

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0948 of 9 September 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Bonded fasteners for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

26 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-21/0948 issued on 21 December 2021

European Technical Assessment ETA-21/0948 English translation prepared by DIBt

Page 2 of 26 | 9 September 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0948 English translation prepared by DIBt

Page 3 of 26 | 9 September 2022

Specific Part

1 Technical description of the product

The "fischer Highbond-Anchor FHB II for diamond drilling / extended working life" consisting of a mortar cartridge with mortar fischer FIS HB or fischer mortar capsule FHB II–P(F) and an anchor rod FHB II - A S or FHB II Inject - A S with hexagon nut and washer.

The glass capsule is set into a drilled hole in the concrete. The special formed anchor rod is driven into the glass capsule by machine with simultaneous hammering and turning. For the injection system the anchor rod is placed into a drilled hole filled with injection mortar. The load transfer is realized by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 4, B 3 to B 4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 2
Displacements under short-term and long-term loading	See Annex C 5
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-21/0948

Page 4 of 26 | 9 September 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

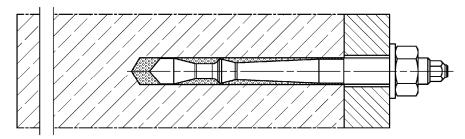
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

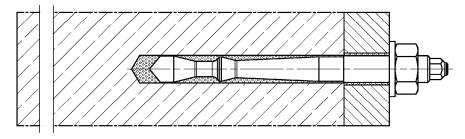
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

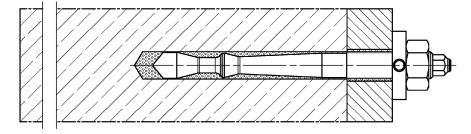
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 September 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Stiller


Installation conditions part 1

Highbond - Anchor FHB II - A S


Pre-positioned installation

Push through installation

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

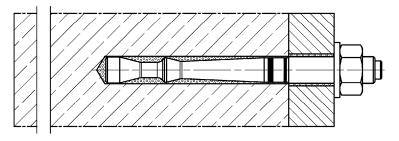
Figures not to scale

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

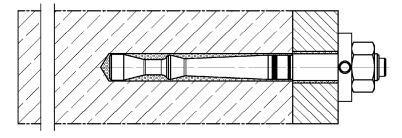
Product description

Installation conditions part 1; FHB II - A S

Annex A 1


Installation conditions part 2

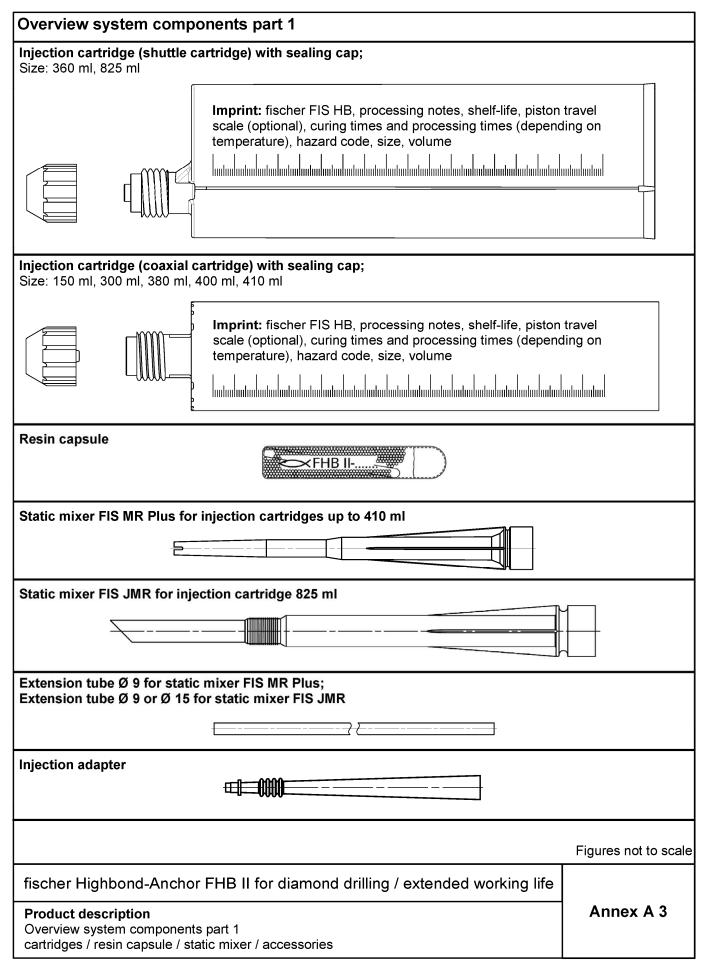
Highbond - Anchor FHB II Inject - A S (only with injection mortar FIS HB)


