

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0620 of 26 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Deutsches Institut für Bautechnik
Kalz Injection system UM-H+ for concrete
Bonded fastener for use in concrete
Shanghai Kalz Construction Technology Co., Ltd. Room 2G, Building 5, No. 423, Wu Ning Rd SHANGHAI VOLKSREPUBLIK CHINA
Shanghai Kalz Construction Technology Co., Ltd., Plant 1, Germany
40 pages including 3 annexes which form an integral part of this assessment
EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0620 English translation prepared by DIBt

Page 2 of 40 | 26 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 40 | 26 October 2022

Specific Part

1 Technical description of the product

The "Kalz Injection system UM-H+ for concrete" is a bonded fastener consisting of a cartridge with injection mortar Injection mortar UM-H+ and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 to C 4, C 6 to C 7, C 9 to C 10
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 5, C 8, C 11
Displacements under short-term and long-term loading	See Annex C 12 to C 14
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 15 to C 23

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 40 | 26 October 2022

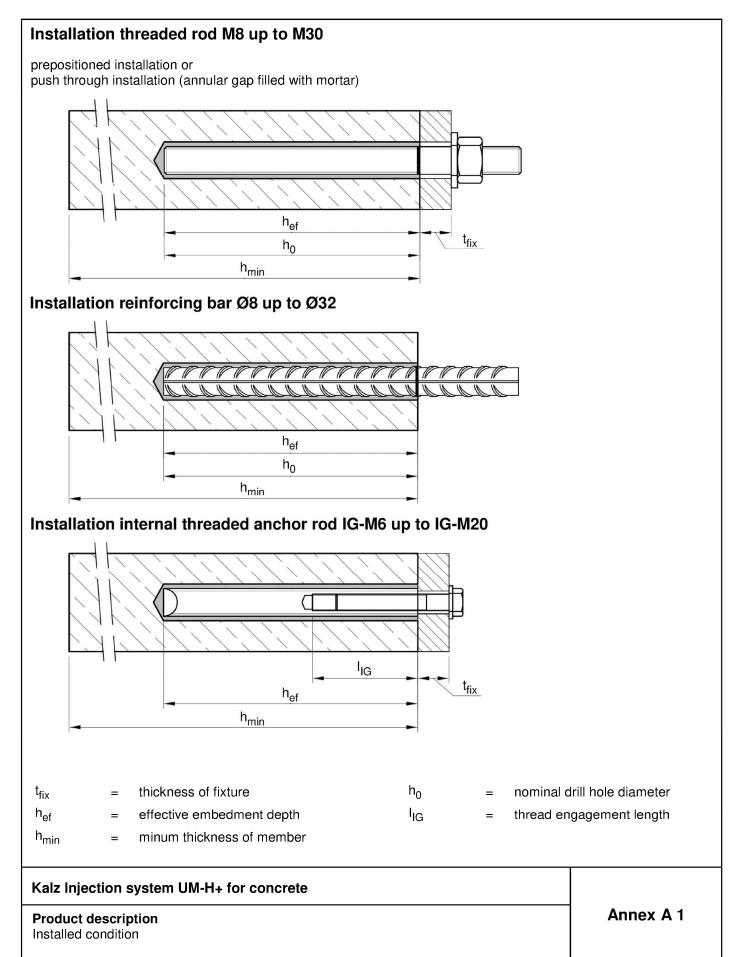
European Technical Assessment ETA-22/0620

English translation prepared by DIBt

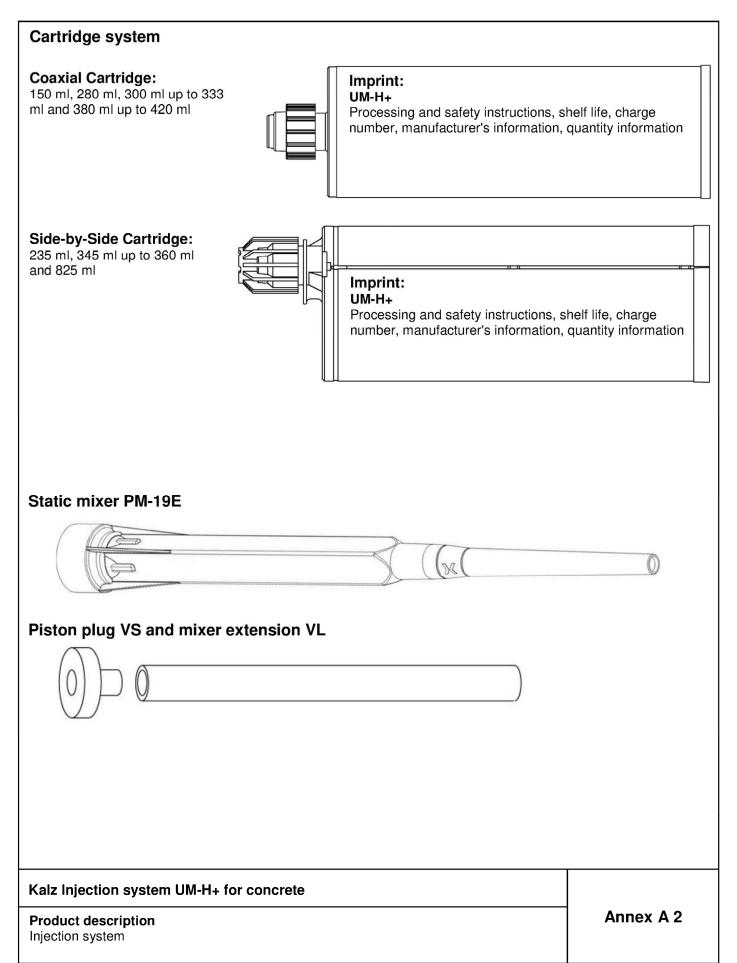
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

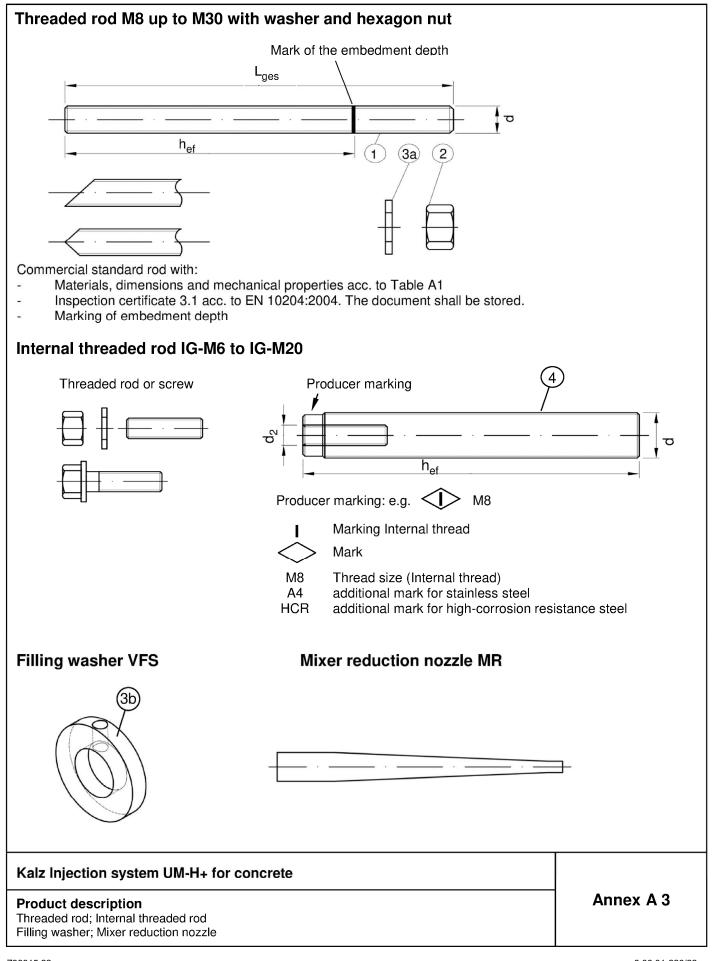
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 26 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider



Part	Designation	Material								
		acc. to EN ISO 683-4:								
		μm acc. to EN ISO		2:2018 or 1:2009 and EN ISO 10684	·2004+AC·2009 or					
		5 μm acc. to EN ISO			2004+A0.2003 01					
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture				
			4.6	$f_{uk} = 400 \text{ N/mm}^2$						
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{vk} = 320 N/mm ²	A ₅ > 8%				
		acc. to		f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%				
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%				
				$f_{uk} = 800 \text{ N/mm}^2$	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ ≥ 12% ³⁾				
			4	for anchor rod class 4.6 o		5				
2	Hexagon nut	acc. to	5	for anchor rod class 5.6 o						
		EN ISO 898-2:2012	8	for anchor rod class 8.8						
3a	Washer			galvanised or sherardized		7004 0000				
				EN ISO 7089:2000, EN ISC	0 /093:2000 or EN ISO	/094:2000)				
3b	Filling washer		η-αιρ	galvanised or sherardized Characteristic steel	Characteristic steel	Elongation at				
	Internal threaded	Property class		ultimate tensile strength	yield strength	fracture				
4	anchor rod	acc. to	5.8	$f_{uk} = 500 \text{ N/mm}^2$	$f_{vk} = 400 \text{ N/mm}^2$	A ₅ > 8%				
		EN ISO 898-1:2013			$f_{vk} = 640 \text{ N/mm}^2$	A ₅ > 8%				
Stai		rial 1.4301 / 1.4307 / 1	.431	1 / 1.4567 or 1.4541, acc. 1	to EN 10088-1:2014)					
Stai			.457	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088	to EN 10088-1:2014)					
Stai			.457 529 o	1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength	to EN 10088-1:2014) -1: 2014) Characteristic steel yield strength	Elongation at fracture				
Stai Higl	h corrosion resistan	ce steel (Material 1.45 Property class	.457 529 o 50	$\begin{array}{l} 1 \ / \ 1.4362 \ or \ 1.4578, \ acc. \ t \\ r \ 1.4565, \ acc. \ to \ EN \ 10088 \\ \hline \\ Characteristic \ steel \\ ultimate \ tensile \ strength \\ \hline \\ f_{uk} = 500 \ N/mm^2 \end{array}$	to EN 10088-1:2014) B-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$	fracture A ₅ ≥ 8%				
Stai Higl		ce steel (Material 1.45 Property class acc. to	.457 529 o 50 70	1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength	to EN 10088-1:2014) -1: 2014) Characteristic steel yield strength	fracture				
Stai Higl	h corrosion resistan	ce steel (Material 1.45 Property class	.457 529 o 50 70	$\begin{array}{l} 1 \ / \ 1.4362 \ or \ 1.4578, \ acc. \ t \\ r \ 1.4565, \ acc. \ to \ EN \ 10088 \\ \hline \\ Characteristic \ steel \\ ultimate \ tensile \ strength \\ \hline \\ f_{uk} = 500 \ N/mm^2 \end{array}$	to EN 10088-1:2014) B-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$	fracture A ₅ ≥ 8%				
Stai Higl	h corrosion resistan	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020	.457 529 o 50 70	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	to EN 10088-1:2014) B-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$				
Stai Higl	h corrosion resistan	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to	.457 529 o 50 70 80 50 70	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70	to EN 10088-1:2014) B-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$				
Stai	Threaded rod ¹⁾⁴⁾	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020	.457 529 o 50 70 80 50 70 80	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70 for anchor rod class 80	to EN 10088-1:2014) B-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$				
Stai Higl	Threaded rod ¹⁾⁴⁾	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452	.457 529 o 50 70 80 50 70 80 (1.43 (1.44 9 or	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70	to EN 10088-1:2014) 3-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 541, acc. to EN 10088- 578, acc. to EN 10088- 1: 2014	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 1:2014				
Stai Higl 1 2 3a	h corrosion resistant Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20	.457 529 o 50 70 80 50 70 80 71.43 9 or 50 7.43 9 or 50 7.43 9 or 50 7.43 7.44	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 .04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel	to EN 10088-1:2014) S-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ S541, acc. to EN 10088- 578, acc. to EN 10088- 1: 2014 0 7093:2000 or EN ISO	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 -1:2014 7094:2000)				
Stai Higl 1 2 3a	h corrosion resistant Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾ Washer	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20 Stainless steel A4, H	.457 529 o 50 70 80 50 70 80 71.43 9 or 50 7.43 9 or 50 7.43 9 or 50 7.43 7.44	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel	to EN 10088-1:2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ 4541, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 1:2014 0:7093:2000 or EN ISO Characteristic steel	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ 1:2014 1:2014 7094:2000) Elongation at				
Stai Higl 1 2 3a 3b	h corrosion resistant Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾ Washer Filling washer Internal threaded	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 Acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class	.457 529 o 50 70 80 50 70 80 70 80 (1.43 (1.43 9 or 1.44 9 or 1.44 9 or 1.44 9 or 1.44 1	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength	to EN 10088-1:2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ E541, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 2014 D 7093:2000 or EN ISO Characteristic steel yield strength	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 -1:2014 7094:2000) Elongation at fracture				
Stai Higl 1 2 3a 3b	h corrosion resistant Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾ Washer Filling washer	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 Acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to	.457 529 o 50 70 80 50 70 80 50 71.43 71.44 9 or 50 50	$\begin{array}{l} 1 \ / \ 1.4362 \ or \ 1.4578, \ acc. \ triangle \ 1.4565, \ acc. \ to \ EN \ 10088 \ characteristic \ steel \ ultimate \ tensile \ strength \ f_{uk} = 500 \ N/mm^2 \ f_{uk} = 700 \ N/mm^2 \ f_{uk} = 700 \ N/mm^2 \ f_{uk} = 800 \ N/mm^2 \ f_{uk} = 1.4567 \ or \ 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4565, \ acc. \ to \ EN \ 10088 \ r_{uk} = 1.4566, \ acc. \ to \ 10088 \ r_{uk} = 1.4566, \ acc. \ to \ 10088 \ r_{uk} = 1.4566, \ acc. \ to \ 10088 \ r_{uk} = 1.4566, \ acc. \ to \ 10088 \ r_{uk} = 1.4566, \ acc. \ to \ 10088 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ acc. \ to \ 1008 \ r_{uk} = 1.4566, \ to \ 10.4566, \ to \ 1008 \ r_{uk} = 1.4566, \ to \ 10.4566, \ to \ 10.$	to EN 10088-1:2014) B-1: 2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ E541, acc. to EN 10088- 578, acc. to EN 10088- 1: 2014 D 7093:2000 or EN ISO Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 -1:2014 7094:2000) Elongation at fracture $A_5 > 8\%$				
Stai Higl 1 2 3a 3b	h corrosion resistant Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾ Washer Filling washer Internal threaded	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 Acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class	.457 529 o 50 70 80 50 70 80 50 71.43 71.44 9 or 50 50	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength	to EN 10088-1:2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ E541, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 2014 D 7093:2000 or EN ISO Characteristic steel yield strength	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 -1:2014 7094:2000) Elongation at fracture				
Stai Higl 1 2 3a 3b 4 (1) F	h corrosion resistant Threaded rod ¹⁾⁴⁾ Hexagon nut ¹⁾⁴⁾ Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 or IG-M20 only propert	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 Acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.422 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 for anchor rods and he y class 50	.457 529 o 50 70 80 70 80 71.43 70 80 71.43 9 or - 50 70 50 70 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 70 70 70 70 70 70 70 7	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ an nuts up to M24 and Internal	to EN 10088-1:2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ E541, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 2014 0 7093:2000 or EN ISO Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 -1:2014 7094:2000) Elongation at fracture $A_5 > 8\%$ $A_5 > 8\%$				
Stai Higl 1 1 2 3a 3b 4 1) F 2) f 3) J	h corrosion resistant Threaded rod $^{1)4)}$ Hexagon nut $^{1)4)}$ Washer Filling washer Internal threaded anchor rod $^{1)2)}$ Property class 70 or 80 or IG-M20 only propert $A_5 > 8\%$ fracture elonge	ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 for anchor rods and he	.457 <u>529 o</u> <u>50</u> 70 <u>80</u> <u>50</u> 70 <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>80</u> <u>70</u> <u>70</u> <u>80</u> <u>70</u> <u>70</u> <u>80</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>70</u> <u>7</u>	1 / 1.4362 or 1.4578, acc. 1 r 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 70 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ n nuts up to M24 and International contents of the strength	to EN 10088-1:2014) Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ E541, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 578, acc. to EN 10088- 2014 0 7093:2000 or EN ISO Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	fracture $A_5 \ge 8\%$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ $A_5 \ge 12\%^{-3}$ -1:2014 -1:2014 7094:2000) Elongation at fracture $A_5 > 8\%$ $A_5 > 8\%$				

