

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0158 of 31 March 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Baumit E

Screwed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Baumit, spol. s r.o. Průmyslová 1841 250 01 BRANDÝS NAD LABEM TSCHECHISCHE REPUBLIK

Baumit

12 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604, Edition 10/2017

European Technical Assessment ETA-22/0158 English translation prepared by DIBt

Page 2 of 12 | 31 March 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z21967.22 8.06.04-26/22

European Technical Assessment ETA-22/0158

Page 3 of 12 | 31 March 2022

English translation prepared by DIBt

Specific part

1 Technical description of the product

The screwed-in anchor Baumit E consist of an anchor sleeve and a screw plate made of polyamide (virgin material) and an accompanying specific screw of galvanised steel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance		
Characteristic load bearing capacity			
- Characteristic resistance under tension load	See Annex C1		
 Minimum edge distance and spacing 	See Annex B2		
Displacements	See Annex C2		
Plate stiffness	No performance assessed		

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance		
Point thermal transmittance	See Annex C2		

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

Z21967.22 8.06.04-26/22

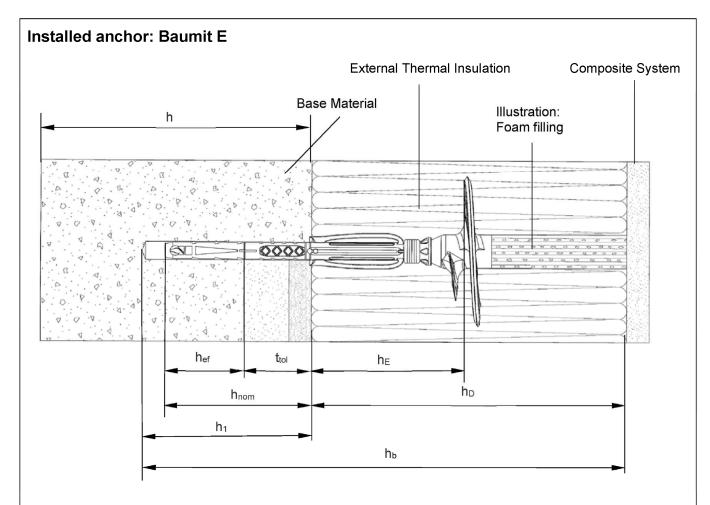
European Technical Assessment ETA-22/0158 English translation prepared by DIBt

Page 4 of 12 | 31 March 2022

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 31 March 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt:

Ziegler

Z21967.22 8.06.04-26/22

English translation prepared by DIBt

Intended use

- Fixing of external thermal insulation composite systems (ETICS) in concrete and masonry
- Fixing of external thermal insulation composite systems (ETICS) in autoclaved aerated concrete and lightweight aggregated concrete

Legend

h_{nom} = Overall plastic anchor embedment depth in the base material with non-load bearing coating (t_{tol})

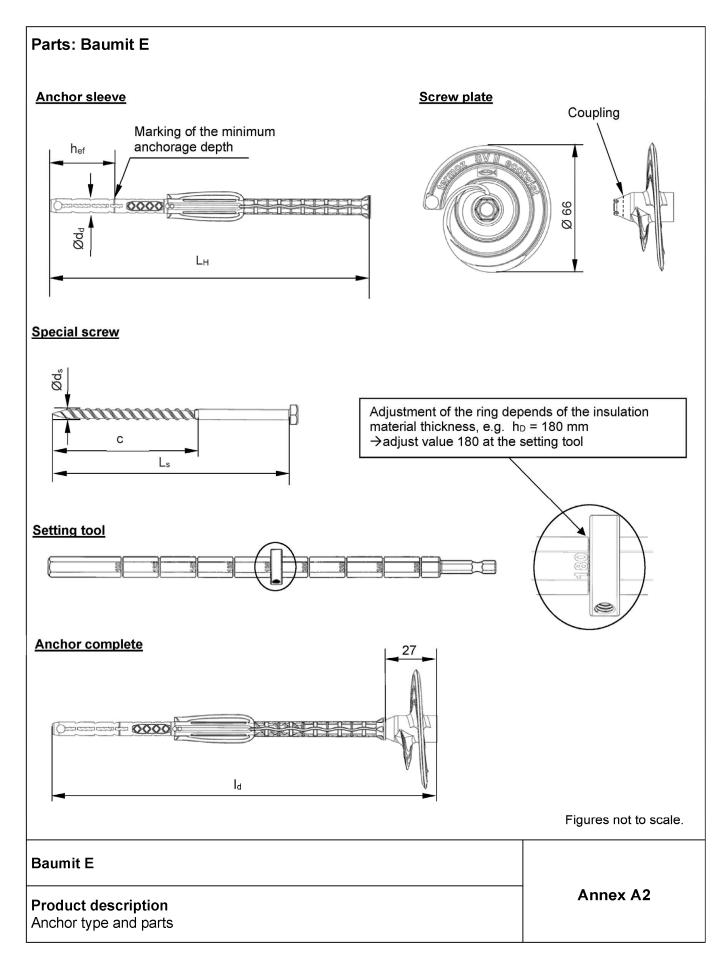
 h_1 = Depth of drilled hole to deepest point in the base material

h = Thickness of base material (wall)

h_D = Thickness of insulation material

t_{tol} = Thickness of equalizing layer and / or non-load bearing coating

h_E = Embedment depth


h_b = Total bore hole depth

h_{ef} = Effective anchor embedment depth in the base material

Figures not to scale.

Baumit E	A 22 24 A 4
Product description Installed anchor	Annex A1

English translation prepared by DIBt

_				_			
Iah	Δ	Δ	1	• 1	ııma	nsions	•

Anchor type	Anchor sleeve				Spec	cial screw			
Doumit F	Ø d _d	Ø d _d h _{ef} ¹⁾ h _E ¹⁾ l _d L _H				Ø ds	С		
Baumit E		[mm]							
t _{tol} 0-10 mm				162	135		100		
t _{tol} 0-30 mm	8	35	70	202	175	6	120	74	
t _{tol} 30-60 mm				232	205		150		

¹⁾ see Annex A1

Table A3.2: Marking on the plate

	Marking					
Anchor type	termoz SV II ecotwist					
Works symbol	Carta					

Table A3.3: Marking on the anchor sleeve

	Marking
Baumit E t _{tol} 0-10 mm	t _{tol} 0-10
Baumit E t _{tol} 0-30 mm	t _{tol} 0-30
Baumit E ttol 30-60 mm	t _{tol} 30-60

Table A3.4: Material

Designation	Material
Anchor sleeve	PA6 (virgin material), colour: grey
Screw plate	PA6 (virgin material) GF, colour: red
Special screw	Galvanized steel gvz with Zn5/Ag or Zn5/An in accordance with EN ISO 4042:2018

Baumit E	
Product description Anchor types, marking on the anchor plate/sleeve, dimensions and material	Annex A3

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the external thermal insulation composite system (ETICS).

Base materials:

- Compacted normal weight concrete without fibres (base material group A), according to Annex C1
- · Solid masonry (base material group B), according to Annex C1
- Hollow or perforated masonry (base material group C), according to Annex C1
- · Lightweight aggregate concrete (base material group D), according to Annex C1
- · Autoclaved aerated concrete (base material group E), according to Annex C1
- For other base materials of the base material groups A, B, C, D and E the characteristic resistance of the anchor may be determined by job site tests acc. to EOTA Technical Report TR 051 Edition April 2018.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$ in absence of other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchors is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of ETICS.

Installation:

- · Drill method according to Annex C1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

Baumit E	
Intended use Specifications	Annex B1

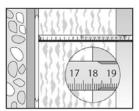
English translation prepared by DIBt


Table B2.1: Installation parameters				
				Baumit E
Drill hole diameter	d₀	=		8
Cutting diameter of drill bit	d _{cut}	<u>≤</u>		8,45
Depth of drill hole to deepest point	h ₁	≥		55/75/105
Total bore hole depth at Baumit E t _{tol} 0-10 mm				h _D + 55
Total bore hole depth at Baumit E ttol 0-30 mm	h₅	≥		h _D + 75
Total bore hole depth at Baumit E t _{tol} 30-60 mm			[mm]	h _D + 105
Overall plastic anchor embedment depth in the base material (see Annex A1) at Baumit E t _{tol} 0-10 mm				45
Overall plastic anchor embedment depth in the base material (see Annex A1) at Baumit E t _{tol} 0-30 mm	h_{nom}	=		65
Overall plastic anchor embedment depth in the base material (see Annex A1) at Baumit E ttol 30-60 mm				95

Table B2.2: Minimum distances and spacings

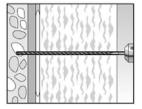
				Baumit E
Minimum thickness of member	h _{min}			100 ¹⁾
Minimum spacing	S _{min}	=	[mm]	100
Minimum edge distance	Cmin			100

 $^{^{1)}\,}$ For weather resistant external wall panels: hmin=40 mm


Scheme of distances and spacing


Baumit E	
Intended use	Annex B2
Installation parameters	
Minimum thickness of member, distances and spacing	

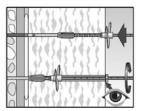
Installation instructions


1. Measure insulation thickness h_D (example: 18 cm = 180 mm).

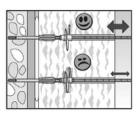
2. Adjust the setting tool ring corresponding to the insulation material thickness h_{D} in mm.

Number is legible.

Additionally to the setting tool ring a thin plastic plate (maximum 1 mm thickness) can be used as a stop unit for easier mounting.

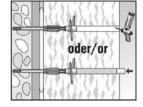

3. Drill bore hole. Total drill hole depth must be at

t_{tol} 0-10 mm→ h_D + 55 mm


t_{tol} 0-30 mm→ h_D + 75 mm

 t_{tol} 30-60 mm \rightarrow h_D + 105 mm.

Note: bore holes in HIz and autoclaved aerated concrete only by rotary drilling



4. Press the anchor with the screw plate tight against the surface of the insulation material, then start screwing-in the anchor. Setting is finished when the surface of the ring is flush with the surface of the insulation material.

5. When step 4 is completed, press the adjustment tool tight against the installed anchor.

If there is no axial movement of the anchor, remove the setting tool. In case of axial movement, a new anchor has to be set in a new drill hole.

5. The hole in the insulation material must be filled with a suitable foam (illustrated in Annex A1) or must be closed with an appropriate insulation cylinder.

Baumit E

Intended use Installation instructions

Annex B3

729094.22 8.06.04-26/22

Base material	Group 1)	Bulk density p [kg/dm³]	Min. comp. strength f _b [N/mm²]	Remarks	Drill method ²⁾	N rk [kN]
Weather resistant skin of external wall panels, concrete C20/25 – C50/60	1	-	-	Concrete without fibres C20/25 − C50/60 as per EN 206:2013 +A1:2016, Thickness of concrete panels 40 mm ≤ h < 100 mm	Н	0,9
Weather resistant skin of external wall panels, concrete C20/25 –C50/60	-	-	-	Concrete without fibres C20/25 – C50/60 as per EN 206:2013 +A1:2016, Thickness of concrete panels 40 mm ≤ h < 100 mm	R	1,5
Concrete C12/15- C50/60	Α	-	-	Concrete without fibres C12/15 - C50/60 as per EN 206:2013+A1:2016	Н	1,5
Sand-lime solid bricks, KS as per EN 771-2:2011+A1:2015	В	≥ 2,0	20 12	Vertically perforation ³⁾ ≤ 15%	Н	1,5 1,2
Clay bricks, Mz as per EN 771-1:2011+A1:2015	В	≥ 1,8	12	Vertically perforation ³⁾ ≤ 15%	Н	1,2
Solid concrete block, Vbn as per EN 771-3:2011+A1:2015	В	≥ 2,0	20 12	Vertically perforation ³⁾ ≤ 10%	Н	1,5 1,2
Lightweight concrete solid blocks, VbI as per EN 771-3:2011+A1:2015	В	≥ 1,4	8	Vertically perforation ³⁾ ≤ 15%, exterior web thickness ≥ 35 mm	Н	0,6
Vertically perf. sand-lime bricks, KSL as per EN 771-2:2011+A1:2015	С	≥ 1,4	20 12	Vertically perforation ³⁾ > 15%, Exterior web thickness ≥ 23 mm	Н	1,2 0,75
Vertically perf. clay bricks, HIz as per EN 771-1:2011+A1:2015	С	≥ 1,0	12	Vertically perforation ³⁾ >15% and ≤ 50%, Exterior web ≥ 12 mm	R	0,75
Lightweight concrete hollow blocks, HbI as per EN 771-3:2011+A1:2015	С	≥ 1,2	10 8 6 4	Vertically perforation ³⁾ >15% and ≤ 50%, Exterior web ≥ 38 mm	н	1,2 0,9 0,75 0,6
Lightweight concrete hollow blocks, Hbl4 as per EN 771-3:2011+A1:2015	С	≥ 0,9	4	99 16 500	Н	0,5
Lightweight aggregate concrete, LAC as per EN 1520:2011 / EN 771-3:2011+A1:2015	D	≥ 0,9	6	-	Н	0,75
Autoclaved aerated concrete blocks, AAC as per EN 771-4:2011+A1:2015	E	≥ 0,5	4	-	R	0,4

³⁾ Cross section reduced by perforation vertically to the resting area

Baumit E	
Performance Characteristic resistance	Annex C1

Table C2.1: Point thermal transmittance acc. to EOTA Technical TR 025: 2016-05			
Anchor type	Thickness of insulation material h _D [mm]	Point thermal transmittance χ [W/K]	
Baumit E	100 - 240	0,001	
EPS-plug and air void t _{tol} = 0 - 10 mm	> 240	0	
Baumit E PU-foam filled hole t _{tol} = 0 - 10 mm	100 - 150	0,001	
	> 150	0	
Baumit E	100 - 240	0,001	
EPS-plug and air void t _{tol} = 0 - 30 mm	> 240	0	
Baumit E	100 - 150	0,001	
PU-foam filled hole t _{tol} = 0 - 30 mm	> 150	0	
Baumit E	100	0,002	
EPS-plug and air void t _{tol} = 30 - 60 mm	120 - 240	0,001	
	> 240	0	
Baumit E PU-foam filled hole t _{tol} = 30 - 60 mm	100	0,002	
	120 - 150	0,001	
	> 150	0	

Table C2.2: Displacements

Base material	Minimum compressive strength f _b [N/mm²]	Tension load N [kN]	Displace- ments Δ δ ν [mm]	
Concrete thin members ≥ C20/25 (EN 206:2013+A1:2016, hammer drilling)	-	0,3	< 0,3	
Concrete thin members ≥ C20/25 (EN 206:2013+A1:2016, rotary drilling)	-	0,5	< 0,3	
Concrete C16/20 - C50/60 (EN 206:2013+A1:2016)	-	0,5	< 0,3	
Cond lines solid bridge KC (EN 774 0,0044 t A4,0045	20	0,5		
Sand-lime solid bricks, KS (EN 771-2:2011+A1:2015	12	0,4	< 0,3	
Clay bricks, Mz (EN 771-1:2011+A1:2015	12	0,4	< 0,3	
0.151	20	0,5	< 0,3	
Solid concrete block, Vbn (EN 771-3:2011+A1:2015)	12	0,4		
Lightweight concrete solid blocks, VbI (EN 771-3:2011+A1:2015)	8	0,2	< 0,2	
Vertically represented and lines bridge KOL (EN 274 0,0044; A4 0045)	20	0,4		
Vertically perforated sand-lime bricks, KSL (EN 771-2:2011+A1:2015)	12	0,25	< 0,2	
Vertically perforated clay bricks, HIz (EN 771-1:2011+A1:2015)	12	0,25	< 0,3	
	10	0,4	< 0,3	
Lightweight concrete hollow blocks, Hbl (EN 771-3:2011+A1:2015)	8	0,3		
	6	0,25		
	4	0,2		
Lightweight concrete hollow blocks, Hbl4 (EN 771-3:2011+A1:2015)	4	0,15	< 0,4	
Lightweight aggr. concrete, LAC (EN 1520:2011/EN 771-3:2011+A1:2015)	6	0,25	< 0,2	
Autoclaved aerated concrete blocks, AAC (EN 771-4:2011+A1:2015)	4	0,15	< 0,1	

Baumit E	
Performance Point thermal transmittance, displacements	Annex C2