Pre-positioned installation

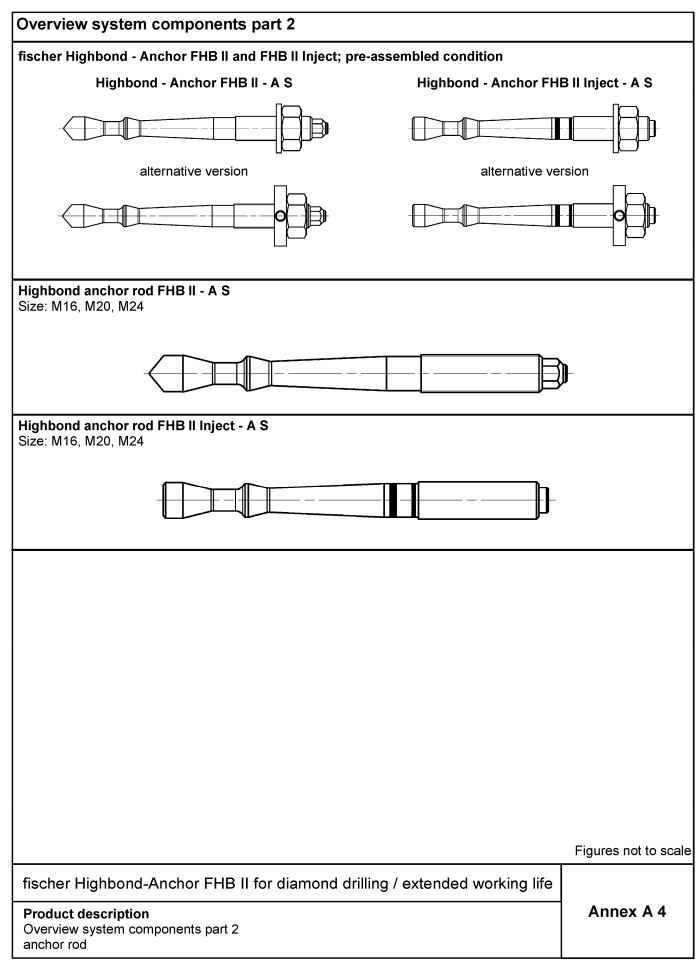
Push through installation

Pre-positioned or push through installation with subsequently injected fischer filling disc (annular gap filled with mortar)

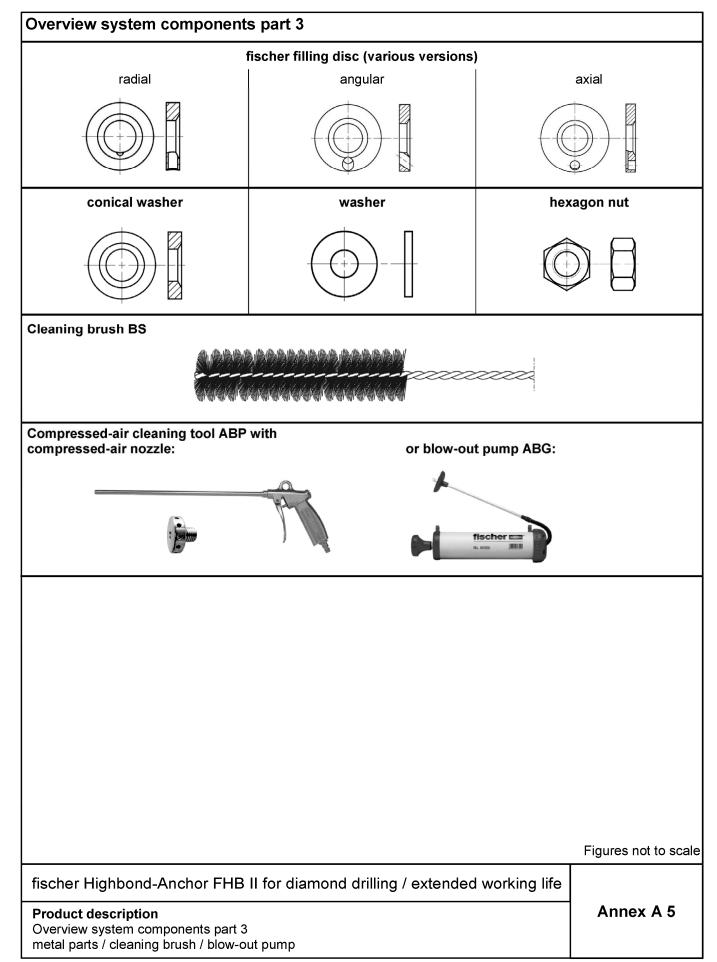
Figures not to scale


fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Product description


Installation conditions part 2; FHB II Inject - A S

Annex A 2



Tabl	Table A6.1: Materials							
Part	Designation	Material						
1	Injection cartridge		Mortar, hardener, filler					
2	Resin capsule		Mortar, hardener, filler					
		Steel	Stainless steel A4	High corrosion resistant steel C				
	Steel grade	zink plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2006+A1:2015				
		Property class 8.8 EN ISO 898-1:2013	Property class 80 EN ISO 3506-1:2020	Property class 80 EN ISO 3506-1:2020				
3 rod FHB II - A S or		electroplated ≥ 5 µm ISO 4042:2018/Zn5/An(A2K) acc. to EN ISO 4042:2018 A ₅ > 12 % fracture elongation	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 A ₅ > 12 % fracture elongation	1.4565; 1.4529; EN 10088-1:2014 A ₅ > 12 % fracture elongation				
4	Washer ISO 7089:2000	electroplated ≥ 5 µm ISO 4042:2018/Zn5/An(A2K) acc. toEN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014				
5	Hexagon nut	Property class 8	Property class 70 or 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 or 80 EN ISO 3506-2:2020 1.4565; 1.4529; EN 10088-1:2014				
6	Conical washer or fischer filling disc	electroplated ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) acc. toEN ISO 4042:2018	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014				

fischer Highbond-Anchor FHB II for diamond drilling / extended working life	
Product description Materials	Annex A 6