b heig	m value of related rip area f _{R,min} according to the bar shall be in the range 0,05 minal diameter of the bar; h _{rib} : Rib height	5d ≤ h _{rib} ≤ 0,07d
b heig	ght of the bar shall be in the range 0,05	5d ≤ h _{rib} ≤ 0,07d
b heig	ght of the bar shall be in the range 0,05	5d ≤ h _{rib} ≤ 0,07d
	man analition of the sail, frip, the holg	
	A0 Matariala Daixíanairea	L
able	A2: Materials Reinforcing	bar
rt De	signation	Material
bar		
	inforcing steel according to 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{yk} = f_{yk} = k \cdot f_{yk}$

Kalz Injection system UM-H+ for concrete

Product description Materials reinforcing bar Annex A 5

Specification of the intender Fasteners subject to (Static and						
	Working life	50 years	Working life	100 years		
Base material	uncracked concrete	cracked concrete	uncracked crack concrete concre			
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M8 Ø8 to Ø IG-M6 to I	ð 32,	M8 to M30, Ø8 to Ø32, IG-M6 to IG-M20			
Temperature Range:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
Fasteners subject to (seismic ac	tion):					
	Performance Category C1 Performance Category C2					
Base material		Cracked and un	cracked concrete			
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to I Ø8 to s		M12 to M24			
Temperature Range:	II: - 40 °C III: - 40 °C	to +40 °C ¹⁾ to +80 °C ²⁾ to+120 °C ^{3) 5)} to+160 °C ^{4) 5)}	I: - 40 °C II: - 40 °C III: - 40 °C IV: - 40 °C IV: - 40 °C	to +80 °C ²⁾ to+120 ° C ^{3) 5)}		
 (max. long-term temperature +24°C (max. long-term temperature +50°C (max. long-term temperature +72°C (max. long-term temperature +100°C Only for working life of 50 years 	and max. short-term ten and max. short-term ten	nperature +80°C) nperature +120°C)				
Base materials:						
 Compacted, reinforced or ur EN 206:2013 + A1:2016. Strength classes C20/25 to 0 		-	-			
Use conditions (Environmental of	conditions):					
 Structures subject to dry inter- For all other conditions according class: 			responding to corrosic	on resistance		

- Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
- Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
- High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Kalz Injection system UM-H+ for concrete

Intended Use Specifications

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB), compressed air (CD) or diamond drill mode (DD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installationtemperature in concrete:
- -5°C up to +40°C for the standard variation of temperature after installation.

Kalz Injection system UM-H+ for concrete

Intended Use Specifications (Continued)

Deutsches Institut für Bautechnik

Table B1:												
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of element d = d _{nom}			[mm]	8	10	12	16	20	24	27	30	
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35	
Effective embedme	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	
Ellective embedmen	Effective embedment depth		[mm]	160	200	240	320	400	480	540	600	
Diameter of	Prepositioned ins	stallation $d_{f} \leq$	[mm]	9	12	14	18	22	26	30	33	
clearance hole in the fixture ¹⁾	Push through installation df		[mm]	12	14	16	20	24	30	33	40	
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40 ²⁾	60	100	170	250	300	
Minimum thickness of member		h _{min}	[mm]	۳ ۲	f + 30 n : 100 mr			h _{ef} + 2d ₀				
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140	
Minimum edge dista	ance	c _{min}	[mm]	35	40	45	50	60	65	75	80	
1)		ST OF S						· · ·				

1) For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.

²⁾ Maximum installation torque for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for reinforcing bar

Reinforcing bar		~	Ø 81)	Ø 101)	Ø 121)	Ø 14	Ø 16	Ø 20	Ø 241)	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Iominal drill hole diameter d ₀ [mm]		10 12	12 14	14 16	18	20	25	30 32	30 32	35	40	
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]		30 mm)0 mm	≥			h _e	_f + 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85
1) le atte se serie al abilit le alla all'assa a												

1) both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of anchor rod ¹⁾	d = d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective and admost doubt	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}		200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 3 ≥ 100	30 mm) mm		h _{ef} +	- 2d ₀	
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80
1) With metric threads according to	EN 1993-1-8:2	2005+AC	C:2009		h i			

Kalz Injection system UM-H+ for concrete

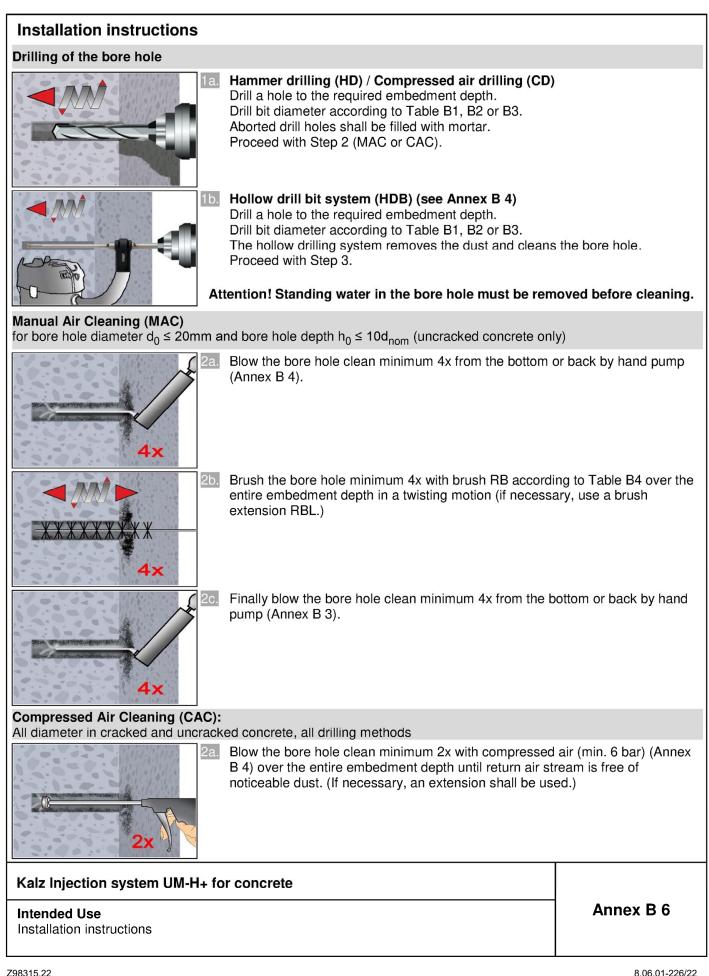
Intended Use

Installation parameters

	LLLLL				ranna	HARABLE	6				
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _t Brusł		d _{b,min} min. Brush - Ø	Piston plug		lation direction and of piston plug		
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		Ļ	\rightarrow		
M8	8		10	RB10	11,5	10,5					
M10	8 / 10	IG-M6	12	RB12	13,5	12,5]	No shi			
M12	10 / 12	IG-M8	14	RB14	15,5	14,5		No piug	required		
Saturate Second	12		16	RB16	17,5	16,5		1	· · · · ·		
M16	14	IG-M10	18	RB18	20,0	18,5	VS18	_			
	16	2 <u>2</u> 0 2 2 0 00	20	RB20	22,0	20,5	VS20	_			
M20		IG-M12	22	RB22	24,0	22,5	VS22	-	h _{ef} >		
1404	20		25	RB25	27,0	25,5	VS25	h _{ef} >			
M24	01/07	IG-M16	28	RB28	30,0	28,5	VS28	250 mm	250 mm	all	
M27	24 / 25		30	RB30	31,8	30,5	VS30				
MOO	24 / 25		32	RB32	34,0	32,5	VS32	-			
M30	28 32	IG-M20	35 40	RB35 RB40	37,0 43,5	35,5 40,5	VS35 VS40	-			
HDB – Ho	llow drill bit	system									
Hand pun	np	t system d _s , d₀ ≤ 20mm)		2		The hollow dril hollow drill bit a negative press 150 m ³ /h (42 l/ Compressed (min 6 bar)	and a class ure of 253 s).	s M hoover v	vith a minimu	um	
Hand pun	np			5		hollow drill bit a negative press 150 m³/h (42 l/	and a class ure of 253 s).	s M hoover v	vith a minimu	um	
Hand pun Volume 75	np 0 ml, h _o ≥ 10 d			2		hollow drill bit a negative press 150 m³/h (42 l/ Compressed	and a class ure of 253 s).	s M hoover v	vith a minimu	um	

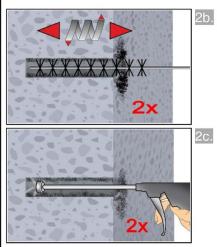
Cleaning and setting tools

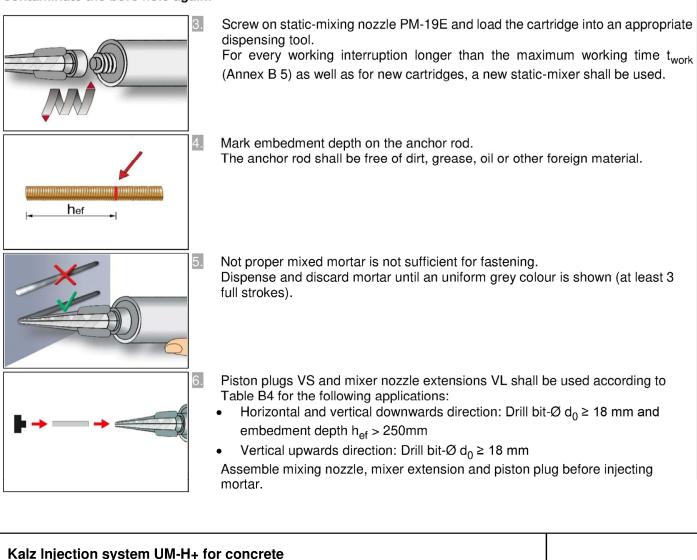
Table B5:	Workin	g time and cu	ring time	
Tempera	ature in bas	e material	Maximum working time	Minimum curing time 1)
	Т		t _{work}	t _{cure}
- 5°C	to	- 1 °C	50 min	5 h
O°C	to	+ 4 °C	25 min	3,5 h
+ 5 °C	to	+ 9 °C	15 min	2 h
+ 10°C	to	+ 14 °C	10 min	1 h
+ 15°C	to	+ 19°C	6 min	40 min
+ 20 °C	to	+ 29 °C	3 min	30 min
+ 30 °C	to	+ 40 °C	2 min	30 min
Cart	ridge tempe	erature	+5°C to) +40°C
		in a shu shalin fan dwy	here we at a viel	


1) The minimum curing time is only valid for dry base material.

In wet base material the curing time must be doubled.

Kalz Injection system UM-H+ for concrete

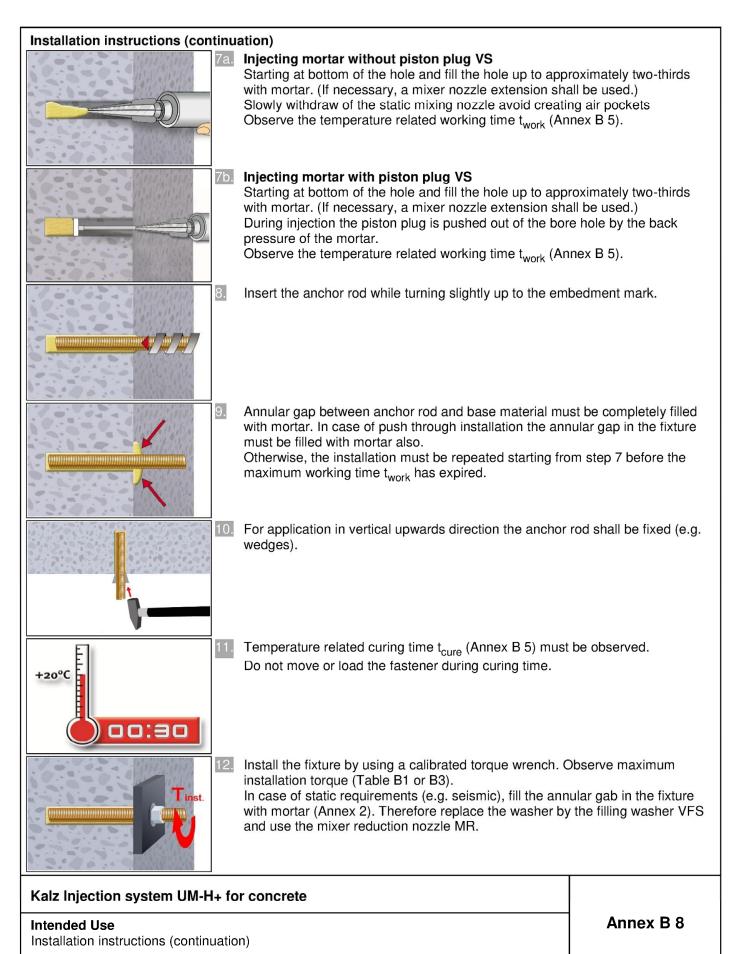

Intended Use Working time and curing time



Installation instructions (continuation)

- Brush the bore hole minimum 2x with brush RB according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used .RBL)
- Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.



Intended Use

Installation instructions (continuation)

Electronic copy of the ETA by DIBt: ETA-22/0620

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods												
Th	nreaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Cr	oss section area	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561	
Cł	naracteristic tension resistance, Steel failu	-										
1. Contract 1. Con	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)	
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)	
Cł	naracteristic tension resistance, Partial fac	tor ²⁾			··· ·· ·· ··							
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,	0				
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5				
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	36				
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	37				
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6								
Cł	naracteristic shear resistance, Steel failure	1)										
۶	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168	
evel	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
out le	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140	
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)	
5	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)	
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
era	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
th lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125	
	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)	
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)	
Cł	haracteristic shear resistance, Partial facto		1	0								
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	67				
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	25				
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8				
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	56				
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	33				
1) Values are only valid for the given stress area	As. Value	s in bra	ackets are	e valid for	unders	ized thr	eaded r	ods with	smaller	r	

 Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation
 3) Easternation and regulation ETA

³⁾ Fastener type not part of the ETA

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Table C2: Characteristic values of tension loads under static and quasi-static action for a working life of 50 and 100 years Fastener All Anchor types and sizes Concrete cone failure k_{ucr,N} Uncracked concrete [-] 11,0 7,7 Cracked concrete k_{cr,N} [-] Edge distance 1,5 h_{ef} C_{cr,N} [mm] 2 c_{cr,N} Axial distance s_{cr,N} [mm] Splitting 1,0 h_{ef} $h/h_{ef} \ge 2,0$ 2 · h_{ef} h $2,0 > h/h_{ef} > 1,3$ 2,5 C_{cr,sp} Edge distance [mm] 2,4 h_{ef} $h/h_{ef} \le 1,3$ 2 c_{cr,sp} Axial distance s_{cr,sp} [mm]

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under static and quasi-static action for a working life of 50 and 100 years

