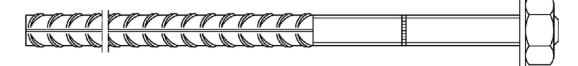
Side-by-side cartridge 440 ml, 585 ml, 1400 ml



Imprint:

VME basic,

processing notes, batch number, shelf life, hazard-number, storage temperature, curing- and processing time (depending on temperature), optional with travel scale


Static Mixer

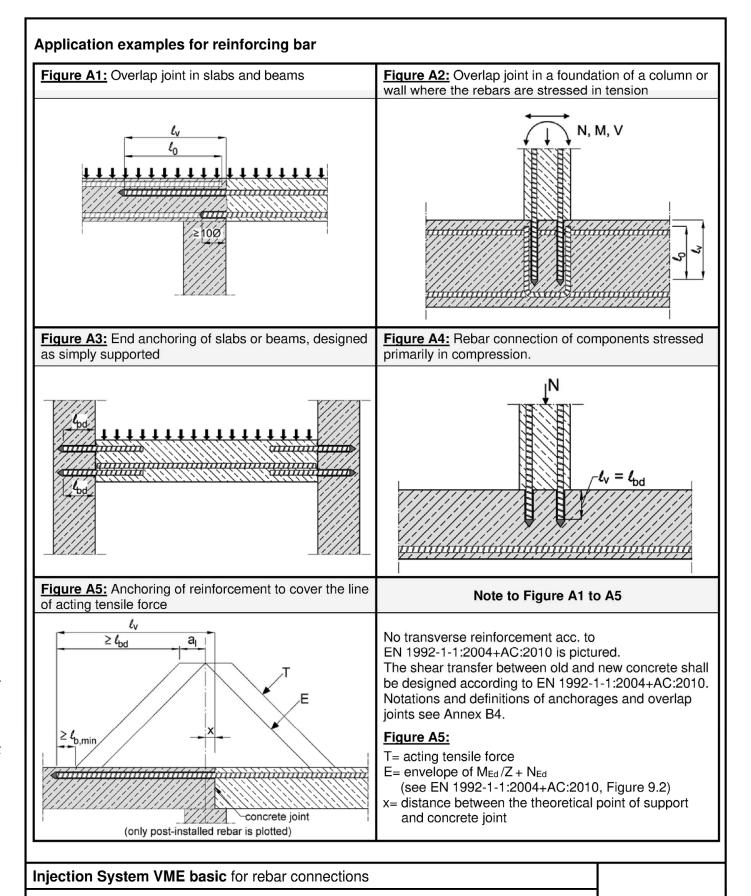
Retaining washer and extension pipe

Tension Anchor ZA: M12, M16, M20, M24

Reinforcing bar: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø22, Ø24, Ø25, Ø28, Ø32, Ø34, Ø36, Ø40

Injection System VME basic for rebar connections

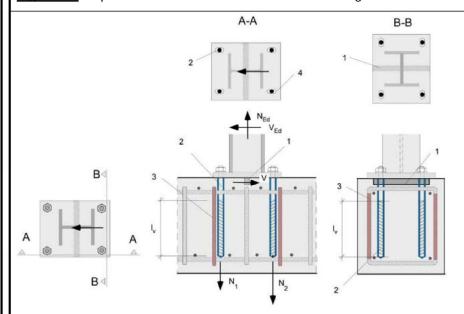
Product description


Cartridge / Static mixer / Retaining washer + extension pipe / Tension Anchor / Reinforcing bar

Annex A1

Product description

Application examples for post-installed rebar


Z38324.22 8.06.01-249/21

Annex A2

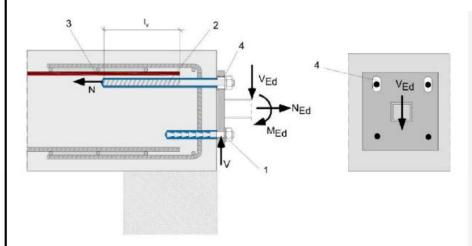

Application examples for Tension Anchor ZA

Figure A6: Lap to a foundation of a column under bending.

- Shear lug (or fastener loaded in shear)
- 2 Tension anchor (tension only)
- 3 Existing stirrup / reinforcement for overlap(lap splice)
- 4 Slotted hole

Figure A7: Lap of the anchoring of guardrail posts for anchoring of cantilevered building components. In the anchor plate, the drill holes for the tension anchors have to be designed as slotted holes with axial direction to the shear force.