Specifications of intended use part 1 **Table B1.1:** Overview installation und use fischer Highbond-Anchor FHB II with injection mortar FIS HB or resin capsule FHB II-P / FHB II-PF FHB II - A S FHB II Inject - A S injection mortar FIS HB or injection mortar FIS HB resin capsule FHB II-P / FHB II-PF Hammer drilling with standard all sizes drill bit all sizes Hammer drilling with hollow drill (Heller "Duster Expert"; bit Bosch "Speed Clean"; Hilti "TE-CD, TE-YD") all sizes Diamond drilling no performance assessed (only with resin capsule allowed) uncracked all sizes all sizes concrete Static or quasi static load, in Tables: C1.1, C2.1, C3.1, C3.2, Tables: C1.1, C2.1, C4.1, C5.2 cracked C4.1, C5.1, C5.2 concrete dry or wet 11 all sizes Installation concrete and use water-filled condition all sizes 12 no performance assessed hole (only with resin capsule allowed) seismic performance no performance assessed category C1 and C2 Installation direction D3 (downwards, horizontal and upwards (overhead) installation) Pre-positioned all sizes Installation Push through all sizes $T_{i,min}$ = -5 °C to $T_{i,max}$ = +40 °C FIS HB: Installation temperature 1) FHB II-P / PF: $T_{i,min}$ = -5 °C to $T_{i,max}$ = +40 °C (max. short term temperature +80 °C; Service Temperature -40 °C to +80 °C temperature range T2 max. long term temperature +50 °C) 1) For the standard variation of temperature after installation Figures not to scale fischer Highbond-Anchor FHB II for diamond drilling / extended working life Annex B 1 Intended use Specifications part 1

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN1993-1-4: 2006+A1:2015 corresponding to corrosion resistance classes to Annex A 6 table 6.1.

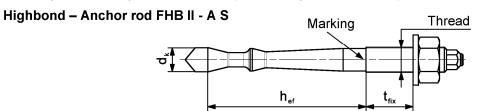
Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.)
- Fastenings are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018

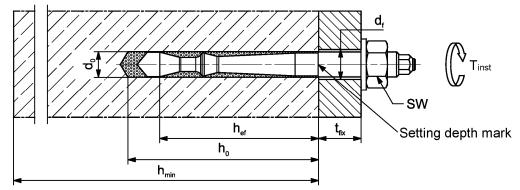
Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Overhead installation is allowed (necessary equipment see installation instruction)

fischer Highbond-Anchor FHB II for diamond drilling / extended working life


Intended Use
Specifications part 2

Annex B 2


Anchor rod FHE	3 II - A S	•	Thread	M16x95	M20x170	M24x170
Correspondendir FHB II-P or FHB	ng resin capsules II-PF		[-]	16x95	20x170	24x170
Cone diameter		dk		14,5	23	3,0
Width across flat	S	SW		24	30	36
Nominal drill hole	e diameter	d ₀		16	2	5
Drill hole depth		h ₀		110	19	90
Effective embedment depth hef		h _{ef}		95	170	
Minimum spacing and minimum edge distance $s_{min} = c_{min}$		= C _{min}	[mm]	50	8	0
Diameter of	pre-positioned installation	d _f ≤		18	22	26
clearance hole of the fixture	push through installation	d _f ≤		18	2	6
Min. thickness of	concrete member	h _{min}		150	24	10
Installation torque T _{inst}		Tinst	[Nm]	50	100	
Thickness of fixture t _{fix} ≤				1500		
Carlor Ciliar C	- 1)	≥ da	[mm]	38	46	54
fischer filling disc 1)		t _s		7	8	10

¹⁾ Using fischer filling disc reduces t_{fix} (usable length of the anchor)

Marking: work symbol, thread diameter, embedment depth e.g.: M16x95 For stainless steel additional **A4**. For high corrosion resistant steel additional **C**. For high corrosion resistant steel additional marking "(" also on the face side

Installation conditions:

Figures not to scale

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use

Installation parameters for Highbond - Anchor FHB II - A S

Annex B 3

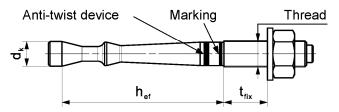
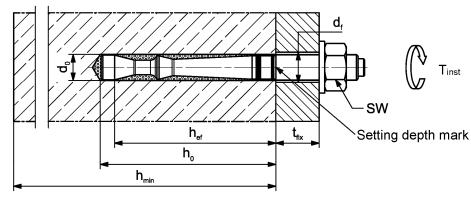


