

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-22/0264 vom 4. April 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Imola Tecnica KEIL Hinterschnittanker KH

Anker zur rückseitigen Befestigung von Fassadenplatten aus keramischen Platten (Feinsteinzeug) gemäß EN 14411:2012

Imola Tecnica s.r.l. Unipersonale Via Vittorio Veneto 13 40026 IMOLA (BO) ITALIEN

Werk 1

18 Seiten, davon 4 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330030-00-0601, Edition 10/2018

Europäische Technische Bewertung ETA-22/0264

Seite 2 von 18 | 4. April 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-22/0264

Seite 3 von 18 | 4. April 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Imola Tecnica KEIL Hinterschnittanker KH ist ein Anker, der aus einer kreuzweise geschlitzten Ankerhülse mit Innengewinde M 6, an deren oberen Ende ein Sechskant angeformt ist und einer zugehörigen Sechskantschraube mit angerollter Sperrzahnkopf-Scheibe besteht. Die Ankerhülse und die Sechskantschraube mit angerollter Sperrzahnkopf-Scheibe bestehen aus nichtrostendem Stahl. Anstelle einer Sechskantschraube kann auch ein Gewindestift oder Gewindebolzen aus nichtrostendem Stahl verwendet werden. Der Anker wird in ein hinterschnittenes Bohrloch gesteckt und durch Eindrehen der Schraube formschlüssig gesetzt und wegkontrolliert verankert.

Die Produktbeschreibung ist in Anhang A angegeben. Die in den Anhängen nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen der Ankerteile müssen den in der technischen Dokumentation dieser ETA festgelegten Angaben entsprechen.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Anker entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Ankers von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Widerstand gegen Plattenbruch und Herausziehen unter Zugbeanspruchung	Siehe Anhang C 1
Charakteristische Widerstand gegen Plattenbruch und Herausziehen unter Querbeanspruchung	Siehe Anhang C 1
Charakteristische Widerstand gegen Plattenbruch und Herausziehen unter kombinierter Zug- und Querbeanspruchung	Siehe Anhang C 1
Achs- und Randabstände	Siehe Anhang C1
Dauerhaftigkeit	Korrosionsbeständigkeitsklasse (CRC) III gemäß EN 1993-1-4:2015
Charakteristische Widerstand gegen Stahlversagen unter Zug- und Querbeanspruchung	Siehe Anhang C1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1

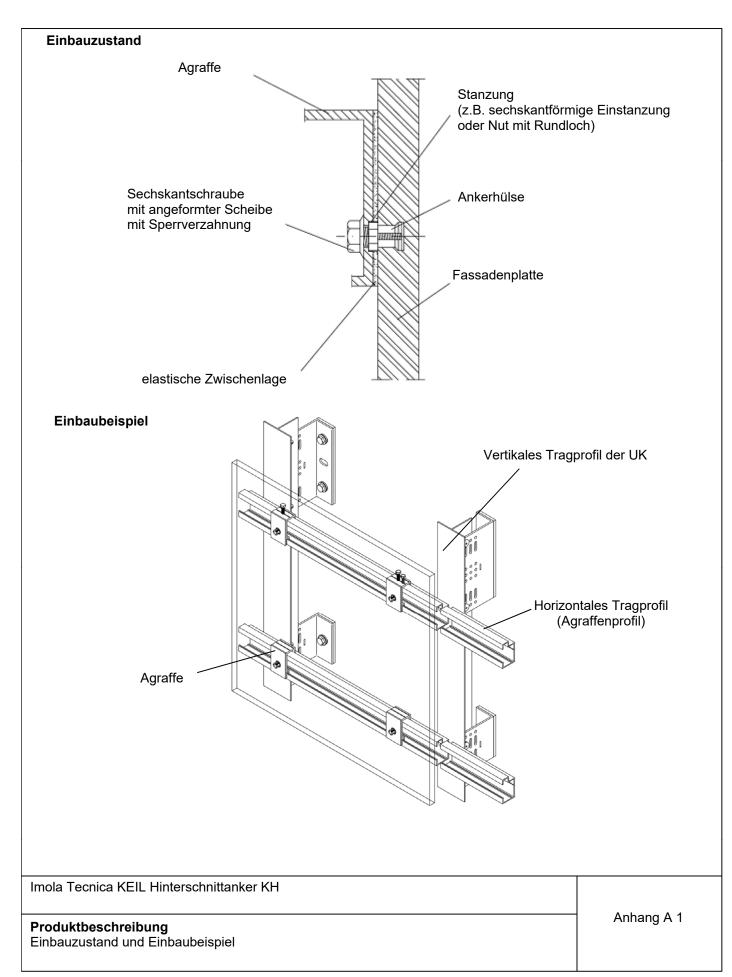
Europäische Technische Bewertung ETA-22/0264