- 1 Fastener for shear load transfer
- 2 Tension anchor (tension only)
- 3 Existing stirrup / reinforcement for overlap (lap splice)
- 4 Slotted hole

Note to Figure A6 and A7: The required transverse reinforcement acc. to EN 1992-1-1:2004+AC:2010 is not shown in the figures. The tension anchor may be only used for axial tensile force. The tensile force must be transferred by lap to the existing reinforcement of the building. The transfer of the shear force has to be ensured by suitable measures, e.g. by means of shear force or anchors with European Technical Assessment (ETA). General construction rules see Annex B3.

Injection System VME basic for rebar connections

Product description

Application examples for Tension Anchor ZA

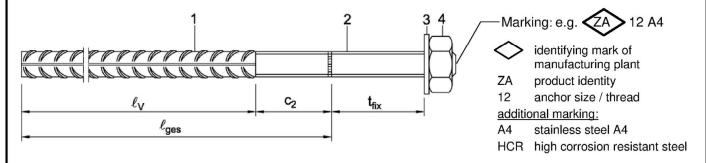

Annex A3

Table A1: Material

Part	Description		Material									
Tension Anchor		ZA vz			ZA A4			ZA HCR				
		M12	M16	M20	M24	M12	M16	M20	M24	M12	M16	M20
1	Rebar Class B according to NDP or NCI acc. to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$											
	f _{yk} [N/mm²]		500			500				50	00	
2	Threaded rod	EN IS	steel, zinc plated acc. to EN ISO 683-4:2018 or EN 10263:2001			stainless steel, 1.4401, 1.4404, 1.4571, EN 10088-1:2014			high corrosion resistant steel, 1.4529, 1.4565, EN 10088-1:2014			
	f _{yk} [N/mm²]		640			640 560		640			560	
3	Washer	steel, zinc plated				stainless steel			high corrosion resistant steel			
4	Hexagon nut	steel, zinc plated acc. to EN ISO 683-4:2018 or EN 10263:2001				stainless steel, 1.4401, 1.4404, 1.4571, EN 10088-1:2014		high corrosion resistant steel, 1.4529, 1.4565, EN 10088-1:2014				
Rebar												
5	Rebar acc. EN 1992-1-1:2004+ AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$										

Tension Anchor ZA: M12, M16, M20, M24

Rebar: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø22, Ø24, Ø25, Ø28, Ø32, Ø34, Ø36, Ø40

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05∅ ≤ h_{rib} ≤ 0,07∅
 (∅: nominal diameter of the bar; h_{rib}: rip height of the bar)

Injection System VME basic for rebar connections	
Product description Material / Marking	Annex A4

Specifications of intended use

	Rebar	Tension Anchor ZA					
	Ø8 - Ø40	M12 - M24					
Static or quasi-static action	✓	✓					
Fire exposure	✓	✓					
Hammer drill	✓	✓					
Compressed air drill	✓	✓					
Diamond drilling	✓	✓					
Vacuum drill	✓	✓					
	reinforced or unreinforced normal weight concrete acc. to EN 206:2013+A1:2016						
	strength classes C12/15 to C50/60 acc. to EN 206:2013+A1:2016						
Base material	maximum chloride content of 0,40 % (CL 0,40) related to the cement content acc. to EN 206:2013+A1:2016 non-carbonated concrete ¹⁾						
Temperature range -40°C to +80°C	max. short term temperature +80°C and max. long term temperature +50°C						

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of Ø + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Use conditions (Environmental conditions) Tension Anchor ZA:

- Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015:
 - stainless steel A4, according to Annex A4, Table A1: CRC II
 - high corrosion resistant steel HCR, according to Annex A4, Table A1: CRC V

Design:

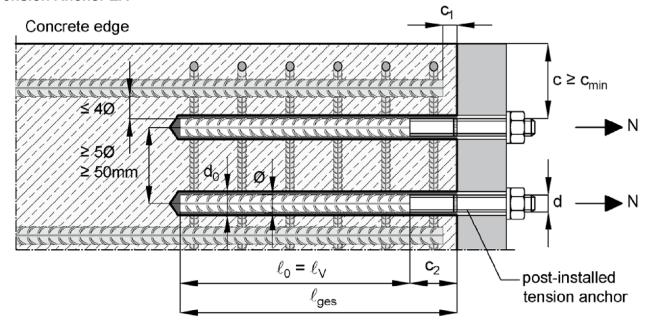
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
- Anchorages are designed in accordance with EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B3 and B4.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Injection System VME basic for rebar connections	
Intended use Specifications of intended use	Annex B1

Specifications of intended use - continuation

Installation:

- Dry or wet concrete
- Installation in water filled bore holes is not admissible.
- · Hole drilling by hammer drill, compressed air drill, vacuum drill or diamond drill.
- The installation of post-installed rebar or Tension Anchor ZA shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the member states in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).
- Minimum concrete cover acc. to EN 1992-1-1:2004+AC:2010 must be observed.