Table B4.1: Installation parameters for Highbond - Anchor rod FHB II Inject - A S with injectionmortar FIS HB

Anchor rod FHE	B II Inject - A S	•	Thread	M16x95	M20x170	M24x170
Cone diameter c		dk		14,5	23	3,0
Width across flat	S	SW		24	30	36
Nominal drill hole	e diameter	d o		16	2	5
Drill hole depth		h ₀		101	17	76
Effective embedr	ment depth	h _{ef}		95	17	70
Minimum spacing and smin = cmin		= C _{min}	[mm]	50	8	0
Diameter of	pre-positioned installation	d _f ≤		18	22	26
clearance hole of the fixture	push through installation	d _f ≤		20	2	6
Min. thickness of concrete member h _{min}		h _{min}		150	24	40
Installation torque T _{inst}		[Nm]	50	100		
Thickness of fixture t _{fix} ≤				1500		
finaless fillings -li-	- 1)	≥ d _a	[mm]	38	46	54
fischer filling disc 1)		ts		7	8	10


¹⁾ Using fischer filling disc reduces t_{fix} (usable length of the fastener)

Highbond - Anchor rod FHB II Inject - A S

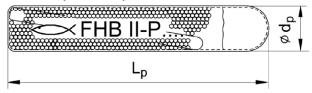
Marking: work symbol, thread diameter, embedment depth e.g.: M16x95 For stainless steel additional "**A4**". For high corrosion resistant steel additional "**C**". For high corrosion resistant steel additional marking "(" also on the face side

Installation conditions:

Figures not to scale

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use


Installation parameters for Highbond - Anchor FHB II Inject - A S

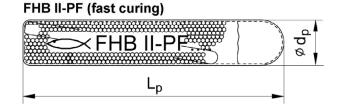

Annex B 4

Table B5.1:	Dimensions of resin capsule FHB II-P and FHB II-PF					
Resin capsule	16x95 20x170					
Capsule length	Lp	[mana]	120	185	185	
Capsule diameter	Ø d _p	[mm]	14,5	21	1,5	

FHB II-P (standard)

Imprint: work symbol, marking, anchor size and effective embedment depth.

e.g.: FHB II-P 16x95 or

FHB II-PF 16x95

Parameters cleaning brush (steel brush)

Table B5.2: Parameters of the cleaning brush BS (steel brush with steel bristles; only when using injection mortar or resin capsule with diamond drill bit)

The size of the cleaning brush refers to the nominal drill hole diameter

Nominal drill hole diameter	d o	[mm]	16	25
Steel brush diameter BS	d♭	[mm]	20	27

Figures not to scale

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use
Dimensions resin capsule

Annex B 5

English translation prepared by DIBt

Table B6.1: Processing time and curing time of the injection mortar FIS HB						
Temperature at anchoring base 1) [°C]	Maximum processing time twork	Minimum curing time ²⁾				
-5 to 0 ³⁾	-	6 h				
> 0 to 5 ³⁾	-	3 h				
> 5 to 10	15 min	90 min				
> 10 to 20	6 min	35 min				
> 20 to 30	4 min	20 min				
> 30 to 40	2 min	12 min				

¹⁾ During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature

Table B6.2: Curing time of the resin capsule FHB II-P and FHB II-PF

Resin capsule FHB II-P (standard)				
Temperature at anchoring base ¹⁾ [°C]	Minimum curing time 2) t _{cure}			
-5 to 0	4 h			
> 0 to 10	45 min			
> 10 to 20	20 min			
> 20	10 min			

Resin capsule FHB II-PF (fast curing)					
Temperature at anchoring base ¹⁾ [°C]	Minimum curing time 2) t _{cure}				
-5 to 0	8 min				
> 0 to 10	6 min				
> 10 to 20	4 min				
> 20	2 min				

¹⁾ During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature.

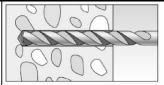
fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use
Processing time and curing time

Annex B 6

²⁾ In wet concrete the curing time must be doubled

³⁾ Minimal cartridge temperature +5 °C


²⁾ In wet concrete or water-filled holes the curing times must be doubled

Installation instructions part 1; Installation with resin capsule FHB II-P or FHB II-PF

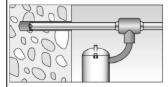
Drilling the drill hole (hammer drilling with standard drill bit)

1

Drill the hole.

Nominal drill hole diameter d_0 and drill hole depth h_0 see table B3.1 Cleaning of the drill hole is not necessary

Go to step 6 (Annex B 8)


Drilling and cleaning the drill hole (hammer drilling with hollow drill bit)

1

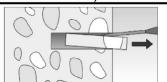
Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power.

Nominal drill hole diameter d_0 and drill hole depth h_0 see table B3.1

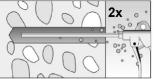

Go to step 6 (Annex B 8)

Drilling and cleaning the drill hole (wet drilling with diamond drill bit)

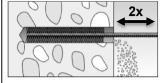
1

Drill the hole.