Seite 4 von 18 | 4. April 2022

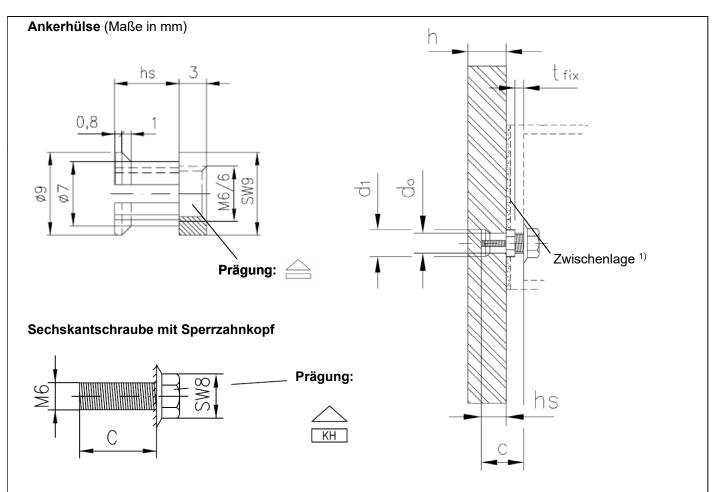
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330030-00-0601 gilt folgende Rechtsgrundlage: [97/161/EG].

Folgendes System ist anzuwenden: 2+


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 4. April 2022 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Aksünger

¹⁾ elastische Zwischenlage (z.B. EPDM) - Dicke 1,0 bis 3,0 mm

Tabelle A1: Abmessungen und Werkstoffe

Ankertyp			KH 5,5	KH 7,0	KH 8,5	
Einbindetiefe	h _s =	[mm]	5,5 7,0 8,5			
Plattendicke	h≥	[mm]	8,0 9,5 11,0			
Bohrlochdurchmesser		7,0				
Hinterschnittdurchmesser	d ₁ =	[mm]	m] 9,0			
Schraubenlänge	h _s + 3mm + t _{fix}					
Anzugsdrehmoment der Sechskantschraube		$2,5 \le T_{inst} \le 4,0$)			
Werkstoffe	KH 5,5	KH 7,0	KH 8,5			
Ankerhülse			nichtrostender EN 10 088:20	Stahl 1.4404 ge 14	mäß	
Sechskantschraube mit Sperrzahnkopf				Stahl 1.4401, 1. EN 10 088:201		

Imola Tecnica KEIL Hinterschnittanker KH	
Produktbeschreibung Abmessungen und Werkstoff	Anhang A 2

Spezifikation des Verwendungszwecks

Beanspruchung der Verankerung:

Statische und guasi-statische Belastung.