Injection System VME basic for rebar connections	
Intended use Specifications of intended use - continuation	Annex B2

General construction rules for Tension Anchor ZA

- Tension anchors ZA must be designed for the welded-on rebar.
- The length for the post-installed thread must not be added to the anchoring length.
- The Tension Anchor ZA can only transfer forces towards the bar axis.
- Tension forces must be transferred by an overlap joint into the present reinforcement of the member.
- The transmission of shear forces must be ensured by additional measures, e.g. by shear cleats or anchors with an European Technical Assessment (ETA).
- In the anchor plate the holes for the tension anchors must be executed as elongated holes with axis in the direction of the shear force.
- If the clear distance of overlapping bars is greater than 4Ø, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø.

Tension Anchor ZA

c concrete cover of Tension Anchor ZA

c₁ concrete cover at front end of cast-in-place rebar

c₂ length of bonded thread

c_{min} minimum concrete cover according Table B1 and EN 1992-1-1:2004+AC:2010, section 4.4.1.2

Ø diameter of tension anchor (rebar part)d diameter of tension anchor (threaded part)

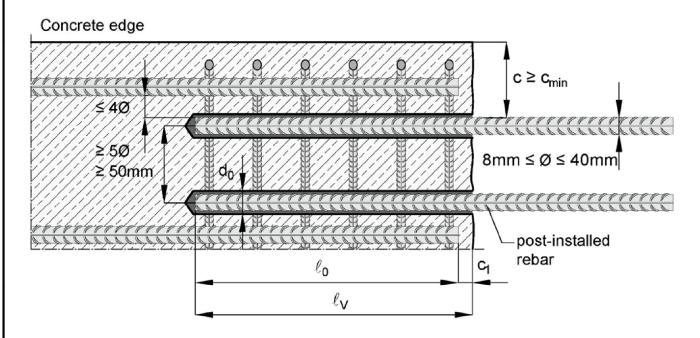
lap length acc. to EN 1992-1-1:2004+AC:2010, section 8.7.3

 $\ell_{\rm v}$ embedment depth $\ell_{\rm v} \geq \ell_0 + c_1$ $\ell_{\rm ges}$ overall embedment depth $\ell_{\rm ges} \geq \ell_0 + c_2$ d₀ nominal drill bit diameter according Annex B6

Injection System VME basic for rebar connections

Intended use

General construction rules (Tension Anchor ZA)


Annex B3

General construction rules for post-installed rebars

- The shear transfer between old and new concrete shall be designed acc. to EN 1992-1-1:2004+AC:2010.
- Only tension forces in the axis of the rebar may be transmitted.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.
- If the clear distance of overlapping bars is greater than 4Ø, the lap length must be increased by a length equal to the clear space where it exceeds 4Ø.

Post-installed rebars

c concrete cover of post-installed rebar

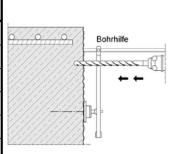
c₁ concrete cover at front end of cast-in-place rebar

c_{min} minimum concrete cover according Table B1 and EN 1992-1-1:2004+AC:2010, section 4.4.1.2

Ø diameter of post-installed rebar

lap length acc. to EN 1992 1 1:2004+AC:2010, section 8.7.3

 ℓ_V embedment depth $\ell_V \ge \ell_0 + c_1$


d₀ nominal drill bit diameter according to Annex B6

Injection System VME basic for rebar connections	
Intended use General construction rules (post-installed rebar)	Annex B4

Table B1: Minimum concrete cover $c_{min}^{(1)}$ of post-installed rebar and Tension Anchor ZA depending on drill method