Drill hole diameter **d**₀ and nominal drill hole depth **h**₀ see **table B3.1**

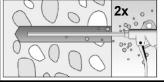

Break the drill core and remove it

2


Flush the drill hole, until clear water emerges from the drill hole.

3

Blow out the drill hole twice, using oil-free compressed air ($p \ge 6$ bar)


4

Brush the drill hole twice.
Corresponding cleaning brush BS see table B5.2

5

Blow out the drill hole twice, using oil-free compressed air ($p \ge 6$ bar)

Go to step 6 (Annex B 8)

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use

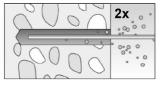
Installation instructions part 1

Installation with resin capsule FHB II-P or FHB II-PF

Annex B 7

Instal	Installation instructions part 2; Installation with resin capsule FHB II-P or FHB II-PF						
Install	Installation Highbond-Anchor rod FHB II - A S						
6		Insert the resin capsule FHB II-P or FHB II-PF into the dr	ill hole by hand.				
7		Pre-positioned installation: Only use Highbond-Anchor rods FHB II - A S with roof-s Drive in the Anchor rod using a hammer drill or impact dri setting depth mark stop the drill immediately.					
,		Push through installation: Only use Highbond-Anchor rods FHB II - A S with roof-s Drive in the anchor rod using a hammer drill or impact dri setting depth mark stop the drill immediately.					
8		Pre-positioned installation: After inserting the anchor rod, excess mortar must be emanchor.	erged around the				
8		Push through installation: After inserting the anchor rod, excess mortar must be emhole and must be visible in the fixture.	erged from the drill				
8a	1 1	For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges)					
9		Wait for the specified curing time t _{cure} see table B6.2					
10	T _{inst}	Installation torque for the hexagon nut T _{inst} see table B3 .	.1, B4.1				
Option		The gap between metal parts and fixture (annular gap) mortar via the fischer filling disc. Compressive strength \geq (e.g. FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ATTENTION: Using fischer filling disc reduces t_{fix} (usable	50 N/mm ²				
fische	fischer Highbond-Anchor FHB II for diamond drilling / extended working life						
Intend Installa Installa	Annex B 8						
Installation with resin capsule FHB II-P or FHB II-PF							

Installation instructions part 3; Installation with injection mortar FIS HB


Drilling and cleaning the drill hole (hammer drilling with standard drill bit)

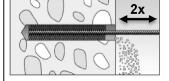
1

Drill the hole

Nominal drill hole diameter do and drill hole depth ho see tables B3.1, B4.1

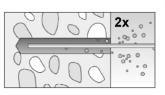
2

Clean the drill hole.


Blow out the drill hole twice.

If necessary, remove standing water out of the bore hole

For drill hole diameter d_0 = 16 mm blow out the hole by hand or oil-free compressed air (\geq 6 bar). For drill hole diameter d_0 = 25 mm blow out the hole with oil-free compressed air (\geq 6 bar). Use a


3

Brush the bore hole twice. Corresponding cleaning brush BS see **table B5.2**

4

Clean the drill hole.

compressed-air nozzle.

Blow out the drill hole twice.

For drill hole diameter $d_0 = 16$ mm blow out the hole by hand or oil-free compressed air (≥ 6 bar).

For drill hole diameter d_0 = 25 mm blow out the hole with oil-free compressed air (\geq 6 bar). Use a compressed-air nozzle.

Go to step 5 (Annex B 10)

Drilling and cleaning the drill hole (hammer drilling with hollow drill bit)

1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Use a suitable dust extraction system, e.g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power.

Nominal drill hole diameter d₀ and drill hole depth h₀ see tables B3.1, B4.1

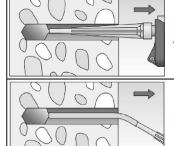
Go to step 5 (Annex B 10)

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use

Installation instructions part 3
Installation with injection mortar FIS HB

Annex B 9



Do not use mortar that is not uniformly grey

Installation instruction part 4; Installation with injection mortar FIS HB Preparing the cartridge Remove the sealing cap Screw on the static mixer (the spiral in the static mixer must be clearly visible) Place the cartridge into the dispenser Extrude approximately 10 cm of material out until the resin is evenly grey in colour.

Injection of the mortar

8

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 170 mm use an extension tube

Go to step 9 (Annex B 11)

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Intended use
Installation instructions part 4
Installation with injection mortar

Annex B 10

Installation instruction part 5; Installation with injection mortar FIS HB Installation Highbond-Anchor rod FHB II - A S or FHB II Inject - A S Pre-positioned or push through installation: 9 Push the anchor rod down to the bottom of the hole. turning it slightly while doing so. Only use clean and oil-free metal parts. Pre-positioned installation: After inserting the anchor rod, excess mortar must be emerged around the anchor. 10 Push through installation: After inserting the anchor rod, excess mortar must be emerged from the drill hole and must be visible in the fixture. For overhead installations support the 10a anchor rod with wedges. (e.g. fischer centering wedges) 11 Wait for the specified curing time tcure see table B6.1 12 Installation torque for the hexagon nut Tinst see table B3.1, B4.1 The gap between metal parts and fixture (annular gap) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. FIS Option HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus). ATTENTION: Using fischer filling disc reduces t_{fix} (usable length of the anchor) fischer Highbond-Anchor FHB II for diamond drilling / extended working life Annex B 11 Intended use Installation instructions part 5 Installation with injection mortar