Verankerungsgrund:

- Die Feinsteinzeug- Fassadenplatten müssen der Gruppe Ala, Alb, Bla oder Blb nach EN 14411:2012 entsprechen.
- Kennwerte der Platte entsprechen der Tabelle B1
- Die Fassadenplatten und die Leistungsbeständigkeit der Anker sind wie folgt zu pr
 üfen

Klassifizierung (Typenprüfung)

Es sind an mindestens 10 Proben jeweils folgende Prüfungen durchzuführen:

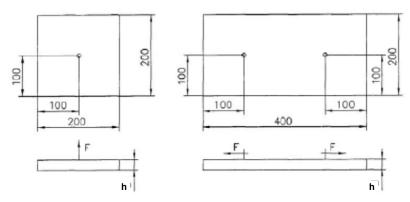
- Biegfestigkeit nach EN ISO 10545-4:2014-11 mit der Sichtseite nach oben; abweichend von EN ISO 10545-4:2014-11 beträgt die Abmessung des Probekörpers I/b = 400/200 mm und die Stützweite I_s = 300 mm
- Auszugslast unter zentrischen Zug an Probekörpern mit der Abmessung von I/b = 200/200 mm, einem Randabstand von 100 mm und einem Abstützdurchmesser von Ø = 70 mm (Plattendicke und Setztiefe gemäß Bauvorhaben); N_{U5}% ≥ N_{Rk} :Charakteristischer Widerstand zentrischer Zug gemäß Tabelle C1
- Querzug an Probekörpern mit der Abmessung von I/b = 400/200 mm und einem Randabstand von 100 mm (Plattendicke und Setztiefe gemäß Bauvorhaben); V_{U5%} ≥ V_{Rk} :Charakteristischer Widerstand zentrischer Zug gemäß Tabelle C1

Annahmeprüfung (Leistungsbeständigkeit)

Unabhängig vom Lieferumfang sind für jedes Bauvorhaben an mindestens 10 Proben jeweils folgende Prüfungen durchzuführen:

• Auszugslast unter zentrischen Zug an Probekörpern mit der Abmessung von I/b = 200/200 mm, einem Randabstand von 100 mm und einem Abstützdurchmesser von Ø = 70 mm (Plattendicke und Setztiefe gemäß Bauvorhaben); N_{U5}% ≥ N_{Rk}: Charakteristischer Widerstand zentrischer Zug gemäß Tabelle C1

Aus den Ergebnissen (Klassifizierung und Annahmeprüfung) sind die 5%-Fraktile (Aussagewahrscheinlichkeit 75 %, unbekannte Standardabweichung, logarithmische Normalverteilung) zu bestimmen.
Anhand der ermittelten 5 %-Fraktile sind die Fassadenplatten in die Klassen nach Tabelle B1 einzuordnen.


Tabelle B1: Kennwerte der Fassadenplatten

Festigkeitsklasse der Fassadenplatte				В	С	
Biegefestigkeit (Prüfung Sichtseite nach oben)	σ _{u5%} ≥	[N/mm²]	35 40 45			
Elastizitätsmodul	E =	[N/mm²]	30000			
Querdehnzahl	ν =	[-]	0,2			
Spezifisches Gewicht	γ =	[kN/m ³]	25,0			
Plattennenndicke	h≥	[mm]	8			

Imola Tecnica KEIL Hinterschnittanker KH	
Verwendungszweck Spezifikationen	Anhang B 1
CPS_IIIICALISTIC	

Versuchskörper zentrischer Zug und Querzug

Anwendungsbedingungen (Umweltbedingungen):

Gemäß EN 1993-1-4:2015 entsprechend der Korrosionsbeständigkeitsklasse (CRC) III

Bemessung:

Allgemeines:

- Jede Fassadenplatte ist mit mindestens vier Ankern in Rechteckanordnung über Agraffen auf der Unterkonstruktion befestigt. Bei kleinen Pass-, Differenz- und Einfügestücken sind Anzahl und Anordnung der Anker konstruktiv zu wählen.
- Achs- und Randabstände sind einzuhalten. Bei kleinen Pass-, Differenz- und Einfügenstücken ist der Randund Achsabstand konstruktiv zu wählen
- Die Unterkonstruktion ist so ausgebildet, dass die Fassadenplatten entsprechend Anhang B 7 technisch zwängungsfrei über Gleitpunkte (freie Lager) und einen Festpunkt (festes Lager) befestigt sind der Festpunkt darf am Plattenrand oder im Plattenfeld angeordnet werden und dass auf die Platten und deren Befestigungselemente keine zusätzliche Belastung infolge exzentrischer Lasteinleitung/Lastabtragung entsteht (symmetrische Lagerung der Platten).
- · Wenn Zwängungskräfte vorhanden sind müssen diese für die Bemessung berücksichtigt werden.
- Zwei Befestigungspunkte der Fassadenplatte sind so bemessen, dass sie die Eigenlasten der Fassadenplatte aufnehmen können.
- Bei Verwendung von Agraffen auf horizontalen Tragprofilen sind die horizontalen auf gleicher Höhe liegenden Befestigungspunkte einer Fassadenplatte jeweils am gleichen Tragprofil befestigt.
- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Position der Dübel ist in den Konstruktionszeichnungen anzugeben.
- Die Berechnung ist linear elastisch durchzuführen. Für den jeweiligen Anwendungsfall ist die Steifigkeit der Unterkonstruktion zu berücksichtigen.
- Für hängende Platten (Überkopfmontage) bzw. Leibungen sind die Lastrichtungen zu beachten und Lastkombinationen entsprechend EN 1990:2002+A1:2005+A1:2005/AC:2010 zu bilden.

Imola Tecnica KEIL Hinterschnittanker KH

Verwendungszweck
Spezifikationen

Anhang B 2

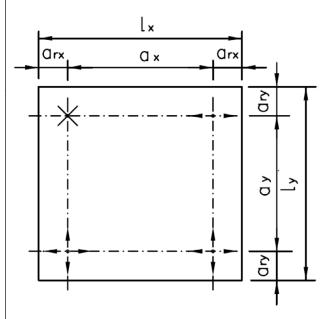
Einbau:

- Die Herstellung der Bohrungen erfolgt im Werk oder auf der Baustelle unter Werkstattbedingungen; bei Herstellung auf der Baustelle wird die Ausführung durch den verantwortlichen Bauleiter oder einen fachkundigen Vertreter des Bauleiters überwacht.
- Die Hinterschnittbohrungen werden mit dem Spezialbohrer nach Anhang B 6 und einem Spezialbohrgerät, entsprechend den beim Deutschen Institut für Bautechnik hinterlegten Angaben, hergestellt.
- Bei einer Fehlbohrung ist ein neues Bohrloch im Abstand von mindestens 2 x Tiefe der Fehlbohrung anzuordnen.
- Die Geometrie der Bohrlöcher ist an 1 % aller Bohrungen zur überprüfen. Dabei sind folgende Maße nach den Angaben und Prüfanweisungen des Herstellers mit dem KEIL Messkaliber nach Anhang B 6 zu prüfen und zu dokumentieren:
 - Volumen des hinterschnittenen Bohrloches.
 - Tiefenposition des Hinterschnittes. Der Abstand zwischen dem unteren Rand des KEIL Messkalibers und der Fassadentafel (siehe Anhang B 6) darf zwischen 0,0 mm und 0,3 mm betragen.

Bei Überschreitung der angegebenen Toleranzen It. Anhang A 2 ist die Geometrie des Bohrlochs an 25 % der erstellten Bohrungen zu kontrollieren. Bei keinem weiterem Bohrloch dürfen dann die Toleranzen überschritten sein, anderenfalls sind alle Bohrlöcher zu kontrollieren. Bohrlöcher mit über- oder runterschrittenen Toleranzen sind zu verwerfen.