Drilling method	Rod diameter	C _{min} <u>without</u> drilling aid	C _{min} <u>with</u> drilling aid
Hammer drilling	< 25 mm	30 mm + 0,06 ℓ _V ≥ 2 Ø	30 mm + 0,02 ℓ _V ≥ 2 Ø
Vacuum drilling	≥ 25 mm	40 mm + 0,06 ℓ _v ≥ 2 Ø	40 mm + 0,02 ℓ _v ≥ 2 Ø
Compressed air	< 25 mm	50 mm + 0,08 $\ell_{\rm v}$	50 mm + 0,02 l _v
drilling	≥ 25 mm	60 mm + 0,08 ℓ _v	60 mm + 0,02 ℓ_{V}
Diamond drilling	< 25 mm	drill rig used as drilling	30 mm + 0,02 ℓ _V ≥ 2 Ø
Diamond drilling	≥ 25 mm	aid	40 mm + 0,02 ℓ _V ≥ 2 Ø

¹⁾ See Annex B3 and B4; Minimum concrete cover acc. to EN 1992-1-1:2004+AC:2010 must be observed

Table B2: Dimensions and installation parameters of Tension Anchor ZA

Anchor size			M12	M16	M20	M24
Thread diameter	d	[mm]	12	16	20	24
Rebar diameter	Ø	[mm]	12	16	20	25
Nominal drill hole diameter	d ₀	[mm]		see Table	B4 and B5	
Diameter of clearance hole in fixture	df	[mm]	14	18	22	26
Width across nut flats		[mm]	19	24	30	36
Cross section area (threaded part)		[mm ²]	84	157	245	353
Effective embedment depth	ive embedment depth			on		
Length of bonded steel, zinc plated		[mm]		≥	20	
thread A4 / HCR		[mm]		≥ 1	100	
Minimum thickness of fixture		[mm]	5	5	5	5
Maximum thickness of fixture		[mm]	3000	3000	3000	3000
Maximum installation torque	T _{inst}	[Nm]	50	100	150	150

Table B3: Working and curing time

Para hala tamparatura	Working time 1)	Minimum curing time			
Bore hole temperature	working time *	dry concrete	wet concrete		
+5°C to +9°C	80 min	60 h	120 h		
+ 10°C to + 14°C	60 min	48 h	96 h		
+ 15°C to + 19°C	40 min	24 h	48 h		
+ 20°C to + 24°C	30 min	12 h	24 h		
+ 25°C to + 34°C	12 min	10 h	20 h		
+ 35°C to + 39°C	8 min	7 h	14 h		
+40 °C	8 min	4 h	8 h		
Cartridge temperature	+5°C to +40°C				

¹⁾ maximum time from starting of mortar injection to completing of rebar setting

Injection System VME basic for rebar connections	
Intended use Minimum concrete cover / Installation parameters ZA / Working and curing time	Annex B5

Table B4: Installation tools and max. embedment depth

Hammer drilling (HD), Diamond drilling (DD) and Compressed air drilling (CD)

Rebar	Tension	nor diameter Brush- Ø		D	. ~	Brush-	Datainin n	44	Cartridge I0ml or 585ml		Cartrid 1400 п			
size Ø	Anchor ZA			\emptyset $d_{b,min}$	Retaining washer 1)	Hand- or akku tool	Compressed air tool	sion	Compressed air tool	Exten- sion				
		HD	DD	CD					ℓv,max	$\ell_{ m v,max}$	pipe	ℓ _{v,max}	pipe	
[mm]	[-]		[mm]		[-]	[mm]	[mm]	[-]	[cm]	[cm]		[cm]	[-]	
8	-	10	10	-	RB10	11,5	10,5	-	25	25		25	0	
	-	12	12	-	RB12	13,5	12,5	-	70	80		80	<u></u>	
10	-	12	12	-	RB12	13,5	12,5	-	25	25		25	🕺 🕇	
10	-	14	14	-	RB14	15,5	14,5	VM-IA 14	70	100		100	VM-XE 10 VM-XLE16	
12	M12	14	14	ı	RB14	15,5	14,5	VM-IA 14	25	25	ပ	25	>>	
12	10112	16	16	16	RB16	17,5	16,5	VM-IA 16	70	130	Ē	120	16	
14	-	18	18	18	RB18	20,0	18,5	VM-IA 18	70	130	or VM-XLE16	140		
16	M16	20	20	20	RB20	22,0	20,5	VM-IA 20	70	130	₽	160		
20	1400	25	25	-	RB25	27,0	25,5	VM-IA 25	50	100	>	200		
20	M20	-	-	26	RB26	28,0	26,5	VM-IA 25	50	100	0	200		
22	-	28	28	28	RB28	30,0	28,5	VM-IA 28	50	100	10	200		
24	-	32	32	32	RB32	34,0	32,5	VM-IA 32	50	100	VM-XE	200	VM-XLE	
25	M24	32	32	32	RB32	34,0	32,5	VM-IA 32	50	100	≱	200	- -	
28	-	35	35	35	RB35	37,0	35,5	VM-IA 35	50	100	>	200	>	
32/34	-	40	40	40	RB40	43,5	40,5	VM-IA 40	50	100		200		
36	-	45	45	45	RB45	47,0	45,5	VM-IA 45	-	100		200		
40	-	-	52	-	RB52	54,0	52,5	VM-IA 52	-	100		200		
40	-	55	-	55	RB55	58,0	55,5	VM-IA 55	-	100		200		