1,25

Table C1.1:	Characteristic resis Highbond-Anchor				
Ancher rod FHB	II - A S / FHB II Inject - A	S	M16x95	M20x170	M24x170
Characteristic re	esistance to steel failure	e und	er tension loading		
Ole pure et e viet in	Steel, zinc plated		61,6	12	3,5
Characteristic - resistance -	Stainless steel A4	[kN]			
N _{Rk,s}	High corrosion resistant steel C	נייין	61,6	129	3,5
Partial factors 1)					
_	Steel, zinc plated			1,5 ¹⁾	
Partial factor	Stainless steel A4	[-]	1,5 1)		
γMs,N	High corrosion resistant steel C	ι 1	1,5 ¹⁾		
Characteristic re	esistance to steel failure	e und	er shear loading		
without lever arr	n				
Characteristic -	Steel, zinc plated		50,8	80,3	114,2
Characteristic resistance _	Stainless steel A4	[kN]	62,7	97,9	124,5
V ⁰ Rk,s	High corrosion resistant steel C	[,	62,7	97,9	141
Ductility factor	k 7	[-]		1,0	
with lever arm					
Characteristic =	Steel, zinc plated		266	519	896
resistance -	Stainless steel A4	[Nm]			
M ⁰ Rk,s	High corrosion resistant steel C	ַנואוון <u>)</u>	266	519	896

¹⁾ In absence of other national regulations

[-]

γMs,V

Partial factors 1)
Partial factor

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Performance
Characteristic resistance to steel failure under tension / shear loading of
Highbond-Anchor rods FHB II - A S and FHB II Inject - A S

Annex C 1

English translation prepared by DIBt

Anchor rod FHB II - A S / FHB	II Inject - A	s		All sizes	
Characteristic resistance to	concrete fa	ilure und	der tension loadin	ıg	
Installation factor	γinst	[-]		See annex C 3 to C 4	
Factors for the compressive	strength o	f concre	te > C20/25		
	C25/30			1,12	
Increasing factor for	C30/37		1,22		
uncracked or cracked	C35/45] , ,	1,32		
concrete	C40/50	[-]	1,41		
$N_{Rk,p} = \psi_c N_{Rk,p} (C20/25)$	C45/55		1,50		
_	C50/60			1,58	
Splitting failure		•			
Edge distance	C cr,sp	[mm]		2 h _{ef}	
Spacing	S cr,sp	[mm]		4 h _{ef}	
Concrete cone failure					
Uncracked concrete	$\mathbf{k}_{ucr,N}$	[-]		11,0 ¹⁾	
Cracked concrete	k cr,N	[-]		7,7 1)	
Edge distance	C _{cr,N}	[mm]		1,5 h _{ef}	
Spacing	S _{cr,N}	[[,,,,,,]		3 h _{ef}	
Characteristic resistance to	concrete fa	ilure und	der shear loading		
Installation factor	γinst	[-]		1,0	
Concrete pry-out failure					
Factor for pry-out failure	k 8	[-]		2,0	
Concrete edge failure					
Anchor rod FHB II - A S and FHB II Inject - A S			M16x95	M20x170	M24x170
Effective length of fastener in shear loading	lf	[mm]	95	17	0
Calculation diameter	d _{nom}	1	16	2:	5

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Performance
Characteristic resistance to concrete failure under tension / shear loading

Annex C 2

Table C3.1:	Characteristic resistance to pull-out failure for Highbond-Anchor rods
	FHB II - A S with resin capsule FHB II-P or FHB II-PF in diamond drilled
	holes; 50 years

	110163, 30	years				
Highbond-An	chor rod FHB II	- A S 1)		M16x95	M20x170	M24x170
Characteristic	c resistance to	pull-out fa	ailure			
Calculation dia	ameter	d	[mm]	16	2	5
Uncracked co	oncrete					
Characteristic	c resistance in ı	uncracke	d concr	ete C20/25		
Diamond-drilling	ng (dry or wet co	ncrete / w	ater-fille	d hole)		
Temperature range T2	50 °C / 80 °C	$N_{Rk,p,ucr}$	[kN]	51,5	118	3,5
Cracked cond	rete					
Characteristic	c resistance in o	cracked c	oncrete	C20/25		
Diamond-drilling	ng (dry or wet co	ncrete / w	ater-fille	d hole)		
Temperature range T2	50 °C / 80 °C	$N_{Rk,p,cr}$	[kN]	42,8	101	1,4
Installation fa	ictors					
Dry or wet cond	crete		r 1		1,2	
Water-filled hol	e	γinst	[-]	1,2		

