

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0246 of 3 June 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

CELO Injection system ResiFIX Pure Epoxy for concrete

Bonded fastener for use in concrete

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk2, Deutschland

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0246 English translation prepared by DIBt

Page 2 of 24 | 3 June 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z38383.22 8.06.01-57/22

European Technical Assessment ETA-22/0246

Page 3 of 24 | 3 June 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "CELO Injection system ResiFIX Pure Epoxy for concrete" is a bonded anchor consisting of a cartridge with injection Pure Epoxy EPSF and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5			
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6			
Displacements under short-term and long-term loading	See Annex C 7 and C 8			
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z38383.22 8.06.01-57/22

European Technical Assessment ETA-22/0246

Page 4 of 24 | 3 June 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

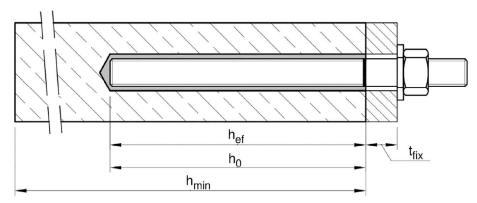
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

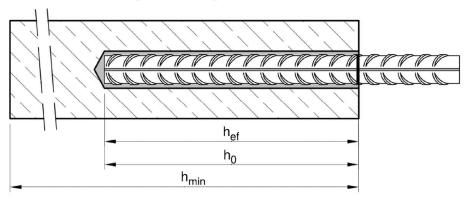
Issued in Berlin 3 June 2022 by Deutsches Institut für Bautechnik

Beatrix Wittstock
Head of Section

beglaubigt:


Baderschneider

Z38383.22 8.06.01-57/22



prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

 $\mathsf{t}_{\mathsf{fix}}$

thickness of fixture

 h_0

nominal drill hole diameter

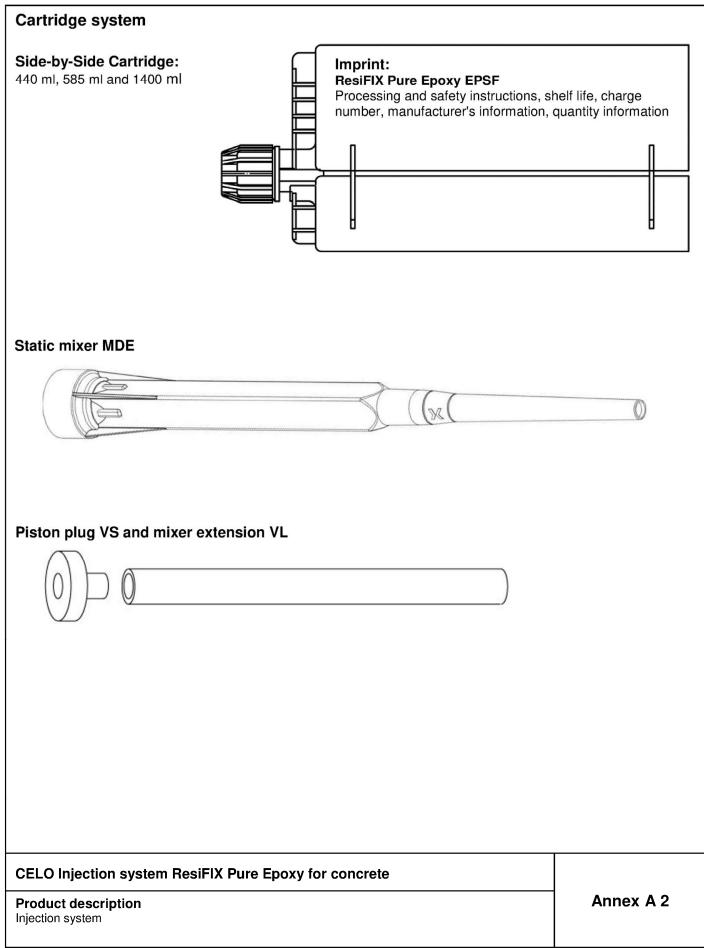
h_{ef}

effective anchorage depth

h_{min}

= minum thickness of member

CELO Injection system ResiFIX Pure Epoxy for concrete


Product description

Installed condition

Annex A 1

English translation prepared by DIBt

Threaded rod M8 up to M30 with washer and hexagon nut

Mark of the embedment depth

Leges

hef

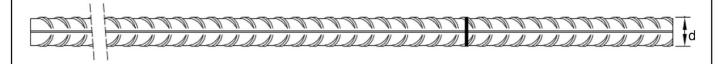
1 3a 2

Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

CELO Injection system ResiFIX Pure Epoxy for concrete	
Product description Threaded rod	Annex A 3

Table A1: Materials										
Part Designation Material										
Steel, zinc plated (Steel acc. to EN ISO 683-4:2018 or EN 10263:2001)										
- zinc plated ≥ 5 µm acc. to EN ISO 4042:2018 or										
	- hot-dip galvanised ≥ 40 µm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or									
- sr	- sherardized ≥ 45 μm acc. to EN ISO 17668:2016									
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture				
			4.6	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$	$A_5 > 8\%$				
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%				
		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%				
		LN 150 050-1.2015	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%				
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%				
		acc. to	4	for anchor rod class 4.6 o	r 4.8					
2	Hexagon nut	EN ISO 898-2:2012	5	for anchor rod class 5.6 or 5.8						
		50 50 50 E E	8	for anchor rod class 8.8						
3	Washer			ılvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 709	94:2000)				
				/ 1.4567 or 1.4541, acc. to						
				/ 1.4362 or 1.4578, acc. to						
Higr	corrosion resista	nce steel (Material 1.45	29 or	1.4565, acc. to EN 10088		Tlangation of				
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture				
1	Threaded rod ¹⁾²⁾		50	f _{uk} = 500 N/mm ²	f _{vk} = 210 N/mm ²	A ₅ ≥ 8%				
'	Threaded fod	acc. to EN ISO 3506-1:2020		f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A ₅ > 8%				
		EN 130 3306-1.2020	80	f _{uk} = 800 N/mm ²	f _{yk} = 600 N/mm ²	A ₅ > 8%				
			50	for anchor rod class 50	,					
2	Hexagon nut 1)2)	acc. to EN ISO 3506-1:2020	70	for anchor rod class 70						
		80 for anchor rod class 80								
				/ / 1.4311 / 1.4567 or 1.454						
3	78, acc. to EN 10088-1:2	014								
HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)										
1) [O for anchor rade and have			000.2000 01 214 100 700	7-1. = 000)				


¹⁾ Property class 70 or 80 for anchor rods and hexagon nuts up to M24

CELO Injection system ResiFIX Pure Epoxy for concrete	
Product description Materials threaded rod	Annex A 4

²⁾ Property class 80 only for stainless steel A4 and HCR

Reinforcing bar (rebar): ø8 up to ø32

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h_{rib} ≤ 0,07d
 (d: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Table A2: Materials Rebar

Part Designation Material				
Reba	ar			
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} und k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$		

Electronic copy of the ETA by DIBt: ETA-22/0246

CELO Injection system ResiFIX Pure Epoxy for concrete	
Product description Reinforcing bar Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life 50 years
Base material	Uncracked concrete Base material
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 bis M30, ∅8 bis ∅32
DD: Diamond drilling	No performance assessed
Temperature Range:	I: - 40°C to +40°C ¹⁾ II: - 40°C to +60°C ²⁾ III: - 40°C to +70°C ³⁾

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base materials:

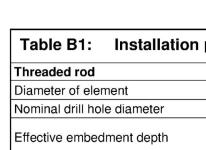
- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018


Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air mode(CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site

CELO Injection system ResiFIX Pure Epoxy for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max. long-term temperature +35°C and max. short-term temperature +60°C)

^{3) (}max. long-term temperature +35°C and max. short-term temperature +70°C)

Table B1: Installation parameters for threaded rod										
										M30
į	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth		[mm]	60	60	70	80	90	96	108	120
		[mm]	160	200	240	320	400	480	540	600
Prepositioned ins	stallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
Push through in	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
n torque	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness of member		[mm]		· the second results			ı	n _{ef} + 2d ₀		
Minimum spacing S _{min}		[mm]	40	50	60	75	95	115	125	140
nce	c _{min}	[mm]	35	40	45	50	60	65	75	80
	ameter It depth Prepositioned ins Push through intorque of member	$ d = d_{nom} $ $ d_0 $ $ d_0 $ $ d_{ef,min} $ $ d_{ef,max} $ $ Prepositioned installation d_f \le Push through installation d_f d_f $	$d = d_{nom} [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_1 d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_1 d_1 [mm]$ $d_1 d_2 [mm]$ $d_2 d_3 [mm]$ $d_3 d_4 [mm]$ $d_4 d_4 [mm]$ $d_5 [mm]$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

¹⁾ Maximum installation torque for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for reinforcing bar Table B2:

Reinforcing bar			Ø 81)	Ø 10 ¹⁾	Ø 121)	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effective and administration	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _e	f + 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Electronic copy of the ETA by DIBt: ETA-22/0246

CELO Injection system ResiFIX Pure Epoxy for concrete	
Intended Use	Annex B 2
Installation parameters	

Table B3:	Parame	ter cleaning	g and s	setting	tools																					
			annum l	Application of the second																						
Threaded rod	Reinforcing bar	d ₀ Drill bit - Ø HD, HDB, CD	d Brus	222	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and use piston plug No plug required No plug required hef > 250 mm all stem consists of Heller Duster and a class M hoover with a pressure of 253 hPa and a flow 50 m³/h (42 l/s).																			
[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1																	
M8	8	10	RB10	11,5	10,5																					
M10	8 / 10	12	RB12	13,5	12,5		No plue	roquirod																		
M12	10 / 12	14	RB14	15,5	14,5		No plug	required																		
	12	16	RB16	17,5	16,5																					
M16	14	18	RB18	20,0	18,5	VS18																				
	16	20	RB20	22,0	20,5	VS20	1																			
M20		22	RB22	24,0	22,5	VS22																				
	20	25	RB25	27,0	25,5	VS25] , .																			
M24		28	RB28	30,0	28,5	VS28			all																	
M27		30	RB30	31,8	30,5	VS30	250 mm	250 mm																		
	24 / 25	32	RB32	34,0	32,5	VS32	1																			
M30	28							28	28	28	28	28	28	28	28	28	28	28	35	RB35	37,0	35,5	VS35	1		
	32	40	RB40	43,5	40,5	VS40	1																			
HDB – Hollo	ow drill bit sy	ation tools stem d _s , d _o ≤ 20mm)	Carrott	5	Expert I minimur rate of r	Hohlbohren m negative minimum 1 essed air	and a class pressure of 50 m³/h (42	M hoover wi 253 hPa and	th a																	
Brush RB	mmi (11)			Pistole Plug VS																						
Brush exter					mmm		mm																			

CELO Injection system ResiFIX Pure Epoxy for concrete

Intended Use
Cleaning and setting tools

Annex B 3

+5°C to +40°C

4 h

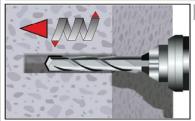
Table B4:	Workin	g and curing t	time	
Temper	ature in bas	se material	Maximum working time	Minimum curing time 1)
	Т		t _{work}	t _{cure}
+ 5 °C	to	+ 9 °C	80 min	60 h
+ 10°C	to	+ 14 °C	60 min	48 h
+ 15°C	to	+ 19°C	40 min	24 h
+ 20 °C	to	+ 24 °C	30 min	12 h
+ 25 °C	to	+ 34 °C	12 min	10 h
+ 35 °C	to	+ 39 °C	8 min	7 h

8 min

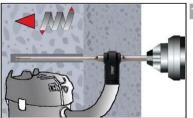
+ 40 °C

Cartridge temperature

CELO Injection system ResiFIX Pure Epoxy for concrete	
Intended Use Working time and curing time	Annex B 4


Electronic copy of the ETA by DIBt: ETA-22/0246

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

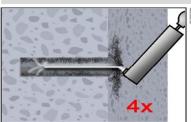


Installation instructions

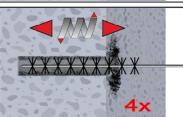
Drilling of the bore hole

Hammer drilling (HD) / Compressed air drilling (CD)
Drill a hole for the required embedment depth
Drill bit diameter according to Table B1 or B2. Proceed with Step 2.
In case of aborted drill hole, the drill hole shall be filled with mortar.

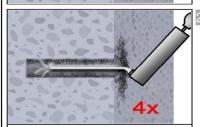
Hammer drilling with Hollow drill bit (HDB) (see Annex B 4)
Drill a hole for the required embedment depth Drill bit diameter according to Table B1 or B2. The hollow drill bit system removes the dust and cleans the bore hole during drilling (all conditions).


Proceed with Step 3.

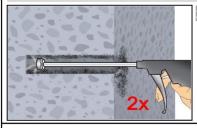
In case of aborted drill hole, the drill hole shall be filled with mortar.


Attention! Standing water in the bore hole must be removed before cleaning.

Manual Air Cleaning (MAC)


for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

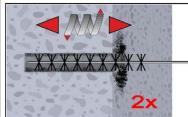

Brush the bore hole minimum 4x with brush RB according to Table B3 over the entire embedment depth in a twisting motion (if necessary, use a brush extension RBL).

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

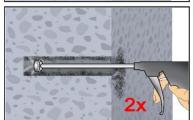
Compressed Air Cleaning (CAC):

All diameter in cracked and uncracked concrete

Blow the bore hole clean minimum of 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

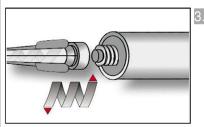

CELO Injection system ResiFIX Pure Epoxy for concrete

Intended Use

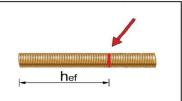

Installation instructions

Annex B 5

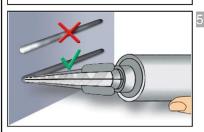
Installation instructions (continuation)



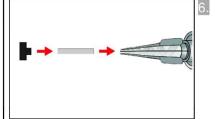
2b. Brush the bore hole minimum 2x with brush RB according to Table B3 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


Screw on static-mixing nozzle MDE, and load the cartridge into an appropriate dispensing tool.

For every working interruption longer than the maximum working time t_{work} (Annex B 4) as well as for new cartridges, a new static-mixer shall be used.



Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes).

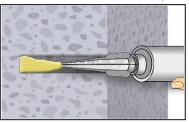
Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Vertical upwards direction: Drill bit-Ø d₀ ≥ 18 mm

Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

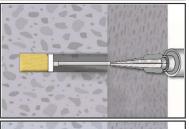
CELO Injection system ResiFIX Pure Epoxy for concrete

Intended Use


Installation instructions (continuation)

Annex B 6

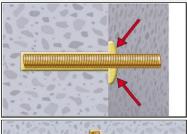
Z52520.22 8.06.01-57/22


Electronic copy of the ETA by DIBt: ETA-22/0246

Installation instructions (continuation)

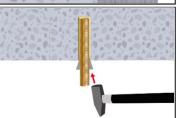
7a. Injecting mortar without piston plug VS

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 4).


Injecting mortar with piston plug VS

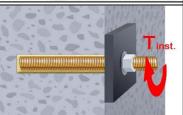
Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time t_{work} (Annex B 4).



Insert the anchor rod while turning slightly up to the embedment mark.

Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.


Otherwise, the installation must be repeated starting from step 7 before the maximum working time $t_{\rm work}$ has expired.

For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 4) must be observed. Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1).

CELO Injection system ResiFIX Pure Epoxy for concrete

Intended Use

Installation instructions (continuation)

Annex B 7

8.06.01-57/22

Z52520.22

T	Table C1: Characteristic values of threaded rods	for ste	el ter	nsion r	esista	nce a	nd ste	el sh	ear re	sista	псе
Th	nreaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	haracteristic tension resistance, Steel fail	ure 1)									
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	naracteristic tension resistance, Partial fa	ctor ²⁾									
St	eel, Property class 4.6 and 5.6	ss 4.6 and 5.6 $\gamma_{Ms,N}$ [-] 2,0									
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]	2,86							
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87							
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]				1,6	6			
Cł	haracteristic shear resistance, Steel failur	e ¹⁾									
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel A2, A4 and HCR, class 50	$V^{0}_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	112
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	179
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	112
Μ		M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	М ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	haracteristic shear resistance, Partial fact										
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	:5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			
1	Values are only valid for the given stress area	10110777-150-75	s in bra	ckets are	e valid for	unders	ized thre	eaded ro	ods with	smaller	•

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ In absence of national regulation

Table C2:	Characteristic va	lues of ten	sion loads	under static and quasi-static action
Fastener				All Fastener type and sizes
Concrete cone fa				
Uncracked concrete		k _{ucr,N}	[-]	11,0
Cracked concrete		k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		•		
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	s _{cr,sp}	[mm]	2 c _{cr,sp}	

Electronic copy of the ETA by DIBt: ETA-22/0246

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 2

Thread	led rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure											
Charac	teristic tension res	istance	N _{Rk,s}	[kN]			$A_{s} \cdot f_{l}$	_{Jk} (or s	ee Tab	le C1)		
Partial	factor		γ _{Ms,N}	[-]				see Ta	ble C1			
Combi	ned pull-out and	concrete failure										
Charac	teristic bond resist	ance in uncracke	d concrete C2	20/25								
ture	I: 40°C/24°C	Dry, wet			15	15	15	14	14	13	13	13
Temperature range	II: 60°C/35°C	concrete and flooded bore	[†] Rk,ucr	[N/mm²]	10	10	10	9,5	9,5	9,0	9,0	9,0
Tem	III: 70°C/43°C	hole			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Charac	teristic bond resist	ance in cracked o	oncrete C20/	25								
Temperature range	I: 40°C/24°C	Dry, wet concrete and flooded bore hole	^T Rk,cr		7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
	II: 60°C/35°C			[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
Tem	III: 70°C/43°C				3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
Reduct	ion factor ψ ⁰ sus in	cracked and uncr	acked concre	ete C20/25								
ture	I: 40°C/24°C	Dry, wet			0,60							
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ^0 sus	[-]	0,60							
Tem	III: 70°C/43°C	hole						0,	60		9,0 6,0 6,0 4,5	
Increas	sing factors for con	crete	Ψс	[-]				(f _{ck} / 2				
Charac	teristic bond resist	ance depending		$\tau_{Rk,ucr} =$	Ψ _c • τ _{Rk,ucr} (C20/25)							
on the	concrete strength	class		τ _{Rk,cr} =	Ψ _C • τ _{Rk,cr} (C20/25)							
Concre	ete cone failure			· · · · · · · · · · · · · · · · · · ·								
	nt parameter							see Ta	ıble C2			
Splittir								9	N 8 20 10			
	nt parameter							see Ta	ıble C2			
	ation factor	fl	1									
for dry and wet concrete or flooded bore hole			γ _{inst}	[-]	1,4							

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Threaded rod)	Annex C 3

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		,								
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s •f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Ductility factor k ₇ [-]			1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ·f _{uk}	(or see	Table C	01)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ_{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	If	[mm]		m	nin(h _{ef} ; 1	2 · d _{nor}	_n)		min(h _{ef} ;	300mm
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Table	e C5: Cha	racteristic v	alues of	ension										
	cing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa	ilure		T											
Charact	eristic tension r	esistance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1)}$									
Cross s	ection area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial f	actor		γ _{Ms,N}	[-]	1,4 ²⁾									
Combin	ned pull-out an	d concrete fail	ire											
Charact	eristic bond res	istance in uncra	cked concre	te C20/25										
ıture	I: 40°C/24°C	Dry, wet		[N/mm²]	14	14	14	12	12	12	12	11	11	11
Temperature range	II: 60°C/35°C	concrete and flooded bore hole	^τ Rk,ucr		9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
Ten	III: 70°C/43°C				6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Charact	eristic bond res	istance in crack	ed concrete	C20/25										
ture	I: 40°C/24°C	Dry, wet concrete and flooded bore	^T Rk,cr	[N/mm²]	6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
Temperature range	II: 60°C/35°C				4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
Ter	III: 70°C/43°C	hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reducti	on factor ψ ⁰ sus	in cracked and	uncracked co	oncrete C2	20/25									
ture	I: 40°C/24°C	Dry, wet		[-]	0,60									
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ^0 sus			0,60								
Ten	III: 70°C/43°C	ristic bond resistance in cracked concrete C20/25 : $40^{\circ}\text{C}/24^{\circ}\text{C}$ Dry, wet concrete and flooded bore hole TRk,cr II: $70^{\circ}\text{C}/43^{\circ}\text{C}$ Tractor ψ^{0}_{Sus} in cracked and uncracked concrete C20/25 : $40^{\circ}\text{C}/24^{\circ}\text{C}$ Dry, wet concrete and flooded bore hole Tractor ψ^{0}_{Sus} in cracked and uncracked concrete C20/25 $\frac{40^{\circ}\text{C}/24^{\circ}\text{C}}{2.5} = \frac{0.60}{2.5} = 0.60$												
Increasi	ing factors for c	oncrete	Ψ _c	[-]					(f _{ck} / 2	20) ^{0,1}				
1907-1177-1000-1007-1007-1007-1007-1007-				τ _{Rk,ucr} =				$\Psi_{\mathbf{C}}$	τ _{Rk,u}	cr(C20	/25)			
class	ing on the conc	rete strength		τ _{Rk,cr} =				Ψс	• τ _{Rk,c}	r(C20/	/25)			
Concre	te cone failure	ļ												
	nt parameter							;	see Ta	able C	2			
Splittin	-													
	nt parameter							;	see Ta	able C	2			
	tion factor													
for dry a bore ho	and wet concret le	e or flooded	γ _{inst}	[-]					1	,4				
		m the enecification	no of roinford	ina bara										

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Reinforcing bar)	Annex C 5

²⁾ In absence of national regulation

English translation prepared by DIBt

Table C6: Characteristic values of shear loads under static and quasi-static action												
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]					0,5	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,52)				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]	1,0									
Concrete edge failure												
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300mm)$					mm)				
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 24 25 28 3					32				
Installation factor	γinst	[-]	1,0									

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 6

²⁾ in absence of national regulation

Table C7: Displacements under tension load ¹⁾										
Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete under static and quasi-static action										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077
Cracked concrete unde	r static and q	uasi-static actior	1							
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121
70°C/43°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C8: Displacements under shear load¹⁾

Threaded rod	M8	M10	M12	M16	M20	M24	M27	M30			
Uncracked and cracked concrete under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor }\cdot V;$

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Displacements under static and quasi-static action (threaded rod)	Annex C 7

Table C9: Displacements under tension load ¹⁾												
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concrete under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 60°C/35°C δ _{N∞}	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concrete	under statio	and quasi-stat	ic actio	n								
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 τ : action bond stress for tension

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and cracked concrete under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V^{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor }\cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Displacements under static and quasi-static action (reinforcing bar)	Annex C 8