Tabl		acteristic va working life			s und	der st	atic a	nd q	uasi-	static	actio	on
Thread	led rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure		Ta a	1								
Charac	teristic tension resi	stance	N _{Rk,s}	[kN]			Α _s ・f _l	ık (or s	ee Tab	le C1)		
Partial	factor		γ _{Ms,N}	[-]				see Ta	ble C1			
-	ined pull-out and o											
	cteristic bond resiste	ance in uncracke	d concrete C20	/25								
ange	I: 40°C/24°C		^τ Rk,ucr	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range	II: 80°C/50°C	Dry, wet concrete and	^τ Rk,ucr	[N/mm ²]	17	17	16	15	14	13	13	13
perat	III: 120°C/72°C	flooded bore hole	^τ Rk,ucr	[N/mm ²]	15	14	14	13	12	12	11	11
Tem	IV: 160°C/100°C		^τ Rk,ucr	[N/mm ²]	12	11	11	10	9,5	9,0	9,0	9,0
-	cteristic bond resista	ance in cracked c	oncrete C20/25	5								
nge	I: 40°C/24°C		^τ Rk,cr	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	II: 80°C/50°C	Dry, wet concrete and	^τ Rk,cr	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
perat	III: 120°C/72°C	flooded bore hole	^τ Rk,cr	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Tem	IV: 160°C/100°C		^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Redukt	tion factor ψ ⁰ sus in	cracked and unc	racked concrete	e C20/25								
	I: 40°C/24°C							0,9	90			
Temperature range	II: 80°C/50°C	Dry, wet concrete and	0					0,	87			
oerati	III: 120°C/72°C	flooded bore	Ψ ⁰ sus	[-]				0,	75			
Tem	IV: 160°C/100°C							0,	66			
Increas	sing factors for cond	crete	Ψc	[-]				(f _{ck} / 2	20) ^{0,1}			
Charac	teristic bond resista	ance depending		τ _{Rk,ucr} =			Ψc	• ^τ Rk,u	cr,(C20/	(25)		
	concrete strength c			τ _{Rk,cr} =			Ψ	c ^{•τ} Rk,o	cr.(C20/	25)		
Concr	ete cone failure		J	91 BOOK 14						-1		
	nt parameter							see Ta	ble C2			
Splitti	-											
10 m	nt parameter							see Ta	ble C2			
Installa	ation factor	МАС					1,2			No Per		ice
for dry	and wet concrete	CAC						1	,0	ass	essed	
		HDB	⁻ Yinst	[-]					,0 ,2			
for floo	ded bore hole	CAC	1						, <u>–</u> ,4			
-												
Perfo Chara	Injection system rmances cteristic values of te vorking life of 50 yea	nsion loads under		-static actio	n					Anne	x C 3	1

11 6-65 CONTRACTOR (1997) 200	acteristic val working life			ls un	der si	atic a	and q	uasi-	statio	e actio	on
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure		1									
Characteristic tension resi	stance	N _{Rk,s}	[kN]			$A_s \cdot f$	_{uk} (or s	ee Tab	le C1)		
Partial factor		γ _{Ms,N}	[-]				see Ta	able C1			
Combined pull-out and o	concrete failure										
Characteristic bond resist	ance in uncracke	d concrete C20	/25								
I: 40°C/24°C	Dry, wet concrete and flooded bore	⁷ Rk,ucr,100	[N/mm ²]	17	17	16	15	14	13	13	13
⊑ [–] II: 80°C/50°C	hole	^τ Rk,ucr,100	[N/mm ²]	17	17	16	15	14	13	13	13
Characteristic bond resista	ance in cracked c	oncrete C20/2	5								
Temperature ange I: 40°C/24°C II: 80°C/50°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
بط بق II: 80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5
Increasing factors for cond	crete	Ψc	[-]				$(f_{ck} /$	20) ^{0,1}			
Characteristic bond resista	ance depending	τ _R	k,ucr,100 =			Ψ c •	^τ Rk,uci	r,100,(C	20/25)		
on the concrete strength c			Rk,cr,100 =				• τ _{Rk,cr}				
Concrete cone failure			,-,				,-	,, (
Relevant parameter							see Ta	able C2	2		
Splitting								11.00			
Relevant parameter				-			see Ta	able C2	2		
Installation factor	1	1									
for dry and wat concrete	MAC					1,2				rformar sessed	ice
for dry and wet concrete	CAC	γ _{inst}	[-]					,0			
	HDB	4						,2			
for flooded bore hole	CAC			2			1	,4			
Kalz Injection system Performances Characteristic values of te			i-statio actio	n					Anne	ex C 4	Ļ

for a working life of 100 years (threaded rod)

Table C5: Characteristic for a working I					nder s	tatic a	nd qu	asi-st	atic acti	on
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm					-		-			
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k7	[-]					1,0			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} ∙f _{uk}	(or see	Table C	51)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	۱ _f	[mm]		m	iin(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of shear loads under static and quasi-static action (threaded rod)

Tabl		aracteristi a working				oads ur	nder sta	tic and	quasi-s	tatic ac	tion
Interna	al threaded anch	or rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel fa	ailure ¹⁾										
Charac	teristic tension re	esistance,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, s	strength class		8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial	factor, strength o	lass 5.8 and 8	8.8	γ _{Ms,N}	[-]			1	,5		
	teristic tension re 4 and HCR, Stre			N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial				γMs,N	[-]			1,87			2,86
	ned pull-out and										
	teristic bond resi	stance in unc	racked co			47		15		10	10
Temperature range	I: 40°C/24°C		oporata	⁷ Rk,ucr	[N/mm ²]	17	16	15	14	13	13
iperat ange	II: 80°C/50°C	Dry, wet c and	oncrete	^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13
ra	III: 120°C/72°C		ore hole	^τ Rk,ucr	[N/mm ²]	14	14	13	12	12	11
-	IV: 160°C/100°			^τ Rk,ucr	[N/mm ²]	11	11	10	9,5	9,0	9,0
	teristic bond resi	stance in crac	cked cond	crete C20		all states and a					
Temperature range	I: 40°C/24°C			^τ Rk,cr	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0
nperat ange	II: 80°C/50°C	Dry, wet c	oncrete	^τ Rk,cr	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0
mpe	III: 120°C/72°C	flooded bo	ore hole	^τ Rk,cr	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0
Те	IV: 160°C/100°	С		^τ Rk,cr	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5
Redukt	tion factor ψ^0 sus	in cracked an	d uncrac	ked conc	rete C20/2	5					
Ire	I: 40°C/24°C							0,	90		
iperatu ange	II: 80°C/50°C	Dry, wet c	oncrete	0				0,	87		
Temperature range	III: 120°C/72°C	and flooded bo	ore hole	Ψ^0 sus	[-]			0,	75		
Ter	IV: 160°C/100°							0,	66		
Increas	sing factors for co	oncrete		Ψc	[-]			(f _{ck} /	20) ^{0,1}		
Charac	teristic bond resi	stance depen	dina on		τ _{Rk,ucr} =			Ψ c • ^τ Rk.ι	ucr,(C20/25)		
	crete strength cl				τ _{Rk,cr} =				cr,(C20/25)		
Concre	ete cone failure			1	110,01				01,(020/20)		
Releva	nt parameter							see Ta	able C2		
	ng failure										
-	nt parameter							see Ta	able C2		
Installa	ation factor	1440		1			1.0		Ne Devi		
for dry	and wet concrete	MAC CAC		-			1,2	1	,0	ormance a	issessea
	and wet concrete	HDB		γinst	[-]				,0 ,2		
for floo	ded bore hole	CAC		1					, <u> </u>		
¹⁾ Fas The	tenings (incl. nut a characteristic ter IG-M20 strength	and washer) m Ision resistanc	e for stee					erty class of	of the interi		ed rod.
Perfor Chara	Injection syste rmances cteristic values of vorking life of 50 y	tension loads	under sta	tic and qu		uction			_	Annex (6

Internal	threaded ancho	r rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel fail	lure ¹⁾										
Characte	ristic tension res	istance, 5	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
Steel, str	ength class	8	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial fa	ctor, strength cla	ss 5.8 and 8.8	3	γ _{Ms,N}	[-]			1	,5		
	ristic tension res and HCR, Streng			N _{Rk,s}	[kN]	14	26	41	59	110	124
Partial fa	ctor			γ _{Ms,N}	[-]			1,87			2,86
Combine	ed pull-out and o	concrete con	e fail	ure							
	ristic bond resist	ance in uncra	cked	concrete C2	20/25						
Temperature range 	: 40°C/24°C	Dry, wet contand	crete	^τ Rk,ucr,100	[N/mm²]	17	16	15	14	13	13
Tempe rar	I: 80°C/50°C	flooded bore	hole	^τ Rk,ucr,100	[N/mm²]	17	16	15	14	13	13
Characte	ristic bond resist	ance in cracke	ed cor	hcrete C20/	25			1			
Temperature range - 1 -	: 40°C/24°C	Dry, wet con	crete	^τ Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5
Tempe ran - 1	l: 80°C/50°C	and flooded bore	hole	^τ Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5
Increasin	g factors for con	crete		Ψc	[-]			(f _{ck} /	20) ^{0,1}		
Characte	ristic bond resist	ance dependi	na		ucr,100 =		ų	^ν c ^{•τ} Rk,uc		25)	
	oncrete strength o		ing		,cr,100 =			Ψc ^{• τ} Rk,cr			
Concrete	e cone failure				,0.,.00				,,(020,2		
Relevant	parameter							see Ta	able C2		
Splitting											
	parameter							see Ta	able C2		
Installati	on factor										
fordruge	ad wat apparate	MAC CAC					1,2	-	1	ormance a	assessed
ioi ury ai	nd wet concrete	HDB		γinst	[-]				,0 ,2		
for floode	ed bore hole	CAC							<u>,4</u>		
The cl	nings (incl. nut an haracteristic tensi G-M20 strength cla	on resistance f									ed rod.

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under static and quasi-static action for a working life of 100 years (internal threaded anchor rod)

Internal threaded anchor rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹⁾						1		1	1
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		۱ _f	[mm]		min	(h _{ef} ; 12 • c	d _{nom})		min(h _{ef} ; 300mm
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]				1,0		1
 Fastenings (incl. nut and washe The characteristic tension resist ²⁾ For IG-M20 strength class 50 is 	ance fo								

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of shear loads under static and quasi-static action (internal threaded anchor rod) $% \left(\frac{1}{2}\right) =0$

Tabl		acteristic working			n Ioa	ds u	nder	stati	c and	d qua	asi-si	atic	actio	n
Reinfo	rcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa				1										
Charac	teristic tension resi	stance	N _{Rk,s}	[kN]					A _s ·	f _{uk} ¹⁾				
Cross s	section area		A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial	factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
-	ned pull-out and o													
-	teristic bond resista	ance in uncra	cked concre	1										
ure	I: 40°C/24°C	Dry, wet	^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
nperati range	II: 80°C/50°C	concrete and	^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Temperature range	III: 120°C/72°C	flooded	^τ Rk,ucr	[N/mm ²]	13	12	12	12	12	11	11	11	11	11
Te	IV: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm ²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Charac	teristic bond resista	ance in crack	ed concrete	C20/25										
are	I: 40°C/24°C	Dry, wet	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
nperatu range	II: 80°C/50°C	concrete	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C	and flooded	^τ Rk,cr	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Ter	IV: 160°C/100°C	bore hole	^τ Rk,cr	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Redukt	tion factor ψ^0_{sus} in	cracked and												
e	I: 40°C/24°C	Dry, wet							0,	90				
ratur ge	II: 80°C/50°C	concrete	0						0,	87				
Temperature range	III: 120°C/72°C	and flooded	Ψ^0 sus	[-]					0,	75				
Te	IV: 160°C/100°C	bore hole							0,	66				
Increas	sing factors for conc	crete	Ψc	[-]					(f _{ck} / 2	20) ^{0,1}				
	teristic bond resista			τ _{Rk,ucr} =				Ψc	• 7 _{Rk,L}	Icr.(C20)/25)			
	ding on the concrete	e strength		τ _{Rk,cr} =					• τ _{Rk,}					
class Concre	ete cone failure			-nk,cr				+0	-nĸ,	cr,(020	/25)			
	nt parameter								see Ta	ble C	2			
Splittir														
	nt parameter								see Ta	ble C	2			
	ation factor													
		MAC					1,2			No	Perfor	mance	asses	ssed
for dry	and wet concrete	CAC	γinst	[-]						,0				
		HDB								,2				
	ded bore hole	CAC							1	,4				
	shall be taken from t bsence of national re	•	ons of reinfor	cing bars										
Kalz	Injection system	1 UM-H+ for	concrete									nnev		

Annex C 3

Electronic copy of the ETA by DIBt: ETA-22/0620

Table		acteristic working l			n Ioa	ds u	nder	stati	c an	d qua	asi-si	tatic	actio	n
Reinfo	rcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa	ailure													
Charac	teristic tension resi	istance	N _{Rk,s}	[kN]			-		A _s	• f _{uk} 1)				
Cross s	section area		A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial f	factor		γ _{Ms,N}	[-]					1	,4 ²⁾				
Combi	ned pull-out and o	concrete fail	ure											
Charac	teristic bond resista	ance in uncra	cked concre	te C20/25										
Temperature range	I: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Temp	II: 80°C/50°C	flooded bore hole	^τ Rk,ucr,100	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Charac	teristic bond resista	ance in crack	ed concrete	C20/25										
Temperature range	I: 40°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm ²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
Temperar	II: 80°C/50°C	flooded bore hole	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
Increas	sing factors for con	crete	Ψc	[-]					(f_{ck})	20) ^{0,1}				
	teristic bond resist		^τ Rk	ucr,100 =				Ψc•	^τ Rk.uc	r,100,(C	20/25)			
depend class	ding on the concret	e strength		k,cr,100 =						,100,(C				
Concre	ete cone failure													
Releva	nt parameter								see Ta	able C	2			
Splittin	ng													
Releva	nt parameter								see Ta	able C	2			
Installa	ation factor													
		MAC	_				1,2				Perfor	mance	asses	sed
for dry a	and wet concrete	CAC HDB	γinst	[-]						,0				
for floor	ded bore hole	CAC	-							,2 ,4				
	shall be taken from t									,-				
	bsence of national n													
Perfor Charao	Injection system mances cteristic values of te vorking life of 100 ye	nsion loads ur		d quasi-sta	itic act	ion					Α	nnex	C 10)

Table C11: Characterist for a working					nder	^r stat	ic ai	nd qu	uasi-	static	actio	ו
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			1	1					11		1	
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,50	• A _s •	f _{uk} 1)			
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	·	•										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2 •	w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾	·			
Concrete pry-out failure	·		•									
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure	•											
Effective length of fastener	۱ _f	[mm]		I	min(h _e	_{ef} ; 12 •	d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ_{inst}	[-]						1,0				
 f_{uk} shall be taken from the specifica in absence of national regulation 	ations of reinf	orcing bar	S									

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of shear loads under static and quasi-static action (rebar)

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C	20/25 under s	tatic and quasi-s	tatic acti	on for a	working	g life of	50 and 1	100 year	s	I
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,06
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,04
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,06
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,17
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,18
Cracked concrete und	er static and o	quasi-static actio	n for a w	orking I	ife of 50	and 10	0 years			
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,10
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,13
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,11
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,14
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,41
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,42
		ction bond stress fo	r load¹)							
$ \delta_{N\infty} = \delta_{N\infty} $ -factor · τ; Table C13: Dis Threaded rod	placement	s under shea	r load ¹⁾ M8	M10	M12	M16	M20	M24	M27	M30
$\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$; Table C13: Dis Threaded rod Uncracked and cracke	placement d concrete un	s under shear	r load ¹⁾ M8 Jasi-stati	M10	for a w	orking l	ife of 50	and 100) years	
$ δN∞ = δN∞-factor · τ; $ Table C13: Dis Threaded rod Uncracked and cracke All temperature $ δ_V $	placement	s under shea	r load ¹⁾ M8	M10						M30 0,03 0,05
$ δN∞ = δN∞-factor · τ; $ Table C13: Dis Threaded rod Uncracked and cracke All temperature $ δ_V $	placement d concrete un 10 ⁻ factor 1∞ ⁻ factor	s under shear	r load ¹⁾ M8 Jasi-stati	M10 c action 0,06	for a w	orking l 0,04	ife of 50 0,04	and 100) years 0,03	0,03

Internal threaded	anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concr	ete under stati	c and qu	asi-static act	on for a w	orking lif	e of 50 and	100 years		
Temperature ra		tor	[mm/(N/mm ²)]	0,032	0,034	0,037	0,039	0,042	0,046
I: 40°C/24°0 II: 80°C/50°0			[mm/(N/mm ²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature ra	S 4		[mm/(N/mm ²)]	0,034	0,035		0,041	0,044	0,048
III: 120°C/72		-	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature ra	ange _{δN0} -fac	tor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
IV: 160°C/100		ctor	[mm/(N/mm ²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete		nd quas	i-static action	for a worl	king life o	of 50 and 10	0 years		
Temperature ra I: 40°C/24°0		tor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106
II: 80°C/50°		ctor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature ra	8 1	tor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
III: 120°C/72°	°C δ _{N∞} -fac	ctor	[mm/(N/mm ²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature ra		tor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
IV: 160°C/100	°C δ _{N∞} -fac	ctor	[mm/(N/mm ²)]	0,330	0,340	0,358	0,377	0,396	0,424
	Displacem			load ¹⁾	MQ	IG-M10	IG-M12	IG M16	IG-M20
δ _{N∞} = δ _{N∞} -factor Table C15: Internal threaded	Displacem anchor rods	ents ui	nder shear IG	load ¹⁾ ∙M6 IC		IG-M10	IG-M12	IG-M16	IG-M20
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C15:	Displacem anchor rods	ents ui	nder shear IG	load ¹⁾ ∙M6 IC					
δ _{N∞} = δ _{N∞} -factor Table C15: Internal threaded	Displacem anchor rods	ents ui	nder shear IG static and qu	Ioad ¹⁾ •M6 IC asi-static a					
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C15: Internal threaded Uncracked and c All temperature ranges ¹⁾ Calculation of th	or $\cdot \tau$; Displacem anchor rods racked concret δ_{V0} -factor $\delta_{V\infty}$ -factor the displacement	ents ui e under [mm/ [mm/	nder shear IG static and qu /kN] 0 /kN] 0	Ioad ¹⁾ M6 IC asi-static a	ction for	a working	life of 50 a	nd 100 yeaı	'S
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C15: Internal threaded Uncracked and c All temperature ranges	or \cdot τ ; Displacement anchor rods racked concret δ_{V0} -factor $\delta_{V\infty}$ -factor the displacement or \cdot V;	ents ui e under [mm/ [mm/	nder shear IG static and qu /kN] 0	Ioad ¹⁾ M6 IC asi-static a	ction for	a working	life of 50 a	nd 100 year 0,04	's 0,04

Displacements under static and quasi-static action for a working life of 50 and 100 years (internal threaded anchor rod)

	Displace	ments unde	r tensi	ion loa	ad ¹⁾							
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked conc	rete under st	atic and quasi-	static ac	tion for	r a work	king life	e of 50 a	and 100	years			_
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,04
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,06
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,05
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,06
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,18
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,19
Cracked concret		c and quasi-sta	tic actio	on for a	workin	g life of	f 50 and	d 100 ye	ears			
Temperature range	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,10
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,14
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,11
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,14
Temperature	δ _{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,42
range	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,44
IV: 160°C/100°C 1) Calculation of t $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fact Table C17:	the displaceme tor $\cdot \tau$; tor $\cdot \tau$;	1	l stress f			1				1		
1) Calculation of t $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fact Table C17:	the displaceme tor $\cdot \tau$; tor $\cdot \tau$;	nt τ: action bonc	stress f	r load	1)	Ø 14	Ø 16	Ø 20	0 24	Ø 25	Ø 28	Ø3
¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fac Table C17: Reinforcing bar	the displaceme tor · τ; tor · τ; Displace	nt τ: action bonc ments unde	stress f r shea Ø 8	r load Ø 10	1) Ø 12			Ø 20	Ø 24	Ø 25	Ø 28	Ø 3:
¹⁾ Calculation of t $\delta_{N0} = \delta_{N0}$ -fact $\delta_{N\infty} = \delta_{N\infty}$ -fac Table C17: Reinforcing bar Uncracked and o	the displaceme tor · τ; tor · τ; Displace	nt τ: action bonc ments unde	stress f r shea Ø 8 c and q	r load Ø 10	1) Ø 12 atic acti	on for a	a worki	ng life	of 50 ar	nd 100 y	years	Ø 32
1) Calculation of t	the displaceme tor $\cdot \tau$; tor $\cdot \tau$; Displace cracked conc δ_{V0} -factor $\delta_{V\infty}$ -factor	nt τ: action bonc ments unde rete under stati [mm/kN] [mm/kN]	stress f r shea Ø 8 c and q 0,06	r load Ø 10 uasi-sta 0,05	1) Ø 12 htic acti 0,05	on for : 0,04						Ø 3: 0,03 0,04
¹⁾ Calculation of t	the displaceme tor $\cdot \tau$; tor $\cdot \tau$; Displace cracked conce δ_{V0} -factor $\delta_{V\infty}$ -factor the displacement or \cdot V;	nt τ: action bonc ments unde rete under stati [mm/kN] [mm/kN]	stress f r shea Ø 8 c and q 0,06 0,09	r load Ø 10 uasi-sta 0,05	1) Ø 12 htic acti 0,05	on for a	a worki 0,04	ng life 0,04	of 50 ar 0,03	nd 100 y	years 0,03	0,03

Displacements under static and quasi-static action for a working life of 50 and 100 years (rebar)

Table C18:Characteristic values of tension loads under seismic action
(performance category C1) for a working life of 50 years

	•		• • •		Ŭ							
Thread	led rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure		_									
Charac	teristic tension resist	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}								
Partial	factor		γ _{Ms,N}	[-]				see Ta	able C1			
Combi	ned pull-out and co	ncrete failure										
Charac	teristic bond resistar	nce in cracked a	nd uncracked o	concrete C2	0/25							
le	I: 40°C/24°C	Dry, wet concrete and flooded bore hole	^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
nperatu range	II: 80°C/50°C		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C		^τ Rk,eq,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Te	IV: 160°C/100°C		^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Increas	sing factors for concre	ete	Ψc	1,0	1,0							
Characteristic bond resistance depending on the concrete strength class		τ	Rk,eq,C1 =	Ψc ^{• τ} Rk,eq,C1,(C20/25)								
Installation factor												
for dry and wet concrete CAC HDB		γ _{inst}	[-]				112	,0 ,2				
for floo	ded bore hole	CAC						1	,4			

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years (threaded rod)

Table C19:Characteristic values of tension loads under seismic action
(performance category C1) for a working life of 100 years

Threade	ed rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ilure			_								
Charact	eristic tension resist	ance	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}			
Partial fa	actor		γ _{Ms,N}	[-]				see Ta	able C1			
Combin	ned pull-out and co	ncrete failure										
Charact	eristic bond resistar	ice in cracked a	nd uncracked o	concrete C2	20/25							
Temperature range	l: 40°C/24°C	Dry, wet concrete and	^τ Rk,eq,C1	[N/mm ²]	5,5	6	6,5	6,5	6,5	6,5	6,5	6,5
Temperar	II: 80°C/50°C	flooded bore hole	^τ Rk,eq,C1	[N/mm²]	5,5	6	6,5	6,5	6,5	6,5	6,5	6,5
Increasi	ing factors for concre	ete	Ψc	1,0	1,0							
Characteristic bond resistance depending on the concrete strength class			τ	Rk,eq,C1 =	Ψc ^{• τ} Rk,eq,C1,(C20/25)							
Installa	tion factor											
for dry and wet concrete		Yinst	[-]	1,0								
for flood	led bore hole	CAC						78	, <u>-</u> ,4			
for dry and wet concrete HDB Υinst				[-]				1	,2			

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years (threaded rod)

Table C20:	Characteristi (performance									rs	
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure											
Characteristic shea (Seismic C1)	r resistance	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}							
Partial factor		γ _{Ms,V}	[-]	see Table C1							
Factor for annular	gap	α _{gap}	[-]				0,5	5 (1,0) ¹⁾			
 Value in brackets Annex A 3 is rec 		ular gab betwee	en faste	ener and	l clearan	ce hole	in the fix	ture. Us	e of spe	cial filling v	vasher

Kalz Injection system UM-H+ for concrete

Performances Characteristic values of shear loads under seismic action (performance category C1) (threaded rod)

Table C21: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32 Steel failure $1,0 \cdot A_{s} \cdot f_{uk}^{1}$ N_{Rk,s,eq,C1} Characteristic tension resistance [kN] As 50 113 154 201 314 452 491 616 Cross section area [mm²] 79 804 1.42) Partial factor γMs,N [-] Combined pull-out and concrete failure Characteristic bond resistance in cracked and uncracked concrete C20/25 femperature range I: 40°C/24°C 5,5 [N/mm²] 5,5 6,0 6,5 6,5 6,5 6,5 7,0 7,0 7,0 ^τRk,eq,C1 Dry, wet II: 80°C/50°C concrete [N/mm²] 5.5 5.5 6.0 6.5 6.5 6.5 6.5 7,0 7.0 7.0 ^τRk,eq,C1 and III: 120°C/72°C [N/mm²] 4,5 5,0 5,0 5,5 5,5 5,5 5,5 6,0 6,0 6,0 flooded ^τRk,eq,C1 bore hole IV: 160°C/100°C 4.0 4.5 4.5 5.0 5,0 5.0 5.0 5.0 5.0 5.0 [N/mm²] ^τRk,eq,C1 Increasing factors for concrete Ψc 1,0 1,0 Characteristic bond resistance depending on the concrete strength $\tau_{Rk,eq,C1} =$ Ψc • ^τRk,eq,C1,(C20/25) class Installation factor CAC 1,0 for dry and wet concrete HDB Yinst [-] 1,2 for flooded bore hole CAC 1,4 ¹⁾ $f_{\mu k}$ shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years (rebar)

Table C22: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32 Steel failure $1,0 \cdot A_{s} \cdot f_{uk}^{1}$ N_{Rk,s,eq,C1} Characteristic tension resistance [kN] As 50 113 154 201 314 452 491 616 Cross section area [mm²] 79 804 1.4^{2} Partial factor γMs,N [-] Combined pull-out and concrete failure Characteristic bond resistance in cracked and uncracked concrete C20/25 emperature Dry, wet I: 40°C/24°C 4,5 4,0 [N/mm²] 4,5 4,5 4,5 4,5 4,0 4,0 4,0 4,0 ^τRk,eq,C1 concrete range and II: 80°C/50°C 4,5 flooded ^τRk,eq,C1 [N/mm²] 4,5 4,5 4,5 4,5 4,0 4,0 4,0 4,0 4,0 bore hole Increasing factors for concrete 1.0 Ψc 1.0 Characteristic bond resistance depending on the concrete strength τ Rk,eq,C1 = Ψc [•] ^τRk,eq,C1,(C20/25) class Installation factor 1,0 CAC for dry and wet concrete HDB 1,2 [-] γinst for flooded bore hole CAC 1.4 ¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

²⁾ in absence of national regulation

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years (rebar)

Table C23:	Characteristic (performance	a - ar ar ar ar ar		1000		S 551		5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	100 100	10-11 E	ears		
Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure						÷							
Characteristic shea	ar resistance	V _{Rk,s,eq}	[kN]	$0,35 \cdot A_{s} \cdot f_{uk}^{1)}$									
Cross section area		A _s	[mm ²] 50 79 113 154 201 314 452 491 616 804						804				
Partial factor		γ _{Ms,V}	[-]	1,5 ²⁾									
Factor for annula	r gap	α _{gap}	[-]					0,	5 (1,0) ³⁾			
²⁾ in absence of na	n from the specificat ational regulation						h a l a ::-	the endin				6111: a a a	- h - u

³⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of shear loads under seismic action (performance category C1) (rebar)

hreaded rod				M12	M16	M20	M24
Steel failure					1		
Characteristic tension resist Steel, strength class 8.8 Stainless Steel A4 and HCF Strength class ≥70		N _{Rk,s,eq,C2}	[kN]		1,0 •	N _{Rk,s}	
Partial factor		γ _{Ms,N}	[-]		see Ta	ble C1	
Combined pull-out and co							
Characteristic bond resistar	ice in cracked a		T T	Bank Color Bank an	0.5	0.0	
enderse I: 40°C/24°C underse III: 80°C/50°C III: 120°C/72°C III: 120°C/72°C IV: 160°C/100°C IV: 160°C/100°C	Dry, wet	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3
III: 80°C/50°C	concrete and	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3
© ፼ III: 120°C/72°C	flooded bore hole	^τ Rk,eq,C2	[N/mm ²]	3,1	3,0	2,8	2,0
⊢ [™] IV: 160°C/100°C		^τ Rk,eq,C2	[N/mm ²]	2,5	2,7	2,5	1,8
ncreasing factors for concre		Ψc	1,0		1,	0	
Characteristic bond resistar			^τ Rk,eq,C2 =		Ψc ^{• τ} Rk,eq	,C2,(C20/25)	
nstallation factor	010	1	1			0	
or dry and wet concrete	CAC HDB	γinst	[-]		<u> </u>		
or flooded bore hole	CAC				1,		

Kalz Injection system UM-H+ for concrete

Performances

Characteristic values of tension loads under seismic action (performance category C2) for a working life of 50 years (threaded rod)

Annex C 21

Electronic copy of the ETA by DIBt: ETA-22/0620

Threaded rod				M12	M16	M20	M24		
Steel failure		_			1	1			
Characteristic tension resis Steel, strength class 8.8 Stainless Steel A4 and HC Strength class ≥70		N _{Rk,s,eq,C2}	[kN]		1,0 • N _{Rk,s}				
Partial factor		γ _{Ms,N}	[-]		see Ta	able C1			
Combined pull-out and c	oncrete failure								
Characteristic bond resista	ance in cracked a	ind uncracked	concrete C20)/25		I	ř.		
eingerature Biggerature II: 40°C/24°C II: 80°C/50°C	Dry, wet concrete and	^τ Rk,eq,C2	[N/mm²]	3,6	3,5	3,3	2,3		
а Ш: 80°С/50°С	flooded bore hole	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3		
ncreasing factors for conc		Ψc	1,0		1	,0			
Characteristic bond resista on the concrete strength cl			^τ Rk,eq,C2 =		Ψc ^{• τ} Rk,ec	q,C2,(C20/25)			
nstallation factor	CAC				1	,0			
or dry and wet concrete	HDB	γ _{inst}	[-]			,0 ,2			
or flooded bore hole	CAC			1,4					

working life of 100 years (threaded rod)

Electronic copy of the ETA by DIBt: ETA-22/0620

Table C26:Characteristic values of shear loads under seismic action
(performance category C2) for a working life of 50 and 100 years

Threaded rod			M12	M16	M20	M24		
Steel failure						-		
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	0,70 ⋅ V ⁰ _{Rk,s}					
Partial factor	γ _{Ms,V}	[-]	see Table C1					
Factor for annular gap	α_{gap}	[-]	0,5 (1,0) ¹⁾					

1) Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C27: Displacements under tension load

Threaded rod			M12	M16	M20	M24						
Cracked concrete under seismic action (performance category C2) for a working life of 50 and 100 years												
All temperature	$\delta_{N,eq,C2(DLS)}$	[mm]	0,24	0,27	0,29	0,27						
ranges	$\delta_{N,eq,C2(ULS)}$	[mm]	0,55	0,51	0,50	0,58						

Table C28: Displacements under shear load

Threaded rod			M12	M16	M20	M24					
Cracked concrete under seismic action (performance category C2) for a working life of 50 and 100 years											
All temperature	δ _{V,eq,C2(DLS)}	[mm]	3,6	3,0	3,1	3,5					
ranges	δ _{V,eq,C2(ULS)}	[mm]	7,0	6,6	7,0	9,3					

Kalz Injection system UM-H+ for concrete

Neolooomonto undor opierris setter

Characteristic values of shear loads Displacements under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod)

Annex C 23

Performances