 $^{^{\}rm 1)}$ Highbond-Anchor rod FHB II - A S with resin capsule FHB II-P / FHB II-PF

Table C3.2: Characteristic resistance to pull-out failure for Highbond-Anchor rods FHB II - A S with resin capsule FHB II-P or FHB II-PF in diamond drilled holes; 100 years

Highbond-Anchor rod FHE	BII - A S 1)		M16x95	M20x170	M24x170
Characteristic resistance t	o pull-out fa	ailure			
Calculation diameter	d	[mm]	16	2	5
Uncracked concrete					
Characteristic resistance i	n uncracke	d concr	ete C20/25		
Diamond-drilling (dry or wet	concrete / w	ater-fille	<u>d hole)</u>		
Temperature range T2 $$ 50 °C / 80 °C	NRk,p,ucr,100	[kN]	51,5	11	8,5
Cracked concrete					
Characteristic resistance i	n cracked c	oncrete	C20/25		
Diamond-drilling (dry or wet	concrete / w	ater-fille	ed hole)		
Temperature range T2 $$ 50 °C / 80 °C	N _{Rk,p,cr,100}	[kN]	36,0	86	3,0
Installation factors					
Dry or wet concrete		гэ		1,2	
Water-filled hole	— γinst	[-]		1,2	
1) Highbond-Anchor rod F	HB II - A S	with res	in capsule FHB II-P / F	HB II-PF	
fischer Highbond-Anch	or FHB II f	or diar	mond drilling / exte	nded working life	

Characteristic resistance to pull-out failure for Highbond-Anchor rods FHB II - A S in diamond drilled holes; 50 or 100 years

Annex C 3

Performance

Table C4.1: Characteristic resistance to pull-out failure for Highbond-Anchor rods
FHB II - A S with resin capsule FHB II-P / FHB II-PF or injection mortar
FIS HB and FHB II Inject - A S with injection mortar FIS HB in hammer
drilled holes; 100 years

5	,	,			
Anchor rod FHB II - A S ¹⁾ FHB II Inject - A S ²⁾			M16x95	M20x170	M24x170
Characteristic resistance	to pull-out f	ailure			
Calculation diameter	d	[mm]	16	2	5
Uncracked concrete					
Characteristic resistance	in uncracke	d concr	ete C20/25		
Hammer-drilling with stand	ard or hollow	drill bit (dry or wet concrete / v	vater-filled hole)	
Temperature 50 °C / 80 °C range T2	N _{Rk,p,ucr,100}	[kN]	52,4	11	8,5
Cracked concrete		-			
Characteristic resistance	in cracked o	oncrete	e C20/25		
Hammer-drilling with stand	ard or hollow	drill bit (dry or wet concrete / v	vater-filled hole)	
Temperature 50 °C / 80 °C range T2	N _{Rk,p,cr,100}	[kN]	36,0	86	5,0
Installation factors					
Dry or wet concrete				1,0	
Water-filled hole (only with resin capsule)	γinst	[-]		1,0	

 $^{^{1)}}$ Highbond-Anchor rod FHB II - A S with resin capsule FHB II-P / FHB II-PF or injection mortar FIS HB

fischer Highbond-Anchor FHB II for diamond drilling / extended working life

Performance

Characteristic resistance to pull-out failure for Highbond-Anchor rods FHB II - A S / FHB II Inject - A S in hammer drilled holes; 100 years

Annex C 4

 $^{^{\}rm 2)}$ Highbond-Anchor rod FHB II Inject - A S with injection mortar FIS HB