¹⁾ For horizontal or overhead installation and bore holes deeper than 240mm

Table B5: Installation tools and max. embedment depth – Vacuum Drilling (VD)

Rebar	Tension	Drill bit	Brush- Ø		4	Cartridge 40ml or 585ml		Cartridge 1400 ml		
size Ø	Anchor ZA	diameter d₀	dь	Retaining washer 1)	Hand- or akku tool	Compressed air tool	Exten- sion	Compressed air tool	Exten- sion	
		VD	d _{b,min}		$\ell_{ m v,max}$	$\ell_{ m v,max}$	pipe	$\ell_{ m v,max}$	pipe	
[mm]	[-]	[mm]		[-]	[cm]	[cm]	[-]	[cm]	[-]	
8	-	10		-	25	25		25		
L°	-	12		-	70	80		80		
10	-	12		-	25	25		25		
10	-	14		VM-IA 14	70	100	_	100	VM-XE 10 or VM-XLE 16	
12	Mag	14		VM-IA 14	25	25		25		
'2	M12	16		VM-IA 16	70	100	10 16	100		
14	-	18	no cleaning	VM-IA 18	70	100	VM-XE or VM-XLE	100		
16	M16	20	required	VM-IA 20	70	100	VM-XE or /M-XLE	100		
20	M20	25		VM-IA 25	50	100	5 }	100	5 }	
22	-	28		VM-IA 28	50	100		100		
24	-	32		VM-IA 32	50	100		100		
25	M24	32		VM-IA 32	50	100		100		
28	-	35		VM-IA 35	50	100		100		
32/34	-	40		VM-IA 40	50	100		100		

¹⁾ For horizontal or overhead installation and bore holes deeper than 240mm

Injection System VME basic for rebar connections

Intended use

Installation tools and max. embedment depth - all drilling methods

Annex B6

Cleaning and installation tools

Vacuum drill bit (MKT Hollow drill bit SB, Würth Hammer drill bit with suction or Heller Duster Expert hollow drill bit system) and a class M vacuum cleaner with minimum negative pressure of 253 hPa and flow rate of min. 150m³/h (42 l/s)

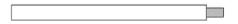
Compressed air hose (min. 6 bar) with air valve

Recommended compressed air tool (min. 6 bar)

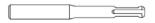
Blow-out pump (Volume 750ml)

Drill bit diameter (d_0) : ≤ 20 mm

Drill hole depth (h_0) : ≤ 10 d_{nom}



Retaining washer



Brush RB

Electronic copy of the ETA by DIBt: ETA-21/0788

Brush extension

SDS Plus Adapter

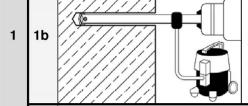
Table B6: Dispensing tools

	Cartridge	Hand tool	Pneumatic tool			
Туре	Size	nand tool	Priedinatic tool			
by-side	440 ml, 585 ml	e.g. VM-P 585 Profi or VM-P 585 Standard	e.g. VM-P 585 Pneumatic			
side-b	1400 ml	-	e.g. VM-P 1400 Pneumatic			

All cartridges can be used with battery tool as well.

Injection System VME basic for rebar connections	
Intended use Cleaning and installation tools / Dispensing tools	Annex B7

Installation instructions


Bore hole drilling

Attention: before drilling, remove carbonated concrete and clean contact areas (see Annex B1). In case of aborted drill hole, the drill hole shall be filled with mortar.

