

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0504 of 21 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection mortar FAKKT IM Z

Bonded fastener for use in concrete

Keller & Kalmbach GmbH Siemensstraße 19 85716 Unterschleißheim DEUTSCHLAND

Werk Keller & Kalmbach

23 pages including 4 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0504

Page 2 of 23 | 21 October 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0504

Page 3 of 23 | 21 October 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection mortar FAKKT IM Z" is a bonded fastener consisting of a cartridge with injection injection mortar FAKKT IM Z and a steel element according to Annex A4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3 and B 4, C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 to C 3
Displacements under short-term and long-term loading	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-22/0504

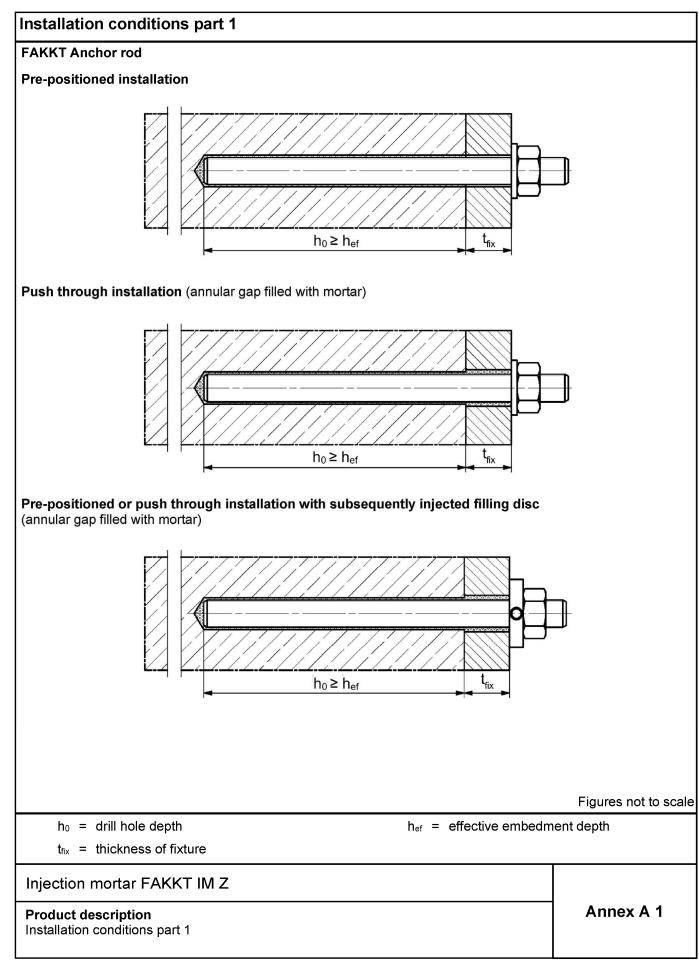
Page 4 of 23 | 21 October 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

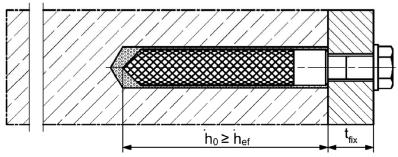
The system to be applied is: 1

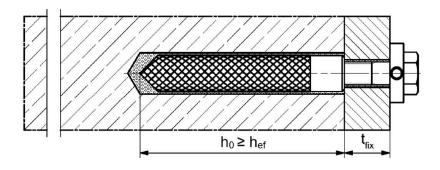

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 21 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider




Installation conditions part 2

FAKKT Internal threaded anchor

Pre-positioned installation

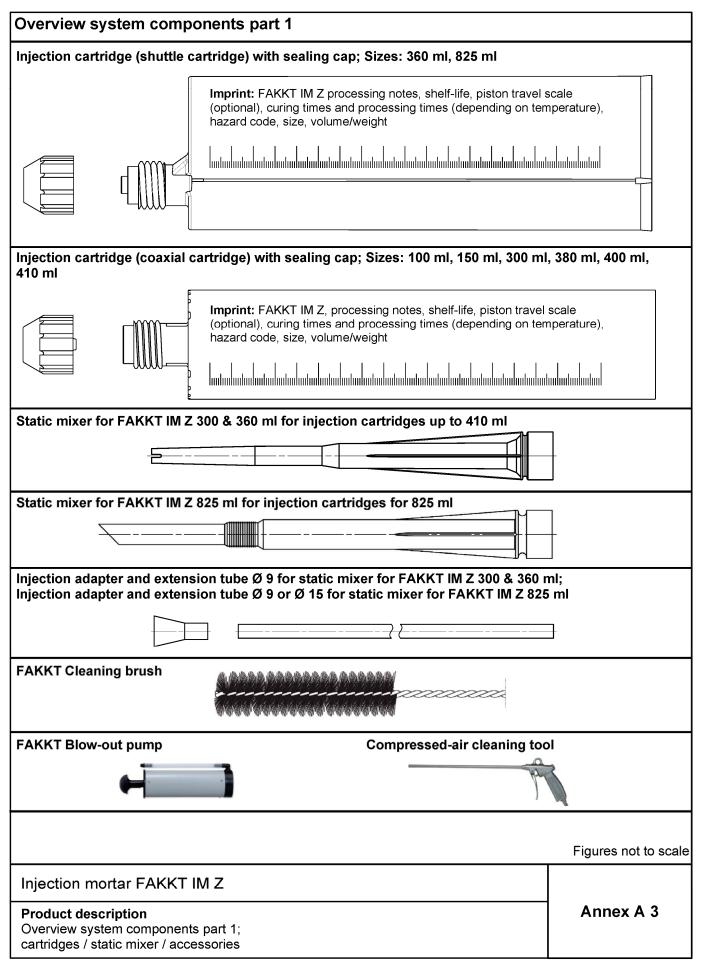
Pre-positioned installation with subsequently injected filling disc (annular gap filled with mortar)

Figures not to scale

 h_0 = drill hole depth

h_{ef} = effective embedment depth

 t_{fix} = thickness of fixture


Injection mortar FAKKT IM Z

Product description

Installation conditions part 2

Annex A 2

Overview system components part 2 **FAKKT Anchor rod** Size: M6, M8, M10, M12, M16, M20, M24, M27, M30 **FAKKT Internal threaded anchor** Size: M8, M10, M12, M16, M20 Screw / threaded rod / washer / hexagon nut Filling disc with injection adapter Figures not to scale Injection mortar FAKKT IM Z Annex A 4 **Product description** Overview system components part 2; steel components

Part	Designation		Material	
1	Injection cartridge			
		Steel	Stainless steel R	High corrosion resistant steel HCR
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4: 2006+A1:20
2	Anchor rod	Property class 4.8, 5.8 or 8.8; EN ISO 898-1:2013 electroplated \geq 5 μ m, EN ISO 4042:2018Zn5/An(A2K) or hot dip galvanised \geq 40 μ m EN ISO 10684:2004+AC:2009 $f_{uk} \leq$ 1000 N/mm ² $A_5 > 8\%$ fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation
3	Washer ISO 7089:2000	electroplated ≥ 5 μm, EN ISO 4042:2018Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014
4	Hexagon nut	Property class 4, 5 or 8 acc. EN ISO 898-2:2012 electroplated ≥ 5 μm, EN ISO 4042:2018Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506-2:2020 1.4565; 1.4529 EN 10088-1:2014
5	FAKKT Internal threaded anchor	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014
6	Commercial standard screw or threaded rod for FAKKT internal threaded anchor	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, EN ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % fracture elongation	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % fracture elongation
7	filling disc	electroplated ≥ 5 μm, EN ISO 4042:2018Zn5/An(A2K) or hot dip galvanised ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014
Inio	ction mortar EAL	CKT IM 7		
Prod	ction mortar FAlduct description erials	KIIMZ		Annex A 5