Anchor rod FHB II – A S		M16x95 M20x170		M24x170
Displacement-F	actors for ter	nsion loading ¹⁾		
Uncracked cond	rete; Tempe	rature range T2		
δN0-Factor	[//- N.17	0,030	0,020	0,016
δN∞-Factor	[mm/kN]	0,120	0,045	0,045
Cracked concre	te; Temperat	ure range T2		
δN0-Factor	[mm/kN]	0,030	0,020	0,016
δN∞-Factor	[IIIII/KIN]	0,120	0,045	0,045
Displacement-F	actors for sh	ear loading ²⁾		
Uncracked or cr	racked concr	ete; Temperature range	T2	
δvo-Factor	[mm/kN]	0,02	0,02	0,02
δ _{V∞} -Factor	[HIII/KIN]	0,03	0,03	0,03
1) Calculation of	effective displ	acement:	2) Calculation of effective dis	placement:
$\delta_{N0} = \delta_{N0\text{-Factor}}$	•		$\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$	
$\delta_{N\infty} = \delta_{N\infty\text{-Factor}}$	· N		$\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$	
N = acting ten	sion loading		V = acting shear loading	
FHB II Inject - A S		M16x95	M20x170	M24x170
Displacement E	actore tor tor			
Uncracked cond	crete; Tempe	rature range T2	0.020	0.016
Uncracked cond δN0-Factor		rature range T2 0,030	0,020 0,045	0,016 0.045
Uncracked cond δN0-Factor δN∞-Factor	[mm/kN]	7ature range T2 0,030 0,120	0,020 0,045	0,016 0,045
Uncracked cond δN0-Factor δN∞-Factor Cracked concre	crete; Tempe [mm/kN] te; Temperat	7ature range T2 0,030 0,120	,	
Uncracked cond δN0-Factor δN∞-Factor Cracked concre	[mm/kN]	0,030 0,120 ure range T2	0,045	0,045
Uncracked conc δN0-Factor δN∞-Factor Cracked concre δN0-Factor δN∞-Factor	[mm/kN] te; Temperat	0,030 0,120 ure range T2 0,030 0,120	0,045	0,045 0,016
Uncracked cond δN0-Factor δN∞-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-F	te; Temperat [mm/kN] te; Temperat [mm/kN]	0,030 0,120 ure range T2 0,030 0,120	0,045 0,020 0,045	0,045 0,016
Uncracked conc δN0-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-Factor Uncracked or cr	te; Temperat [mm/kN] actors for sh	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾	0,045 0,020 0,045	0,045 0,016
Uncracked conce δN0-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-Factor Uncracked or cr	te; Temperat [mm/kN] te; Temperat [mm/kN]	0,030 0,120 ure range T2 0,030 0,120 0,120 ear loading 2) ete; Temperature range	0,045 0,020 0,045	0,045 0,016 0,045
Uncracked conc δN0-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-Fi Uncracked or cr	te; Temperat [mm/kN] actors for sh racked concr	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾ ete; Temperature range 0,02 0,03	0,045 0,020 0,045 T2 0,02	0,045 0,016 0,045 0,02 0,03
Uncracked cond δN0-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-Factor Uncracked or cr δV0-Factor δV∞-Factor	te; Temperat [mm/kN] actors for sh racked concr [mm/kN]	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾ ete; Temperature range 0,02 0,03	0,045 0,020 0,045 T2 0,02 0,03	0,045 0,016 0,045 0,02 0,03
Uncracked cond δN0-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-Factor Uncracked or cr δV0-Factor 1) Calculation of	te; Temperat [mm/kN] actors for sh racked concr [mm/kN] effective displ	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾ ete; Temperature range 0,02 0,03	0,045 0,020 0,045 T2 0,02 0,03 2) Calculation of effective dis	0,045 0,016 0,045 0,02 0,03
Uncracked cond δN0-Factor δN∞-Factor Cracked concre δN0-Factor δN∞-Factor Displacement-Factor Uncracked or cr δV0-Factor δV∞-Factor 1) Calculation of δN0 = δN0-Factor	te; Tempe [mm/kN] te; Temperat [mm/kN] actors for sh racked concr [mm/kN] effective displ	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾ ete; Temperature range 0,02 0,03	0,045 0,020 0,045 T2 0,02 0,03 2) Calculation of effective dis δνο = δνο-Factor · V	0,045 0,016 0,045 0,02 0,03
Uncracked cond $\delta_{N0-Factor}$ $\delta_{N\infty-Factor}$ Cracked concre $\delta_{N0-Factor}$ $\delta_{N\infty-Factor}$ Displacement-Filter Uncracked or cr $\delta_{V0-Factor}$ $\delta_{V0-Factor}$ 1) Calculation of $\delta_{N0} = \delta_{N0-Factor}$ $\delta_{N\infty} = \delta_{N\infty-Factor}$	te; Tempe [mm/kN] te; Temperat [mm/kN] actors for sh racked concr [mm/kN] effective displ	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾ ete; Temperature range 0,02 0,03	0,045 0,020 0,045 T2 0,02 0,03 2) Calculation of effective dis $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$ $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$	0,045 0,016 0,045 0,02 0,03
Uncracked cond $\delta_{N0-Factor}$ $\delta_{N\infty-Factor}$ Cracked concre $\delta_{N0-Factor}$ $\delta_{N\infty-Factor}$ Displacement-Filter Uncracked or cr $\delta_{V0-Factor}$ $\delta_{V0-Factor}$ 1) Calculation of $\delta_{N0} = \delta_{N0-Factor}$ $\delta_{N\infty} = \delta_{N\infty-Factor}$	te; Tempe [mm/kN] te; Temperat [mm/kN] actors for sh racked concr [mm/kN] effective displ	0,030 0,120 ure range T2 0,030 0,120 ear loading ²⁾ ete; Temperature range 0,02 0,03	0,045 0,020 0,045 T2 0,02 0,03 2) Calculation of effective dis $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$ $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$	0,045 0,016 0,045 0,02 0,03
Uncracked cond δN0-Factor δN∞-Factor Cracked concre δN0-Factor Displacement-Filter Uncracked or cr δν0-Factor 1) Calculation of δN0 = δN0-Factor δν∞ = δΝ∞-Factor N = acting tens	te; Tempe [mm/kN] te; Temperat [mm/kN] actors for sh racked concr [mm/kN] effective displ N N N	0,030 0,120 ure range T2 0,030 0,120 ear loading 2) ete; Temperature range 0,02 0,03 acement:	0,045 0,020 0,045 T2 0,02 0,03 2) Calculation of effective dis $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$ $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$	0,045 0,016 0,045 0,02 0,03 placement: