

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0332 of 20 June 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TOX screw anchor Sumo Max 1

Mechanical fasteners for use in concrete

TOX-Dübel-Technik GmbH Brunnenstraße 31 72505 Krauchenwies DEUTSCHLAND

Werk 1

22 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-22/0332

Page 2 of 22 | 20 June 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0332

Page 3 of 22 | 20 June 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOX screw anchor Sumo Max 1 concrete screw is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C7
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C3 to C5, C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C6

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-22/0332

Page 4 of 22 | 20 June 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

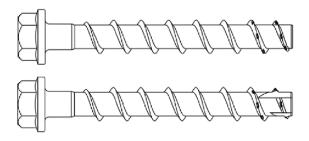
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

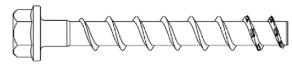
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

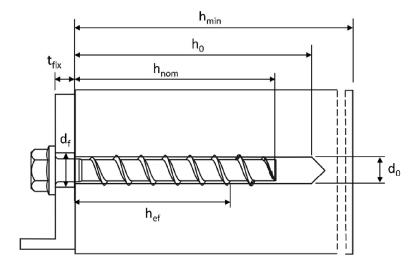
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 20 June 2022 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock beglaubigt:
Referatsleiterin Tempel


Product in installed condition

TOX screw anchor Sumo Max 1


- Galvanized carbon steel
- Zinc flakes coated carbon steel

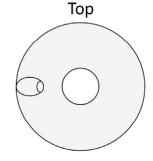
- Stainless steel A4
- Stainless steel HCR

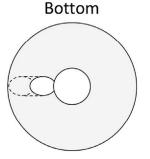
e.g. TOX screw anchor, zinc flakes coated, with hexagon head and fixture

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

d_f = clearance hole diameter


h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

TOX screw anchor Sumo Max 1

Product description

Product in installed condition

Annex A1

		Configuration with metric connect and hexagon socket e.g. TSM 8x10					
	0	Configuration with metric connect and hexagon drive e.g. TSM 8x105					
	(5 A) (0) (1) (1)	Configuration with washer and hexe.g. TSM 8x80 SW13 VZ 40; Type S	kagon head				
	(SA)	Configuration with washer, hexago TORX drive e.g. TSM 8x80 SW13; T					
	OGI Y	Configuration with washer and bure.g. TSM BC ST 14x130 SW24 VZ 40					
	(5 h)	Configuration with hexagon head e.g. TSM 8x80 SW13 OS; Type S					
	(SA)	Configuration with countersunk he e.g. TSM 8x80 C VZ 40; Type SK	ad and TORX drive				
	(S.4)	Configuration with pan head and TORX drive e.g. TSM 8x80 P VZ 40; Type P					
	(SM)	Configuration with large pan head drive e.g. TSM 8x80 LP VZ 40; Type					
		Configuration with countersunk he connection thread e.g. TSM 6x55 A					
		Configuration with hexagon drive a connection thread e.g. TSM 6x55 N					
	and 8/10; Type I						
TOX screw ancho	or Sumo Max 1						
Product descri Screw types	Product description						

Table 1: Material

Part	Product name	Material					
all types	TSM	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5µm) - Zinc flake coating according to EN ISO 10683:2018 special coating TOX KORR (≥20µm)					
	TS A4	1.4401; 1.4404; 1.4571; 1.4578					
	TSM HCR	1.4529					

		Nominal chara	Rupture			
Part	Product name	Yield strength	Ultimate strength	elongation		
		f_{yk} [N/mm ²]	$f_{uk} [N/mm^2]$	A ₅ [%]		
-11	TSM					
all	TSM A4	560	700	≤8		
types	TSM HCR					

Table 2: Dimensions

Anchor size		6		8		10		12			14					
Nominal embedme	Nominal embedment h _{nom}		1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]		500												
Core diameter	d_{κ}	[mm]	5	5,1 7,1				9,1		11,1		_	13,1			
Thread outer diameter	d _s	[mm]	7	,5	10,6		12,6		14,6		5	16,6				
Thickness of filling washer	t _v	[mm]		-		5			5			5			5	·

Marking:

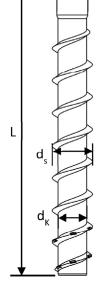
TSM

Screw type: TSM
Screw size: 10
Screw length: 100

TSM BC ST

Screw type: TSM BC ST
Screw size: 10
Screw length: 100

TSM A4


Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

TSM HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

TOX screw anchor Sumo Max 1

Product description

Material, Dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

TSM screw anchor size			6		8		10		12		14				
Nominal embedment		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loads			All sizes and all embedment depths												
Fire exposure		•	All sizes and all embedment depths												
C1 category - seismic		ok	ok				ok								
C2 category – seismic (A4 and HCR: no performance assessed)		1	L)	1	1)	ok	1)	1)	ok	1	.)	ok	1	.)	ok

no performance assessed

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

TOX screw anchor Sumo Max 1	
Intended use	Annex B1
Specification	

Specification of Intended use - continuation

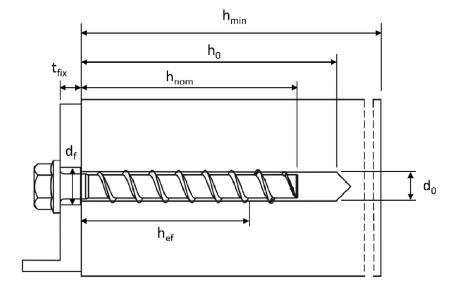
Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055,
 Version February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling, hollow drilling only for sizes 8-14.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-14, all embedment depths except for seismic application.
- Cleaning of borehole is not necessary, if using a hollow drill.


TOX screw anchor Sumo Max 1

Intended use
Specification continuation

Annex B2

Table 4: Installation parame	ters											
TSM screw anchor size	TSM screw anchor size					8		10				
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85		
Nominal drill hole diameter	d ₀	[mm]	6)		8			10			
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	10		8,45			10,45			
Drill hole depth	h ₀ ≥	[mm]	45	60	55	65	75	65	85	95		
Clearance hole diameter	d _f ≤	[mm]	8			12			14			
Installation torque (version with connection thread)	T _{inst}	[Nm]	10)	20			40				
Torque impact screw driver		[Nm]	Max. torque according to manufacturer's instructions									
lorque impact screw unver		[INIII]	16	0		300			400			
TSM screw anchor size			12			14						
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nor}	_{n2} h	n _{om3}	h _{nom1}	h _{nor}	_{n2} ł	າ _{nom3}		
Trommar embeament deptin		[mm]	65	85	,	100	75	100	0	115		
Nominal drill hole diameter	d_0	[mm]		1	2			1	.4			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12	,50			14	,50			
Drill hole depth	h ₀ ≥	[mm]	75	95	5	110	85	110	0	125		
Clearance hole diameter	d _f ≤	[mm]		1	.6			1	.8			
Installation torque (version with connection thread)	T _{inst}	[Nm]	60				8	0				
Torque impact corous driver		[NIm]	Max	. torqu	e accord	ding to r	nanufac	turer's	instruct	ions		
Torque impact screw driver		[Nm]		6!	50		65	50				

TOX screw anchor Sumo Max 1

Intended use Installation parameters

Annex B3

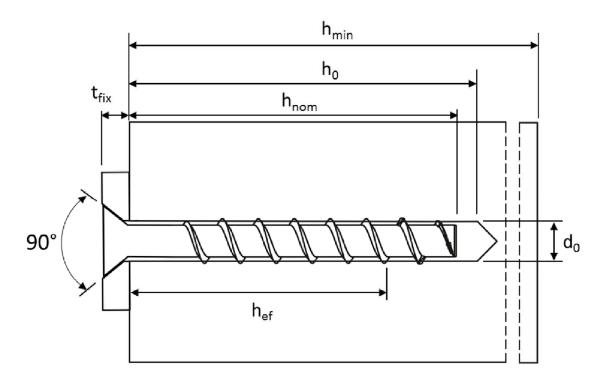
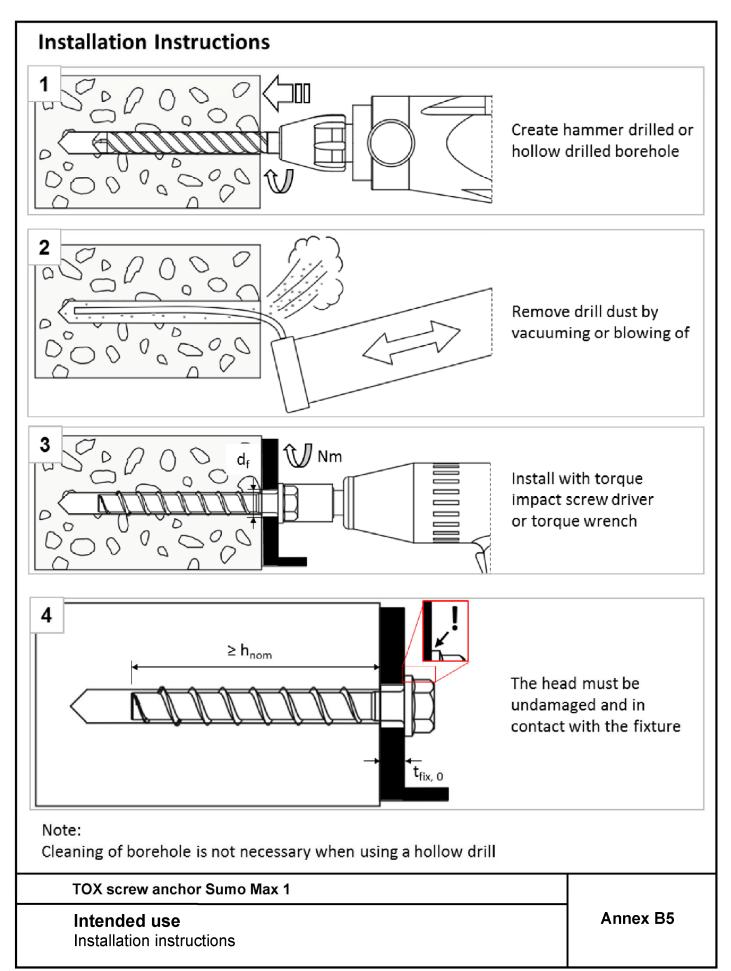
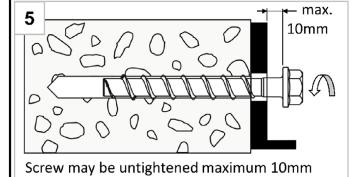

Electronic copy of the ETA by DIBt: ETA-22/0332

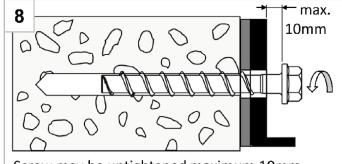
Table 5: Minimum thickness of member, minimum edge distance and minimum spacing


TSM screw anchor size			6			8		10			
Nominal embedment depth		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment	ent depth [mm]		40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	10	100 10		100	100 130				
Minimum edge distance	C _{min}	[mm]	40		40 50				50		
Minimum spacing	Smin	[mm]	4	0	40	40 50		50			

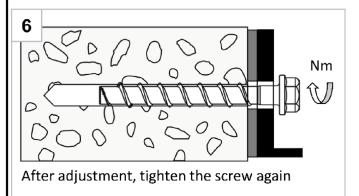
TSM screw anchor si		12		14					
Nominal embedment depth h _{nom}		h _{nom1} h _{nom2}		h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment	черит	[mm]	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170	
Minimum edge distance	C _{min}	[mm]	50		70	50	70		
Minimum spacing	S _{min}	[mm]	W	50	70	50	70		

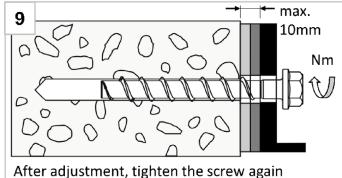
TOX screw anchor Sumo Max 1	
Intended use Minimum thickness of member, minimum edge distance and minimum spacing	Annex B4

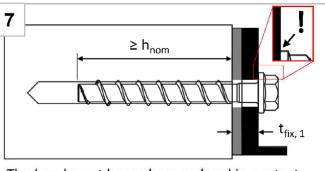


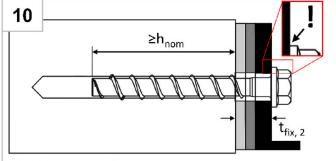

English translation prepared by DIBt

Installation Instructions - Adjustment


1. Adjustment




2. Adjustment


Screw may be untightened maximum 10mm

The head must be undamaged and in contact with the fixture

The head must be undamaged and in contact with the fixture

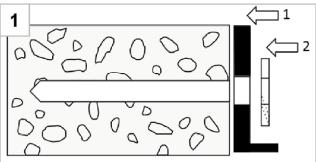
Note:

Electronic copy of the ETA by DIBt: ETA-22/0332

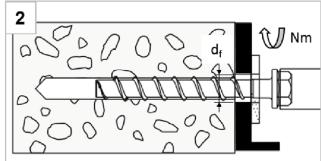
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom}.

TOX screw anchor Sumo Max 1

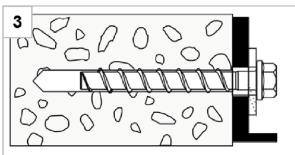
Intended use

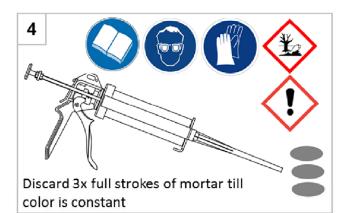

Installation instructions - Adjustment

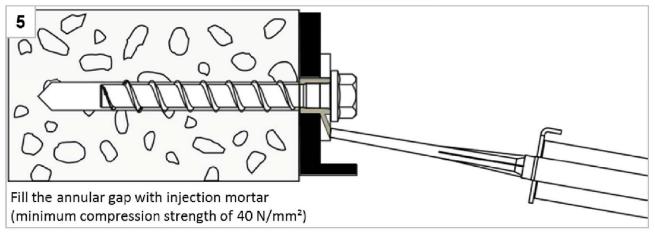
Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

TOX screw anchor Sumo Max 1

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 6: Cha	racteristic v	alues fo	r statio	and q	uasi-st	atic lo	ading,	sizes 6	-10				
TSM screw a	nchor size			(5		8			10			
Name in all anala			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal emb	eament deptr		[mm]	40	55	45	55	65	55	75	85		
Steel failure	for tension a	nd shear	loadin										
Characteristic	tension load	N _{Rk,s}	[kN]	14	1,0		27,0			45,0			
Partial factor		γ Ms,N	[-]		1,5								
Characteristic	shear load	$V^0_{Rk,s}$	[kN]	7,	7,0 13,5 17,0					34	,0		
Partial factor		γ Ms,∨	[-]		1,25								
Ductility factor		k ₇	[-]				0,	,8					
Characteristic	$M^0_{Rk,s}$	[Nm]	10	10,9 26,0					56,0				
Pull-out failure													
Characteristic tension load	cracked	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾		
C20/25	uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0		
Increasing	C25/30			1,12									
factor for	C30/37	Ψ_{c}	[-]				1,	22					
$N_{Rk,p} =$	C40/50	_ c	[]				1,	41					
N _{Rk,p(C20/25)} * ψ _c	00/00						1,	58					
Concrete fail	ure: Splitting	failure,	concret	te cone	failure	and pr	y-out fa	ailure					
Effective emb	edment depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68		
k-factor	cracked	k _{cr}	[-]	7,7									
Kidetoi	uncracked	k _{ucr}	[-]	11,0									
Concrete	spacing	S _{cr,N}	[mm]				3 x	h _{ef}					
cone failure	edge distance	e C _{cr,N}	[mm]				1,5	x h _{ef}					
Calittia	resistance	N ⁰ Rk,sp	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0		
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	160	120	140	150	140	180	210		
	edge distance	c C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105		
Factor for pry-	out failure	k ₈	[-]			1	,0			2,	,0		
Installation fa	ctor	γ_{inst}	[-]				1	,0					
Concrete edg	ge failure												
Effective lengt	h in concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68		
Nominal oute screw	[mm]	6 8 10											
¹⁾ N ⁰ _{Rk,c} accordin	g to EN 1992-4	2018											
TOX so	rew anchor S	Sumo Ma	ıx 1										
	Performances Characteristic values for static and quasi-static loading, sizes 6-10									Annex C1			