Anmerkung: Die Kontrolle der Geometrie des Bohrlochs an 1 % aller Bohrungen bedeutet, dass an einer von 25 Tafeln (die entspricht 100 Bohrungen bei Tafeln mit 4 Hinterschnittankern) eine Bohrung zu kontrollieren ist. Bei Überschreitung der angegebenen Toleranzen ist der Kontrollumfang auf 25 % der Bohrungen zu erhöhen, d.h. an allen 25 Tafeln ist je eine Bohrung zu kontrollieren.

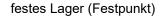
- Die Fassadenplatten werden bei Transport und Lagerung auf der Baustelle vor Beschädigungen geschützt; die Fassadenplatten werden nicht ruckartig eingehängt (wenn erforderlich werden zum Einhängen der Fassadenplatten Hebegeräte verwendet); Fassaden- bzw. Leibungsplatten mit Anrissen werden nicht montiert.
- Die Fassade wird nur von ausgebildeten Fachkräften montiert und die Verlegevorschriften des Herstellers werden beachtet.
- Zwischen Agraffe und Fassadenplatte ist eine elastische Zwischenlage angebracht (siehe Anhang A 1).
- Die Fassadenplatten werden "liegend" oder "stehend" angebracht.
- Überkopfmontage ist erlaubt.

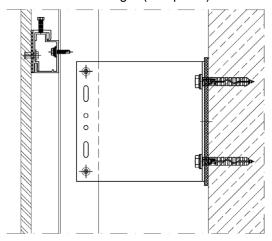

Anhang B 3

Definition Rand- und Achsabstände

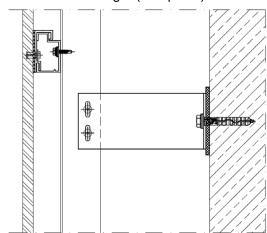
Legende

a_{rx,y} = Randabstand - Abstand der Anker zum Plattenrand


ax,y = Achsabstand - Abstand zwischen benachbarten Ankern


L_x = größere Länge der Fassadenplatte

Ly = kleinere Länge der Fassadenplatte

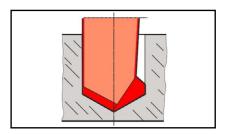

++ = horizontaler Gleitpunkt (freies Lager)

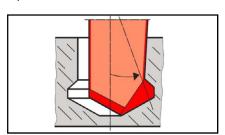
Beispiel Fest- und Gleitpunkt

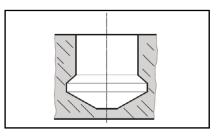
freies Lager (Gleitpunkt)

Imola Tecnica KEIL Hinterschnittanker KH

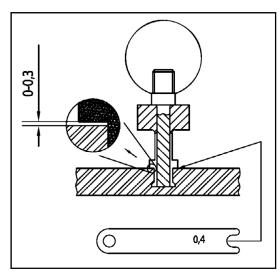
Verwendungszweck


Definition Rand- und Achsabstände, Beispiel Fest- und Gleitpunkt Anhang B 5


Montageanleitung

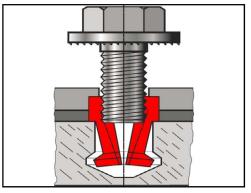

1. Bohren des Hinterschnittes

a) zylindrisch bohren

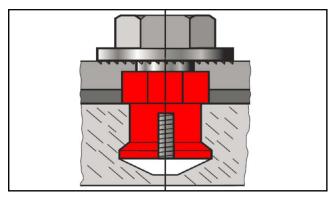

b) hinterschneiden

c) fertiger Hinterschnitt

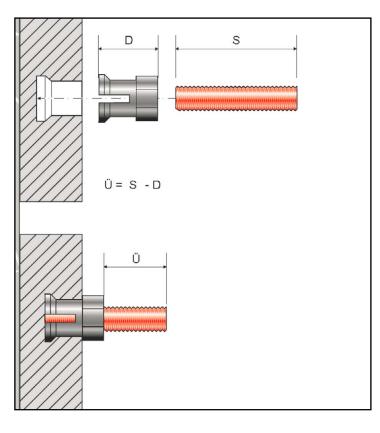
2. Überprüfung des Bohrloches



mit KEIL Messkaliber


Imola Tecnica KEIL Hinterschnittanker KH	
Verwendungszweck Montageanleitung	Anhang B 6