Specifications of intended use part 1 Table B1.1: Overview use and performance categories Anchorages subject to FAKKT IM Z with ... Anchor rod FAKKT Internal threaded anchor Hammer drilling with standard drill all sizes bit Hammer drilling with hollow drill bit (fischer FHD, Heller "Duster Expert"; Nominal drill bit diameter (d₀) Bosch "Speed 12 mm to 35 mm Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") Tables: C2.1 uncracked all sizes all sizes C3.1 Tables: concrete C5.1 C1.1 Static and quasi C6.2 C3.1 static loading, in C4.1 C6.1 cracked _2) M10 to M20 concrete dry or wet 11 all sizes concrete Use category water filled 12 M 12 to M 30 all sizes hole 1) Installation direction D3 (downward and horizontal and upwards (e.g. overhead) installation) Installation $T_{i,min} = -5$ °C to $T_{i,max} = +40$ °C temperature Temperature (max. short term temperature +80 °C; -40 °C to +80 °C range I max. long term temperature +50 °C) In-service temperature (max. short term temperature +120 °C; Temperature -40 °C to +120 °C range II max. long term temperature +72 °C) ¹⁾Valid for shuttle cartridges with 360 ml,825 ml and coaxial cartridges with 380ml, 400 ml, 410 ml 2) No performance assessed Injection mortar FAKKT IM Z Annex B 1 Intended use Specifications part 1

Z97231.22

Specifications of intended use part 2

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
 (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4: 2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 table A5.1.

Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with:
 EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

Installation:

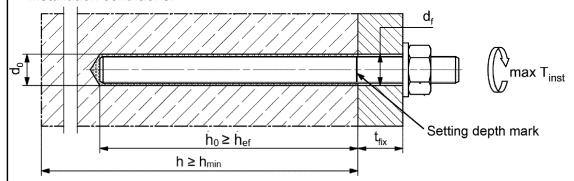
- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Fastening depth should be marked and adhered to installation
- · Overhead installation is allowed (necessary equipment see installation instruction)

Injection mortar FAKKT IM Z

Intended use
Specifications part 2

Annex B 2

Table B3.1:	Installation p	paramete	rs for a n	chor	rods								
Anchor rods			Thread	M6	M8	M10	M12	M16	M20	M24	M27	M30	
Nominal drill hole	diameter	d_0		8	10	12	14	18	24	28	30	35	
Drill hole depth	h_0						h₀ ≥ he	f					
Effective	h _{ef, min}		50	60	60	70	80	90	96	108	120		
embedment dept	h	h _{ef, max}	,	72	160	200	240	320	400	480	540	600	
Minimum spacing edge distance	g and minimum	S _{min} = C _{min}	[mm]	40	40	45	55	65	85	5 105 125 1			
Maximum Diameter of the	pre-positioned installation	d _f		7	9	12	14	18	22	26	30	33	
clearance hole of the fixture	push through installation	df		9	12	14	16	20	26	30	33	40	
Minimum thicknes member	h _{min}		ı	ո _{ef} + 30	(≥100)	h _{ef} + 2d ₀						
Maximum installa	m installation torque max T _{inst} [Nm] 5 10 20 40 60 120 150 200							300					



Marking (on random place) FAKKT anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip PC ¹⁾ 8.8	•
High corrosion resistant steel HCR PC ¹⁾ 50	•	High corrosion resistant steel HCR PC ¹⁾ 70	_
High corrosion resistant steel HCR PC ¹⁾ 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		

Alternatively: Colour coding according to DIN 976-1:2016

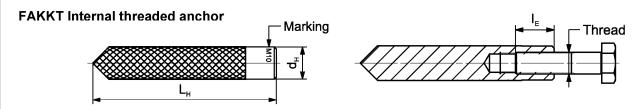
Installation conditions:

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

Figures not to scale

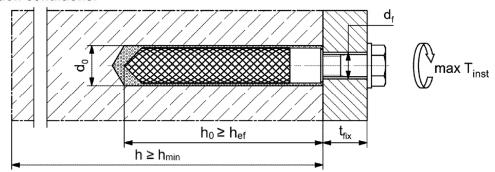
Injection mortar FAKKT IM Z


Intended use
Installation parameters anchor rods

Annex B 3

¹⁾ PC = property class

Table B4.1: Installation	on param	eters fo	or FAKKT	internal th	readed and	hors					
Internal threaded anchors	ı	Thread	M8	M10	M12	M16	M20				
Diameter of anchor	$d_{nom} = d_H$		12	16	18	22	28				
Nominal drill hole diameter	d ₀		14	18	20	24	32				
Drill hole depth	h ₀		$h_0 \ge h_{ef} = L_H$								
Effective embedment depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200				
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125				
Diameter of clearance hole in the fixture	d _f		9	12	14	18	22				
Minimum thickness of concrete member	h _{min}		120	125	165	205	260				
Maximum screw-in depth	I _{E,max}		18	23	26	35	45				
Minimum screw-in depth	$I_{E,min}$		8	10	12	16	20				
Maximum installation torque	max T _{inst}	[Nm]	10	20	40	80	120				