HD / CD - Hammer drilling or Compressed air drilling

Drill the borehole with the specified drill bit diameter (Table B4) and the selected borehole depth. Continue with step 2 (HD / CD).

VD - Vacuum drilling

Drill the borehole into base material up to the size and embedment depth required by the selected rebar or tension anchor (Table B5). This drilling system removes dust and cleans the drill hole during drilling.

Continue with step 3.

DD - Diamond drilling

Drill the borehole perpendicular to the surface of the anchoring base with the prescribed borehole diameter (Table B4) and selected borehole depth using the diamond core drill. Continue with step 2 (DD).

Injection System VME basic for rebar connections

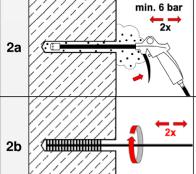
Intended use

Installation instructions: Bore hole drilling

Annex B8

Electronic copy of the ETA by DIBt: ETA-21/0788

2


Installation instructions - continuation

Cleaning: HD / CD - Hammer or compressed air drilled holes

Attention: remove standing water before cleaning

Cleaning with compressed air

all drill hole diameters and depths

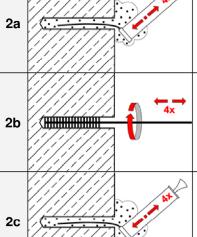


Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) (Annex B7) a minimum of **two** times until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of **two** times.

If the drill hole ground is not reached, a brush extension shall be used.



Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) (Annex B7) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Manual cleaning

bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10$ d_{nom}

Starting from the bottom or back of the bore hole, blow the hole clean with the blow-out pump (Annex B7) minimum of **four** times until return air stream is free of noticeable dust.

Brush the hole with an appropriate sized wire brush > $d_{\text{b,min}}$ (Table B4) a minimum of **four** times.

If the bore hole ground is not reached, a brush extension shall be used.

Starting from the bottom or back of the bore hole, blow the hole clean with the blow-out pump again a minimum of **four** times until return air stream is free of noticeable dust.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection System VME basic for rebar connections

Intended use

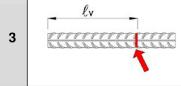
Installation instructions (continuation): Cleaning HD / CD (Hammer- and Compressed air drilling)

Annex B9

Intended use

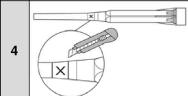
Installation instructions - continuation Cleaning: DD - diamond drilled bore holes (all bore hole diameter and bore hole depth) Remove drill core at least up to the nominal hole depth and check drill hole 2a depth. Flush drill hole with water, starting from the bottom, until clear water is 2b coming out of the drill hole. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a 2c minimum of two times. If the drill hole ground is not reached, a brush extension shall be used. Flush drill hole with water again, starting from the bottom, until clear water 2d gets out of the drill hole. 2 Attention: standing water in the bore hole must be removed before cleaning min. 6 bar Starting from the bottom or back of the drill hole, blow out the hole with 2x compressed air (min. 6 bar) (Annex B7) a minimum of two times until 2e return air stream is free of noticeable dust. If the drill hole ground is not reached, an extension must be used. Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a (IIIIIIIIIIIIIII 2f minimum of two times. If the bore hole ground is not reached, a brush extension shall be used. min. 6 bar Starting from the bottom or back of the drill hole, blow out the hole with 2x compressed air (min. 6 bar) (Annex B7) again a minimum of two times 2g until return air stream is free of noticeable dust. If the drill hole ground is not reached, an extension must be used. After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again...

Z38324.22 8.06.01-249/21

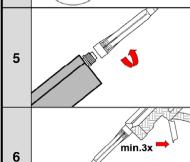

Annex B₁₀

Injection System VME basic for rebar connections

Installation instructions (continuation): Cleaning DD (Diamond drilling)


Installation instructions - continuation

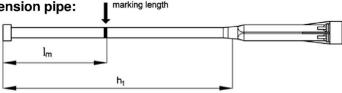
Preparation of bar and cartridge



Mark (e.g. with adhesive tape) the position of the embedment depth ℓ_{v} on the rebar or tension anchor.

Check drill hole depth by inserting rebar or tension anchor into the empty hole. The fastening element shall be free of dirt, grease, oil or other foreign material.

When extension pipe VM-XLE 16 is used, the tip oft he mixer has to be cut off at the position "X".



Prepare cartridge with static mixer (if necessary with extension pipe and retaining washer). Attach the supplied static-mixer to the cartridge and load the cartridge into the correct dispensing tool (Table B6).

For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

Prior to applying, discard mortar (forerun) until the mortar shows a consistent grey colour, but at least three full strokes. Never use this mortar!

Marking for static mixer or extension pipe:

On the static mixer and the extension pipe the mortar filling mark l_m and the drill hole depth h_1 must be marked with an adhesive tape or text marker. Rough estimate: $l_m = \frac{1}{3} \cdot h_1$

Fill in the mortar as long until the filling mark l_m will be visible.

Optimal mortar volume:

$$l_m = h_1 * (1.2 * \frac{\phi^2}{d_0^2} - 0.2)$$
 [mm]

length from the end of the retaining washer to the mark on the mixer extension l_m

- drill hole depth = embedment depth ($\ell_{\rm V}$ resp. $\ell_{\rm ges}$) h_1
- Ø rebar diameter
- do nominal drill bit diameter

Injection System VME basic for rebar connections

Intended use

Installation instructions (continuation):

Preparation of the injection / marking of extension pipe or static mixer

Annex B11

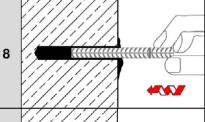
Z38324.22

10

11

Installation instructions - continuation

7a 7b


Fill injection mortar from the bottom of the borehole until the filling mark on the extension pipe (Annex B11) appears at the beginning of the borehole. Slowly moving the static mixer out of the borehole prevents the formation of air inclusions. If the bore hole ground is not reached, an extension pipe (Annex B6) shall be used.

Observe the working- and curing time given in table B3.

Retaining washers shall be used according to Table B4 and B5 for the following applications:

- horizontal installation or overhead installation
- vertical downwards direction with drill holes deeper than 240mm

Installation of rebar or tension anchor

Immediately insert the rebar or tension anchor into the hole while turning slightly (to improve the mortar distribution) until the embedment depth is reached.

The fastening element shall be free of dirt, grease, oil or other foreign material.

9

Be sure that the fastening element is inserted in the bore hole until the embedment mark is at the concrete surface and that excess mortar is visible at the top of the hole. If these requirements are not maintained, repeat application before end of working time!

For overhead installation, the anchor should be fixed (e.g. by wedges).

Observe and keep curing time according to Table B3.

Attention: the working time may vary due to different underground temperatures (Table B3).

Do not move or load the anchor or rebar during curing time.

After the curing time has elapsed, the rebar or tension anchor can be loaded.

Injection System VME basic for rebar connections

Intended use

Installation instructions (continuation): Injection / Installation

Annex B12

English translation prepared by DIBt

Table C1: Characteristic tension resistance for Tension Anchor ZA

Tension Anchor ZA	Tension Anchor ZA					M24					
Steel, zinc plated	Steel, zinc plated										
Characteristic tension resistance	$N_{Rk,s}$	[kN]	67	125	196	282					
Partial factor	[-]	1,4									
Stainless steel A4, HCR											
Characteristic tension resistance N _{Rk,s} [kN]		[kN]	67	125	171	247					
Partial factor	γMs,N	[-]	1,4	1,4	1,3	1,4					

Minimum anchorage length and minimum lap length

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ acc. to EN 1992-1-1:2004+AC:2010 ($l_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $l_{0,min}$ acc. to Eq. 8.11) shall be multiplied by the amplification factor α_{lb} to Table C2.

Table C2: Amplification factor α_{Ib}

Amplifi fac		Rod diameter	C12/15	Concrete strength class									
Hamme	er drilling	g, compressed air dri											
αιь	[-]	Ø8 to Ø40 ZA-M12 to ZA-M24	1,0										
Diamor	nd drillin	g											
αњ	Фин [-] Ø8 to Ø40 ZA-M12 to ZA-M2		1,5										

Table C3: Reduction factor kb

Red	luction			Concrete strength class								
fa	ctor	Rod diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
Hamm	Hammer drilling, compressed air drilling, vacuum drilling											
k b	[-]	Ø8 to Ø40 ZA-M12 to ZA-M24					1,0					
Diamo	ond drillir	ng										
k b	[-]	Ø8 to Ø40 ZA-M12 to ZA-M24		1,0		0	,90	0,79	0,73	0,68	0,63	

Injection System VME basic for rebar connections	
Performances Amplification factor α _{Ib} / Reduction factor k _b	Annex C1