3.1 Montage des Ankers (Hülse und Schraube)



a) einführen der Hülse in den Hinterschnitt und eindrehen der Schraube in die Hülse

b) eingebauter Hinterschnittanker

3.2 Montage des Ankers (Hülse und Gewindestift)

- a) einführen der Hülse in den Hinterschnitt
- b) eindrehen des Gewindestiftes in die Hülse

c) eingebauter Hinterschnittanker

Imola Tecnica KEIL Hinterschnittanker KH

Leistung
Charakteristische Tragfähigkeit des Ankers

Anhang B 7

Stahlversagen

Wert für trilineare Funktion bei

kombinierter Zug- und

Querbeanspruchung

Querzug

7,0

1,0

Tabelle C1: Charakteristische Tragfähigkeit des Ankers							
Setztiefe h _s =			[mm]	5,5	7,0	8,5	
Plattennenndicke		h≥	[mm]	8,0	9,5	11,0	
	Klasse A	N _{Rk} = [kN]	1,0	1,5	2,7		
charakt. Widerstand zentrischer Zug	Klasse B		N _{Rk} =	[kN]	1,1	1,6	2,8
	Klasse C			1,2	1,7	3,0	
	Klasse A	V _{Rk} =	V _{Rk} = [k		2,0	2,2	2,4
charakt. Widerstand Querzug	Klasse B			[kN]	2,1	2,3	2,5
	Klasse C			2,2	2,4	2,6	
Randabstand 1) $a_r \ge [mm]$ 100							
Achsabstand		a≥	[mm]	200			
charakt. Widerstand	zentr. Zug	N _{Rk,s} =	[kN]		14,1		

[kN]

[-]

 $V_{Rk,s}$ =

X =

Imola Tecnica KEIL Hinterschnittanker KH	
Leistung Charakteristische Tragfähigkeit des Ankers	Anhang C 1

Der Randabstand darf auf 50 mm reduziert werden. Für Randabstände 50 mm ≤ a_r ≤ 100 mm sind die charakteristischen Lasten für Querzug durch den Faktor a_r/100 [a_r in mm] abzumindern; bei ungleichen Randabständen in den beiden Richtungen ist der kleinere Wert maßgebend

Nachweis Grenzzustand der Tragfähigkeit:

Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Fassadenbaus erfahrenen Ingenieurs bemessen werden.

Nachweis gegen Plattenbruch und Herausziehen

$$\frac{N_{Ed}}{N_{Rd}} \leq 1$$

$$\frac{V_{Ed}}{V_{Rd}} \le 1$$

$$\frac{N_{Ed}}{N_{Pd}} + \frac{V_{Ed}}{V_{Pd}} \le X$$

N_{Ed}: Bemessungswert der Einwirkung

 $N_{Ed} = N_{Ek,w} \cdot \gamma_F + N_{Ek,V} \cdot \gamma_F$

N_{Ek,w}: charakteristischer Wert der Zugkraft aus Windlast

y_F: Teilsicherheitsbeiwert gemäß EN 1990:2002+A1:2005+A1:2005/AC:2010

N_{Ek,V}: charakteristischer Wert der Zugkraft aus Torsion aus Eigengewicht der Fassadentafeln bei bündiger Montage von lastaufnehmenden Profilen und beim Einsatz von horizontalen Tragprofilen. Auf den Nachweis der ständigen Last aus Torsion kann verzichtet werden, wenn sich die Agraffen in den Achsen der Vertikalprofile befinden (N_{Ek,V} =0).