Marking: Anchor size e. g.: M10

Stainless steel → additional R; e.g.: M10 R

High corrosion resistant steel → additional HCR; e.g.: M10 HCR

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 5, Table A5.1

Installation conditions:

Figures not to scale

Injection mortar FAKKT IM Z

Intended use
Installation parameters FAKKT internal threaded anchors

Annex B 4

Table B5.1:	Parameters of the FAKKT cleaning brush (steel brush with steel bristles)

The size of the cleaning brush refers to the drill hole diameter

Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	16	18	20	24	25	28	30	35
Steel brush diameter	dь	[mm]	9	11	14	16	2	0	25	26	27	30	4	0

Table B5.2 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

Temperature at anchoring base	Maximum processing time twork	Minimum curing time 1) t _{cure}
[°C]	FAKKT IM Z	FAKKT IM Z
-5 to 0 ²⁾	-	24 h
> 0 to 5 ²⁾	13 min	3 h
> 5 to 10	9 min	90 min
> 10 to 20	5 min	60 min
> 20 to 30	4 min	45 min
> 30 to 40	2 min	35 min

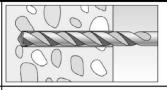
¹⁾ In wet concrete or water filled holes the curing times must be doubled

Electronic copy of the ETA by DIBt: ETA-22/0504

Injection mortar FAKKT IM Z

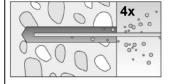
Intended use
Cleaning brush (steel brush)
Processing time and curing time

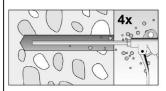
Annex B 5


²⁾ Minimal cartridge temperature +5°C

Installation instructions part 1

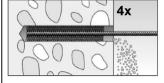
Drilling and cleaning the hole (hammer drilling with standard drill bit)


1

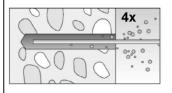

Drill the hole.

Nominal drill hole diameter d₀ and drill hole depth h₀ see tables B3.1, B4.1.

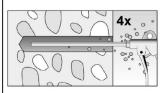
2



Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.


For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air (p ≥ 6 bar). Use suitable compressed-air nozzle.

3



Brush the drill hole four times. For deep holes use an extension. Use suitable brushes (see **table B5.1**).

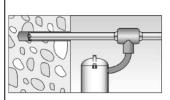
4

Clean the drill hole: For $h_{ef} \le 12d$ and $d_0 < 18$ mm blow out the hole four times by hand.

For $h_{ef} > 12d$ and / or $d_0 \ge 18$ mm blow out the hole four times with oil-free compressed air (p ≥ 6 bar). Use suitable compressed-air nozzle.

Go to step 5

Drilling and cleaning the hole (hammer drilling with hollow drill bit)


1

Check a suitable hollow drill (see **table B1.1**) for correct operation of the dust extraction

2

Electronic copy of the ETA by DIBt: ETA-22/0504

Use a suitable dust extraction system, e. g. fischer FVC 35 M or a comparable dust extraction system with equivalent performance data.

Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process and must be adjusted to maximum power. Nominal drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see **tables B3.1, B4.1**

Go to step 5

Injection mortar FAKKT IM Z

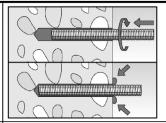
Intended use

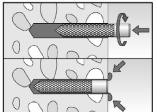
Installation instructions part 1

Annex B 6

Z97231.22

8.06.01-175/22

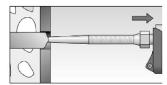

Installation instructions part 2 Preparing the cartridge Mark the setting depth of the steel element 5 Remove the sealing cap 6 Screw on the static mixer (the spiral in the static mixer must be clearly visible) 7 Place the cartridge into the dispenser Extrude approximately 10 cm of material out until 8 the resin is evenly grey in colour. Do not use mortar that is not uniformly grey Go to step 9 Injection of the mortar 9 For $h_0 = h_{ef}$ fill approximately 2/3 of the drill hole with mortar. For For overhead installation, deep For drill hole depth ≥ 150 mm $h_0 > h_{ef}$ more mortar is needed. holes ($h_0 > 250 \text{ mm}$) use an use an extension tube Always begin from the bottom of injection adapter the hole and avoid bubbles Go to step 10 Injection mortar FAKKT IM Z Annex B 7 Intended use Installation instructions part 2