TSM screw a	ınchor size				12			14			
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}		
Nominal emb	edment depth		[mm]	65	85	100	75	100	115		
Steel failure	for tension and she	ear loadin	ig								
Characteristic		N _{Rk,s}	[kN]		67,0			94,0			
Partial factor		γ _{Ms,N}	[-]			1,	,5				
Characteristic	V ⁰ _{Rk,s}	[kN]	33,5	42	2,0		56,0				
Partial factor	γ _{Ms,V}	[-]			1,:	25					
Ductility facto	or	k ₇	[-]			0,	,8				
Characteristic	bending load	$M^0_{Rk,s}$	[Nm]		113,0						
Pull-out failu	ıre										
Characteristic	cracked	N _{Rk,p}	[kN]	12,0			0 1)				
tension load C20/25	uncracked	N _{Rk,p}	[kN]	16,0	$\geq N^{0}_{Rk,c}^{1}$						
	C25/30				I						
Increasing factor for	C30/37	Ψ_{c}	[-]			1,	22				
$N_{Rk,p} =$	C40/50	_ · c	[-]			1,					
N _{Rk,p(C20/25)} * ψ ₀	C50/60					1,	58				
	lure: Splitting failur		te cone		and pry	out failu			92		
Effective emb	edment depth	h _{ef}	[mm]	50							
k-factor	cracked	k ₁ =k _{cr}	[-]		7,7						
	uncracked	k ₁ = k _{ucr}	[-]			11	-				
Concrete	spacing	S _{cr,N}	[mm]				h _{ef}				
cone failure	edge distance	C _{cr,N}	[mm]		I		x h _{ef}				
Splitting	resistance	N ⁰ _{Rk,sp}	[kN]	16,0	27,0	35,0	21,5	34,5	43,5		
failure	spacing edge distance	S _{cr,Sp}	[mm]	150 75	210 105	240 120	180 90	240 120	280 140		
Factor for pry		k ₈	[-]	1,0		,0	1,0		,0		
Installation fa		γinst	[-]	1,0		1,		۷,			
		yinst	[[]			т,	,0				
Concrete ed			[[]	F0	67	00	Γ0	70	02		
	th in concrete er diameter of screw	I _f = h _{ef}	[mm]	50	67	80	58	79	92		
		d _{nom}	[mm]		12			14			
-, N° _{Rk,c} accordi	ng to EN 1992-4:2018										
TOX so	rew anchor Sumo I	Max 1									
Perfo		Annex	- 00								

Table 8: Seismic category C1 – Characteristic load values (type S, type SK, type ST
type ST-6 ¹⁾ , type P and type I ¹⁾)

TSM screw anchor size		6		8	10		12	14
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}
	[mm]	40	55	65	55	85	100	115

Steel failure for tension and shear	· load (v	ersion	type S,	type SK	, type S	Γ, type S	T-6 ¹⁾ , ty	pe P, type	e l ¹⁾)		
Characteristic load	N _{Rk,s,C1}	[kN]	14	14,0 27,0			5,0	67,0	94,0		
Partial factor	γ _{Ms,N}	[-]	1,5								
Characteristic load	$V_{Rk,s,C1}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4		
Partial factor	γ _{Ms,V}	[-]	1,25								
With filling of the annular gap ²⁾	$lpha_{\sf gap}$	[-]	1,0								
Without filling of the annular gap ³⁾	α_{gap}	[-]		0,5							

Pull-out failure (version type S, type SK, type ST, type ST-6 ¹⁾ , type P, type I ¹⁾)									
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	2,0	4,0	12,0	9,0	≥ N ⁰ _{Rk,c} ⁴⁾		

Concrete cone failure (version type	Concrete cone failure (version type S, type SK, type ST, type ST-61), type P, type I1)										
Effective embedment depth h _{ef} [mm] 31 44 52 43 68 8								80	92		
Edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}							
Spacing	S _{cr,N}	[mm]				3 x h	ef				
Installation safety factor	γ_{inst}	[-]		1,0							

Concrete pry-out failure (version type S, type SK, type ST, type P)									
Factor for pry-out failure	k ₈	[-]	1,0	2,0					
Concrete edge failure (version type S, type SK, type ST, type P)									

I	Concrete edge failure (version type S, type SK, type ST, type P)									
l	Effective length in concrete	$I_f = h_{ef}$	[mm]	31	44	52	43	68	80	92
İ	Nominal outer diameter of screw	d_{nom}	[mm]	6	6	8	10	10	12	14

¹⁾ only tension load

TOX screw anchor Sumo Max 1

Performances

Seismic category C1 – Characteristic load values

Annex C3

²⁾ With filling of the annular gap according to annex B7, figure 5

³⁾ Without filling of the annular gap according to annex B5

 $^{^{4)}~}N^0_{Rk,c}$ according to EN 1992-4:2018

Table 9: Seismic category C2 $^{1)}$ – Characteristic load values with filled annular gap
according to annex B7, figure 5 (type S, type ST, type P)

according to annex B7, figure 5	(type S,	type S	T, type P)										
TSM screw anchor size			8	10	12	14							
Naminal ambadment denth		h _{nom}	h _{nom3}										
Nominal embedment depth		[mm]	65	85 100 11									
Steel failure for tension and shear	Steel failure for tension and shear load (versi				sion type S, type ST, type P)								
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0							
Partial factor	γ _{Ms,N}	[-]		1,	,5								
Characteristic load	$V_{Rk,s,C2}$	[kN]	9,9	18,5	31,6	40,7							
Partial factor	γ _{Ms,V}	[-]		1,	25								
With filling of the annular gap	$\alpha_{\sf gap}$	[-]	1,0										
Pull-out failure (version type S, type	ST, type P)				_							
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5							
Concrete cone failure (version type S, type ST, type P)													
Effective embedment depth	h _{ef}	[mm]	52	68	80	92							
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}								
Spacing	S _{cr,N}	[mm]		3 x	h _{ef}								
Installation safety factor	γinst	[-]		1,	,0								
Concrete pry-out failure (version ty	pe S, type	ST, type	e P)										
Factor for pry-out failure	k ₈	[-]	1,0		2,0								
Concrete edge failure (version type	S, type ST	, type P)										
Effective length in concrete $I_f = h_{ef}$			52	68	80	92							
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14							

TOX screw anchor Sumo Max 1

Performances

Seismic category C2 - Characteristic load values with filled annular gap

Annex C4

¹⁾ A4 and HCR not suitable

TSM screw anchor size			8	10	12	14		
Nominal embedment depth				nom3				
			65	85	100	115		
Steel failure for tension and shea	ar load (v	ersion t y	pe S, type S	Γ, type P)				
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0	67,0	94,0		
Partial factor	γ _{Ms,N}	[-]		1	.,5			
Characteristic load	$V_{Rk,s,C2}$	[kN]	10,3	21,9	24,4	23,3		
Partial factor	factor $\gamma_{Ms,V}$ [-] 1,25							
Without filling of the annular gap α _{gap} [-]								
Pull-out failure (version type S, type	ST, type	P)						
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5		
Steel failure for tension and shea	ar load (v	ersion t y	/pe SK)					
Characteristic load	N _{Rk,s,C2}	[kN]	27,0	45,0				
Partial factor	γ _{Ms,N}	[-]		,5				
Characteristic load	V _{Rk,s,C2}	[kN]	3,6	13,7	no performa	nce assessed		
Partial factor	γ _{Ms,V}	[-]	1,	25	1			
Without filling of the annular gap	$lpha_{\sf gap}$	[-]	0	,5				
Pull-out failure (version type SK)	-	-			-			
Characteristic load in cracked concrete	N _{Rk,p,C2}	[kN]	2,4	5,4	no performa	nce assessec		
Concrete cone failure (version ty	pe S, ty	oe SK, t	ype ST, typ	e P)				
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr,N}	[mm]		1,5	x h _{ef}			
Spacing	S _{cr,N}	[mm]		3 >	ر h _{ef}			
Spacing			1,0					

Concrete edge failure (version type S, type SK, type ST, type P)							
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92	
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14	

1,0

Factor for pry-out failure

TOX screw anchor Sumo Max 1

Performances

Seismic category C2 - Characteristic load values without filled annular gap

 k_8

Annex C5

2,0

¹⁾ A4 and HCR not suitable

TSM screw a	nchor	size		(5		8			10			12			14	
Nominal embedment depth		h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3	
Nominal emb	eamen	t depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	11
Steel failure	for ter	sion and	hear l	oad													
	R30	N _{Rk,s,fi30}	[kN]	0,	.9		2,4			4,4			7,3			10,3	
	R60	N _{Rk,s,fi60}	[kN]	0,	.8		1,7			3,3			5,8			8,2	
	R90	N _{Rk,s,fi90}	[kN]	0,	.6		1,1			2,3			4,2			5,9	
	R120	N _{Rk,s,fi120}	[kN]	0,	.4		0,7			1,7			3,4			4,8	
	R30	V _{Rk,s,fi30}	[kN]	0,	.9		2,4			4,4			7,3			10,3	
characteristic	R60	V _{Rk,s,fi60}	[kN]	0,	.8		1,7			3,3			5,8			8,2	
Resistance	R90	V _{Rk,s,fi90}	[kN]	0,	.6		1,1			2,3			4,2			5,9	
	R120	V _{Rk,s,fi120}	[kN]	0,	.4		0,7			1,7			3,4			4,8	
	R30	$M^0_{Rk,s,fi30}$	[Nm]	0,	.7		2,4			5,9			12,3	3		20,4	
	R60	M ⁰ Rk,s,fi60		0,	.6		1,8			4,5			9,7			15,9	
	R90	M ⁰ Rk,s,fi90		0,5			1,2			3,0		7,0			11,6		
	R120	M ⁰ Rk,s,fi120	[Nm]	0,	.3		0,9			2,3			5,7			9,4	
Pull-out failu	ire																
Characteristic	R30- R90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,
Concrete cor	ne failu	ıre															
Characteristic	R30- R90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11
Edge distanc	<u></u>																-
R30 bis R120		C _{cr,fi}	[mm]								x h						
R30 bis R120 $c_{cr,fi}$ [mm] $2 \times h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm.																	
Spacing																	
R30 bis R120		S _{cr,fi}	[mm]							4	x he	F					
Pry-out failur	<u></u> е																
R30 bis R120		k ₈	[-]			1,	,0			2,	0	1,0	2	2,0	1,0	2	,0
The anchorag	e deptl	n has to be	increa	sed 1	for w	et co	oncre	ete b	y at	east	30 r	nm c	omp	ared	to th	e give	n

TOX screw anchor Sumo Max 1

Performances

Fire exposure – characteristic values of resistance

Annex C6

4-22/0332	111	
	-	
<u>-</u>	1	
2		
₽ H		
the		
5	5	
2		١
2	2	
2		
2	ĺ	
2)	
€	9	
<u>u</u>		
Щ	j	
	2	ctronic copy of the ETA by DIBt: ETA-22/033

TSM screw anchor size			ϵ	5		8			10			
Nominal embedment depth $\begin{bmatrix} h_{nom} \\ [mm] \end{bmatrix}$		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
			40	55	45	55	65	55	75	85		
2	tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Cracked concrete	dianla com ont	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
CONCIETE	displacement	δ_{N^∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
Uncracked concrete	displacement	δ_{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
Concrete	concrete displacement	δ_{N^∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
TSM screw	anchor size				12				14			
Naminal om	bedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nc}	om3	h _{nom1}	h _{nom2}	<u>,</u>	n _{om3}	
NOmmai em	beament depth		[mm]	65	85	10	00	75	100		115	
Cupaliad	tension load	N	[kN]	5,7	9,4	12	.,3	7,6	12,0	í.	15,1	
Cracked concrete	displacement	δ_{N0}	[mm]	0,9	0,5	1,	,0	0,5	0,8		0,7	
	displacement	$\delta_{\text{N}^{\infty}}$	[mm]	1,0	1,2	1,	,2	0,9	1,2		1,0	
	tension load	N	[kN]	7,6	13,2	17	,2	10,6	16,9	- 1	21,2	
Uncracked concrete	displacement	δ_{N0}	[mm]	1,0	1,1	1,	,2	0,9	1,2		0,8	
concrete	displacement	δ_{N^∞}	[mm]	1,0	1,2	1,	2	0,9	1,2		1,0	

Table 13: Displacements under static and quasi-static shear load

			6			8		10		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
eument depth		[mm]	40	55	45	55	65	55	75	85
shear load	V	[kN]	3,3		8,6			16,2		
	δ_{V0}	[mm]	1,55		2,7			2,7		
displacement	$\delta_{\text{V}^{\infty}}$	[mm]	3,1		4,1			4,3		
TSM screw anchor size				12				14		
admont donth		h_{nom}	h_{nom1}	h _{nom2}	h _{nc}	om3	h _{nom1}	h _{nom2}	<u>.</u> h	nom3
eament depth		[mm]	65	85	10	00	75	100		115
shear load	V	[kN]		20,0)			30,5	5	
	δ_{V0}	[mm]	4,0				3,1			
displacement	$\delta_{\text{V}^{\infty}}$	[mm]		6,0			4,7			
-	shear load displacement nchor size edment depth shear load	$\begin{array}{c c} \text{shear load} & V \\ \hline \delta_{V0} \\ \hline \delta_{V\infty} \\ \hline \\ \text{nchor size} \\ \hline \\ \text{edment depth} \\ \hline \\ \text{shear load} & V \\ \hline \\ \delta_{V0} \\ \hline \\ \text{displacement} \\ \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

TOX screw anchor Sumo Max 1	
Performances	Annex C7
Displacements under static and quasi-static loads	

TSM screw anchor size		8	10	12	14	
Nominal embedment depth						
			65	85	100	115
Displacements under tension	loads (versio	n type S,	type ST, type	e P)		
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Displacements under shear lo	ads (version	type S, ty	pe ST, type P	with hole cle	arance)	
Displacement DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	δ _{V,eq(ULS)}	[mm]	5,19	6,72	5,37	9,27
TSM screw anchor size			8	ST, type P	12	14
TSM screw anchor size			8	. ,,	I	14
		h _{nom}	8	10	I	14
TSM screw anchor size Nominal embedment depth		h _{nom}	8 65	10	12	14 115
	loads (versio	[mm]	65	10 h _n	12 pm3	
Nominal embedment depth	loads (versio δ _{N,eq(DLS)}	[mm]	65	10 h _n	12 pm3	
Nominal embedment depth Displacements under tension		[mm]	65 type ST, type	10 h _n , 85	12 pm3 100	115
Nominal embedment depth Displacements under tension Displacement DLS	$\delta_{\text{N,eq(DLS)}}$ $\delta_{\text{N,eq(ULS)}}$	[mm] n type S, [mm] [mm]	65 type ST, type 0,66 1,74	10 h _n , 85 P) 0,32	12 mm3 100 0,57	115
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS	$\delta_{\text{N,eq(DLS)}}$ $\delta_{\text{N,eq(ULS)}}$	[mm] n type S, [mm] [mm]	65 type ST, type 0,66 1,74	10 h _n , 85 P) 0,32	12 100 0,57 2,36	1,16 4,39
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension	$\delta_{N,eq(DLS)}$ $\delta_{N,eq(ULS)}$ loads (version	[mm] n type S, [mm] [mm] n type SK	65 type ST, type 0,66 1,74	10 h _n 85 P) 0,32 1,36	12 mm3 100 0,57	1,16 4,39
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] n type S, [mm] [mm] n type SK [mm] [mm]	65 type ST, type 0,66 1,74 0,66 1,74	10 h _n 85 P) 0,32 1,36 0,32 1,36	12 100 0,57 2,36 no performa	1,16 4,39
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement DLS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (versio} \\ \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \end{array}$	[mm] n type S, [mm] [mm] n type SK [mm] [mm]	65 type ST, type 0,66 1,74 0,66 1,74	10 h _n 85 P) 0,32 1,36 0,32 1,36	12 100 0,57 2,36 no performa	1,16 4,39
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS	$\begin{array}{c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{loads (version } \\ \delta_{\text{N,eq(ULS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \text{ads (version } \end{array}$	[mm] n type S, [mm] [mm] n type SK [mm] [mm]	65 type ST, type 0,66 1,74 0,66 1,74 pe ST, type P	10 h _n 85 P) 0,32 1,36 0,32 1,36 with hole cle	12 0,57 2,36 no performa	1,16 4,39 nce assessed
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacement ULS	$\begin{array}{c c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \\ \text{loads (version } \\ \delta_{\text{N,eq(ULS)}} \\ \\ \text{ads (version } \\ \delta_{\text{V,eq(DLS)}} \\ \\ \delta_{\text{V,eq(ULS)}} \\ \end{array}$	[mm] n type S, [mm] m type SK [mm] [mm] type S, ty [mm] [mm]	65 type ST, type 0,66 1,74 0,66 1,74 pe ST, type P 4,21 7,13	10 h _n 85 P) 0,32 1,36 0,32 1,36 with hole cle 4,71 8,83	12 0,57 2,36 no performa arance) 4,42	1,16 4,39 nce assessed 5,60
Nominal embedment depth Displacements under tension Displacement DLS Displacement ULS Displacements under tension Displacement DLS Displacement ULS Displacement ULS Displacement ULS Displacement DLS Displacement DLS Displacement DLS	$\begin{array}{c c} \delta_{\text{N,eq(DLS)}} \\ \delta_{\text{N,eq(ULS)}} \\ \\ \text{loads (version } \\ \delta_{\text{N,eq(ULS)}} \\ \\ \text{ads (version } \\ \delta_{\text{V,eq(DLS)}} \\ \\ \delta_{\text{V,eq(ULS)}} \\ \end{array}$	[mm] n type S, [mm] m type SK [mm] [mm] type S, ty [mm] [mm]	65 type ST, type 0,66 1,74 0,66 1,74 pe ST, type P 4,21 7,13	10 h _n 85 P) 0,32 1,36 0,32 1,36 with hole cle 4,71 8,83	12 0,57 2,36 no performa arance) 4,42	1,16 4,39 nce assessed 5,60 12,63

1) A4 and	HCR not	t suitable
-----------	---------	------------

TOX screw anchor Sumo Max 1

Performances

Displacements under seismic loads

Annex C8