Table C4: Design values of the ultimate bond stress fbd,PIR in N/mm² for all drilling methods and for good bond conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other conditions multiply the values by η =0,7) and recommended partial safety factor γ_c = 1,5 according to EN 1992-1-1:2004+AC:2010

k_b: Reduction factor according to Table C2

Bond	Rod				Concret	te streng	th class				
strength	diameter	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
Hammer drillin	lammer drilling, compressed air drilling, vacuum drilling										
	Ø8 to Ø32 ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
f _{bd,PIR}	Ø34	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2	
[N/mm²]	Ø36	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1	
	Ø40	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0	
Diamond drilling	ng										
	Ø8 to Ø32 ZA-M12 to ZA-M24	1,6	2,0	2,3			2	,7			
f _{bd,PIR}	Ø34	1,6	2,0	2,3			2	,6			
[N/mm²]	Ø36	1,5	1,9	2,2			2	,6			
	Ø40	1,5	1,8	2,1			2	,5			

Injection System VME basic for rebar connections	
Performances Design values of ultimate bond resistance fbd,PIR	Annex C2

Design value of ultimate bond stress $f_{bd,fi}$ at increased temperature for concrete strength classes C12/15 to C50/60 (all drilling methods):

The design value of ultimate bond stress fbd,fi at increased temperature will be calculated by the following equation:

 $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$

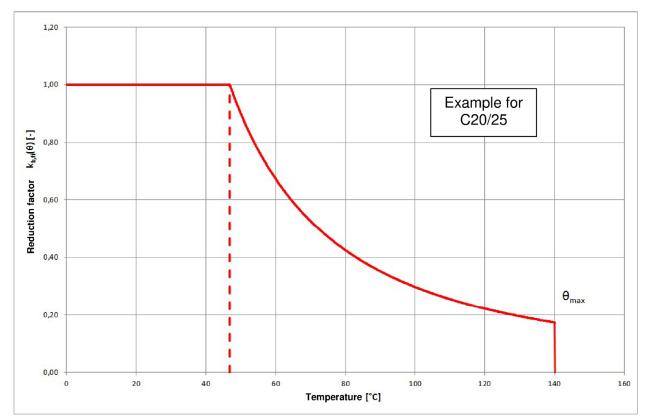
with: $\theta \le 140$ °C: $k_{fi}(\theta) = 5862 * \theta^{-1,657} / (f_{bd,PIR} * 4,3) \le 1,0$

 $\theta > 140^{\circ}\text{C}$: $k_{fi}(\theta) = 0$

f_{bd,fi} design value of ultimate bond stress at increased temperature in N/mm²

 $\theta \qquad \qquad \text{Temperature in °C in the mortar layer} \\ k_{fi}(\theta) \qquad \qquad \text{Reduction factor at increased temperature}$

f_{bd,PIR} Design value of the ultimate bond stress in N/mm² in cold condition according to


Table C3 considering concrete class, rebar diameter, drilling method and the bond

conditions according to EN 1992-1-1:2004+AC:2010.

 γ_c partial factor acc. to EN 1992-1-1:2004+AC:2010 $\gamma_{M,fi}$ partial factor acc. to EN 1992-1-2:2004+AC:2008

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress fbd,fi

Example graph of reduction factor $k_{\rm fi}(\theta)$ in concrete strength class C20/25 for good bond conditions

Injection System VME basic for rebar connections

Performances

Design value of ultimate bond stress fbd,fi at increased temperature for rebar

Annex C3

Table C5: Characteristic tension resistance for Tension Anchor ZA under fire exposure

Tension Anchor ZA	1			M12	M16	M20	M24	
Steel failure								
Steel, zinc plated								
	R30			2,3	4,0	6,3	9,0	
Characteristic	R60	N	[IzNI]	1,7	3,0	4,7	6,8	
tension resistance	R90	- N _{Rk,s,fi}	[kN]	1,5	2,6	4,1	5,9	
	R120	-		1,1	2,0	3,1	4,5	
Stainless steel A4,	HCR							
	R30			3,4	6,0	9,4	13,6	
Characteristic	R60	- - N	[LN]	2,8	5,0	7,9	11,3	
tension resistance	R90	- N _{Rk,s,fi}	[kN]	2,3	4,0	6,3	9,0	
	R120	-		1,8	3,2	5,0	7,2	

Injection System VME basic for rebar connections	
Performances Characteristic tension resistance for Tension Anchor ZA under fire exposure	Annex C4