Z97231.22

Installation instructions part 3

Installation of anchor rods or internal threaded anchors

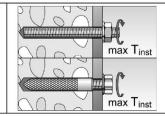
10



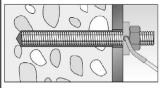
Only use clean and oil-free metal parts. Mark the setting depth of the metal part. Push the anchor rod or FAKKT internal threaded anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the metal parts, excess mortar must be emerged around the anchor element.

For overhead installations support the metal part with wedges (e. g. centering wedges) or overhead clips.


For push through installation fill the annular gap with mortar

11


Wait for the specified curing time t_{cure} see **table B5.2**

12

Mounting the fixture max T_{inst} see tables B3.1 and B4.1

Option

After the minimum curing time is reached, the gap between metal part and fixture (annular clearance) may be filled with mortar via the filling disc. Compressive strength \geq 50 N/mm² (e.g. FAKKT IM Z). ATTENTION: Using filling disc reduces t_{fix} (usable length of the anchor)

Injection mortar FAKKT IM Z

Intended use

Installation instructions part 3

Annex B 8

Z97231.22

Electronic copy of the ETA by DIBt: ETA-22/0504

Table C1.1:	Characteristic resistant FAKKT anchor rods an						ion / s	hear	loadin	g of
Anchor rod / star	M6	MR	M10	M12	M16	M20	M24	M27	M30	

Anchor	rod / standard thread	ded rod			M6	M8	M10	M12	M16	M20	M24	M27	M30	
Characte	eristic resistance to	steel fa	ilure	unde	r tensi	on load	ing ³⁾							
s of			4.8		8	15(13)	23(21)	33	63	98	141	184	224	
Characteristic	eel zinc plated	>	5.8		10	19(17)	29(27)	43	79	123	177	230	281	
		Property class	8.8 50	[LNI]	16	29(27)	47(43)	68	126	196	282	368	449	
Character resistance	ainless steel R and	nop cla	50	[kN]	10	19	29	43	79	123	177	230	281	
는 사람 hig	gh corrosion	ш	70		14	26	41	59	110	172	247	322	393	
res	sistant steel HCR		80		16	30	47	68	126	196	282	368	449	
Partial fa	actors 1)													
_	Steel zinc plated	Property class	4.8		1,50									
ਲ਼ੁੱ Sto			5.8		1,50									
ial fac Yмs,n Ç			8.8	r 1	1,50									
Dartial factor YMs, N Stylen Style	ainless steel R and	ည်ပြင်	8.8 50	[-]	2,86									
	gh corrosion	ш	70		1,50 ²⁾ / 1,87									
res	sistant steel HCR		80						1,60					
Characte	eristic resistance to	steel fa	ilure	unde	r shea	r loadir	ıg ³⁾							
without	lever arm													
s, s			4.8		4	9(8)	14(13)	20	38	59	85	110	135	
jig o [®] Ste	Steel zinc plated		5.8		6	11(10)	17(16)	25	47	74	106	138	168	
je je			8.8		8	15(13)	23(21)	34	63	98	141	184	225	

with	out lever arm												
aracteristic tance V ⁰ RK,s	Steel zinc plated		4.8		4	9(8)	14(13)	20	38	59	85	110	135
		Property class	5.8		6	11(10)	17(16)	25	47	74	106	138	168
			8.8	[kN]	8	15(13)	23(21)	34	63	98	141	184	225
	Stainless steel R and		50	נאוזן	5	9	15	21	39	61	89	115	141
Ths sis	high corrosion		70	70	7	13	20	30	55	86	124	161	197
ပြည်	resistant steel HCR		80		8	15	23	34	63	98	141	184	225
Ducti	Ductility factor			[-]	1,0								

with lever arm

s, s			4.8		6	15(13)	30(27)	52	133	259	448	665	899
ج ح	Steel zinc plated	>	5.8	8	7	19(16)	37(33)	65	166	324	560	833	1123
ract. Se M		ert Iss	8.8	[Nm]	12	30(26)	60(53)	105	266	519	896	1333	1797
Cha	Stainless steel R and	Prop cla	50	7	19	37	65	166	324	560	833	1123	
Sist	high corrosion		70	_	10	26	52	92	232	454	784	1167	1573
<u> </u>	resistant steel HCR		80		12	30	60	105	266	519	896	1333	1797

1										0.0	000		., .,	
Par	tial factors 1)													
_			4.8						1.25					
factor	용 Steel zinc plated		5.8		1.25									
Ψ.	> v	roperi class	8.8					1.25						
tia	⊱ Stainless steel R and		50	50 L-J					2.38					
Partial	high corrosion		70					1.3	25 ²⁾ / 1.	56				
Ľ	resistant steel HCR		80						1.33					

¹⁾ In absence of other national regulations

Injection mortar FAKKT IM Z

Performances

Characteristic resistance to steel failure under tension / shear loading of FAKKT anchor rods and standard threaded rods

Annex C 1

²⁾ Only admissible for high corrosion resistant steel HCR, with f_{yk} / f_{uk} ≥ 0,8 and A₅ > 12 % (e.g. FAKKT anchor rods)

³⁾ Values in brackets are valid for hot dip galvanised FAKKT anchor rods or hot dip galvanised standard threaded rods acc. to EN ISO 10684:2004+AC:2009

Table C2.1:	Characteristic resistance to steel failure under tension / shear loading
	of FAKKT internal threaded anchors

	011	AIXIXI IIII	Ciliai	unce	acca aricii	013			
FAKKT Internal	thread	ed anchors	}		M8	M10	M12	M16	M20
Characteristic r	esistan	ce to steel	failure	undei	r tension loa	ding			
		Property	5.8		19	29	43	79	123
Charact. resistance with	$N_{Rk,s}$	class	8.8	[kN]	29	47	68	108	179
screw	I N Rk,s	Property	R	[[[26	41	59	110	172
		class 70	HCR		26	41	59	110	172
Partial factors ¹⁾									
		Property	5.8				1,50		
Partial factors		class	8.8	[-]			1,50		
r artiar factors	γMs,N	Property	_R	ן נ־ז			1,87		
		class 70	HCR				1,87		
Characteristic r	esistan	ce to steel	failure	unde	r shear load	ing			
Without lever a	rm								
		Property	5.8		9,2	14,5	21,1	39,2	62,0
Charact. resistance with	$V^0_{Rk,s}$	class	8.8	R [kN]	14,6	23,2	33,7	54,0	90,0
screw	V RK,S	Property	R		12,8	20,3	29,5	54,8	86,0
		class 70	HCR		12,8	20,3	29,5	54,8	86,0
Ductility factor			k 7	[-]			1,0		
With lever arm									
		Property	5.8		20	39	68	173	337
Charact. resistance with	M^0 Rk,s	class	8.8	[Nm]	30	60	105	266	519
screw	IVI KK,S	Property	R	ןנייייון	26	52	92	232	454
		class 70	HCR		26	52	92	232	454
Partial factors ¹⁾									
		Property	5.8				1,25		
Partial factors	7/M- \/	class	8.8	[-]			1,25		
	γMs,V	Property	R				1,56		
		class 70	HCR				1,56		

¹⁾ In absence of other national regulations

Injection mortar FAKKT IM Z	
Performances Characteristic resistance to steel failure under tension / shear loading of FAKKT internal threaded anchor	Annex C 2

Injection mortar FAKKT IM Z

Performances

Electronic copy of the ETA by DIBt: ETA-22/0504

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Size						1	All size:	S				
Characteristic resistance to con	crete fa	ilure ui	nder te	nsion l	oading							
Installation factor	γinst	[-]				See an	nex C 4	to C 5				
Factors for the compressive str	ength of	concr	ete > C	20/25								
	C25/30						1,05					
Increasing factor ψ _c for	C30/37						1,10					
cracked or uncracked	C35/45] ,					1,15					
concrete	C40/50	[-]					1,19					
$\tau_{\text{Rk}(X,Y)} = \psi_{\text{c}} \cdot \tau_{\text{Rk}(C20/25)}$	C45/55						1,22					
	C50/60						1,26					
Splitting failure												
h / h _{ef} ≥ 2,							1,0 h _{ef}					
Edge distance $2,0 > h / h_{ef} > 1$,		[mm]				4,6	h _{ef} - 1,	8 h				
h / h _{ef} ≤ 1,	3	_ []					2,26 h _{et}	:				
Spacing	S cr,sp						2 C _{cr,sp}					
Concrete cone failure												
Uncracked concrete	k ucr,N	[-]					11,0					
Cracked concrete	k cr,N	L J	7,7									
Edge distance	C cr,N	[mm]	1,5 h _{ef}									
Spacing	S _{cr,N}	[]	2 C _{cr,N}									
Factors for sustained tension lo	ading											
Temperature range		[°C]	50 / 80 72 / 120									
Factor	Ψ^0_{sus}	[-]	0,74 0,87									
Characteristic resistance to con	crete fa	ilure uı	nder st	near loa	ading							
Installation factor	γinst	[-]					1,0					
Concrete pry-out failure												
Factor for pry-out failure	k 8	[-]					2,0					
Concrete edge failure												
Effective length of fastener in shear loading	l _f	[mm]			≤ 24 mı > 24 mı				mm)			
Calculation diameters												
Size			M6	M8	M10	M12	M16	M20	M24	M27	M30	
FAKKT anchor rods and standard threaded rods	d _{nom}	[mm]	6	8	10	12	16	20	24	27	30	
FAKKT internal threaded anchors	d_{nom}		_1)	12	16	18	22	28	_1)	_1)	_1)	

Z97231.22 8.06.01-175/22

Characteristic resistance to concrete failure under tension / shear loading

Annex C 3

Table C4.1:	Characteristic resistance to combined pull-out and concrete failure for FAKKT
	anchor rods and standard threaded rods in hammer drilled holes;
	uncracked or cracked concrete

	uncracke	Ju 0. 0	.aonoa									
Anchor ro	od / standard thread	led rod		M6	M8	M10	M12	M16	M20	M24	M27	M30
Combine	d pull-out and conc	rete con	ne failure									
Calculatio	n diameter	d	[mm]	6	8	10	12	16	20	24	27	30
Uncracke	d concrete											
Characte	ristic bond resistan	ce in un	cracked o	concre	te C20/	25						
Hammer-c	drilling with standard	drill bit o	r hollow d	rill bit (d	dry or w	et conc	rete)					
Tem- I: 50 °C / 80 °C			[N] / 21	9,0	11,0	11,0	11,0	10,0	9,5	9,0	8,5	8,5
perature range	II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0	7,0
Hammer-drilling with standard drill bit or hollow drill bit (water filled hole) ¹⁾												
Tem-	I: 50 °C / 80 °C		2-	_2)	_2)	_2)	9,5	8,5	8,0	7,5	7,0	7,0
perature range	II: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm ²]	_2)	_2)	_2)	7,5	7,0	6,5	6,0	6,0	6,0
Installatio	n factors							l				l
Dry or wet	t concrete							1,0				
Water fille	d hole	γinst	[-]	_2)	_2)	_2)			1,2	2 1)		
Cracked o	concrete											
Characte	ristic bond resistan	ce in cra	acked cor	ncrete	C20/25							
Hammer-c	drilling with standard	drill bit o	r hollow d	rill bit (d	dry or w	et conc	rete)					
Tem-	I: 50 °C / 80 °C		FN1/21	_2)	_2)	6,0	6,0	6,0	5,5	_2)	_2)	_2)
perature range	II: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	_2)	_2)	5,0	6,0	6,0	5,0	_2)	_2)	_2)
Hammer-c	drilling with standard	drill bit o	r hollow d	rill bit (\	vater fil	led hole) 1)		l	l	I	l
Tem-	I: 50 °C / 80 °C			_2)	_2)	_2)	5,0	5,0	4,5	_2)	_2)	_2)
perature range	II: 72 °C / 120 °C	τ _{Rk,cr}	[N/mm ²]	_2)	_2)	_2)	4,0	4,0	4,0	_2)	_2)	_2)
Installatio	on factors				ı		ı			ı	ı	ı
				2)	2)	1,0 -2) -2)				_2)		
Dry or wet concrete				_2)	_2)		1,	,0				- /

¹⁾ Valid for shuttle cartridges with 360 ml,825 ml and coaxial cartridges with 380ml, 400 ml, 410 ml

Injection mortar FAKKT IM Z	
Performances Characteristic resistance to combined pull-out and concrete failure for FAKKT anchor rod and standard threaded rods	Annex C 4

²⁾ No Performance assessed

Table C5.1: Characteristic resistance to combined pull-out and concrete failure for FAKKT internal threaded anchors in hammer drilled holes; uncracked concrete

FAKKT Internal threaded	d anchor		M8	M10	M12	M16	M20
Combined pull-out and o	concrete cor	ne failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond resi	stance in un	cracked	concrete C2	0/25			
Hammer-drilling with stand	dard drill bit o	r hollow d	Irill bit (dry or	wet concrete)		
Tem- I: 50 °C / 80		[N/mm ²]	10,5	10,0	9,5	9,0	8,5
range II: 72 °C / 120) °C T _{Rk,ucr}		9,0	8,0	8,0	7,5	7,0
Hammer-drilling with stand	dard drill bit o	r hollow d	<u>Irill bit (water</u>	filled hole) ¹⁾			
Tem- I: 50 °C / 80		[N/mm ²]	10,0	9,0	9,0	8,5	8,0
range II: 72 °C / 120) °C	[[[]]]	7,5	6,5	6,5	6,0	6,0
Installation factors							
Dry or wet concrete		F 1			1,0		
Water filled hole	γinst	[-]			1,2 ¹⁾		

¹⁾ Valid for shuttle cartridges with 360 ml,825 ml and coaxial cartridges with 380ml, 400 ml, 410 ml

Injection mortar FAKKT IM Z

Performances
Characteristic resistance to combined pull-out and concrete failure for FAKKT internal threaded anchors

Ar

Annex C 5

Table (C6.1: Dis	placeme	ents for a	anchor r	ods									
Anchor	rod	M6	M8	M10	M12	M16	M20	M24	M27	M30				
Displacement-Factors for tension loading ¹⁾														
Uncracked concrete; Temperature range I, II														
δ N0-Factor	[mm/(N/mm²)]	0,09	0,09	0,09	0,10	0,10	0,10	0,10	0,11	0,12				
δ _{N∞-Factor}][mm/(N/mm-)]]	0,10	0,10	0,10	0,12	0,12	0,12	0,13	0,13	0,14				
Cracked concrete; Temperature range I, II														
δ N0-Factor	[mm/(N/mm ²)]	_3)	_3)	0,12	0,12	0,13	0,13	_3)	_3)	_3)				
δ N0-Factor][mm/(n/mm-)]	_3)	_3)	0,27	0,30	0,30	0,30	_3)	_3)	_3)				
Displace	ement-Factors	for shear	loading ²⁾											
Uncrack	ed or cracked	concrete;	Tempera	ture rang	e I, II									
δ V0-Factor	[mm/kN]	0,11	0,11	0,11	0,10	0,10	0,09	0,09	0,08	0,07				
δ∨∞-Factor	[mm/kN]	0,12	0,12	0,12	0,11	0,11	0,10	0,10	0,09	0,09				

¹⁾ Calculation of effective displacement:

²⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$ $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \cdot \tau$

V = acting shear loading

Table C6.2: Displacements for FAKKT internal threaded anchors

Internal threaded anchor		M8	M10	M12	M16	M20					
Displacement-Factors for tension loading ¹⁾											
Uncracked concrete; Temperature range I, II											
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,10	0,11	0,12	0,13	0,14					
δN∞-Factor	[[[[[[[]]	0,13	0,14	0,15	0,16	0,18					
Displace	ment-Factors	for shear loading	J ²⁾								
Uncrack	ed concrete; T	emperature rang	e I, II								
δv0-Factor	France //cN17	0,12	0,12	0,12	0,12	0,12					
δ∨∞-Factor	[mm/kN]	0,14	0,14	0,14	0,14	0,14					

1) Calculation of effective displacement:

 $\delta_{N0} = \delta_{N0\text{-Factor}} \cdot \tau$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \, \cdot \, \tau$

 τ = acting bond strength under tension loading

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$

V = acting shear loading

Injection mortar FAKKT IM Z

Performances

Displacements for anchor rods and FAKKT internal threaded anchors

Annex C 6

 $[\]tau$ = acting bond strength under tension loading

³⁾ No performance assessed