 $N_{Ek,V} = V_{Ek} \cdot e/z$

V_{Ek} = charakteristische Querzuglast infolge Eigengewicht der Fassadentafel e und z [mm] siehe Abbildung

M Schubmittelpunkt des horizontalen Tragprofiles

N_{Rd:} Bemessungswert der Tragfähigkeit für zentrischen Zug

 $N_{Rd} = N_{Rk} / \gamma_{M}$

N_{Rk}: charakteristischer Wert der Tragfähigkeit für zentrischen Zug entsprechend Tabelle C1

γ_M = 1,8; empfohlener Material-Teilsicherheitsbeiwert, wenn keine nationale Regelung vorhanden.

V_{Ed}: Bemessungswert der einwirkenden Querkraft

 $V_{Ed} = V_{Ek} \cdot \gamma_F$

VEk : charakteristischer Wert der einwirkenden Querkraft

: Teilsicherheitsbeiwert gemäß EN 1990:2002+A1:2005+A1:2005/AC:2010

V_{Rd}: Bemessungswert der Tragfähigkeit für die einwirkende Querkraft

 $V_{Rd} = V_{Rk} / \gamma_{M}$

Nachweis Grenzzustand der Tragfähigkeit

V_{Rk}: charakteristischer Wert der Tragfähigkeit für die Querkraft entsprechend Tabelle C1

y_M = 1,8; empfohlener Material-Teilsicherheitsbeiwert, wenn keine nationale Regelung vorhanden

X: siehe Anhang C1

Imola Tecnica KEIL Hinterschnittanker KH

Informativ

Anhang D 1

Nachweis gegen Stahlversagen

$$\frac{N_{Ed}}{N_{Rds}} \le 1.0$$

$$\frac{V_{Ed}}{V_{Rds}} \le 1$$

$$\left(\frac{N_{Ed}}{N_{Rd,s}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,s}}\right)^2 \le 1,0$$

N_{Ed}: Bemessungswert der Tragfähigkeit für zentrischen Zug, siehe Anhang D 1

N_{Rd,s:} Bemessungswert gegen Stahlversagen für Zugbeanspruchung

 $N_{Rd,s} = N_{Rk,s} / \gamma_{Ms}$

 $N_{Rk,s}$: charakteristischer Wert gegen Stahlversagen für Zugbeanspruchung entsprechend Tabelle C1 γ_{Ms} = 1,87 empfohlener Material-Teilsicherheitsbeiwert, wenn keine nationale Regelung vorhanden.

V_{Ed}: Bemessungswert der einwirkenden Querkraft, siehe Anhang D 1
 V_{Rd,s}: Bemessungswert gegen Stahlversagen für Querbeanspruchung

 $V_{Rd,s} = V_{Rk,s} / \gamma_{M}$

 $V_{Rk,s}$: charakteristischer Wert gegen Stahlversagen für Querbeanspruchung entsprechend Tabelle C1 $\chi_{M,s}$ = 1,56 empfohlener Material-Teilsicherheitsbeiwert, wenn keine nationale Regelung vorhanden.

Anhang D 2

Informativ

Nachweis Grenzzustand der Tragfähigkeit

8.06.01-67/22

Elektronische Kopie der ETA des DIBt: ETA-22/0264

Nachweis gegen Windsog für ausgewählte Plattenformate und Lagerungsarten

Für die in Tabelle D1 aufgeführten Plattenformate und Lagerungsarten in Abhängigkeit der Festigkeitsklasse, der Plattendicke, der Setztiefe und des Randabstandes gilt der Nachweis der Standsicherheit als erbracht, wenn folgende Bedingung eingehalten ist:

 $W_{Ed} \le W_{Rk} / \gamma_M$

mit:

w_{Ed} = Bemessungswert der vorhandenen Windsoglast

w_{Rk} = charakteristischer Widerstand bei Windsog nach Tabelle D1

γ_M = Teilsicherheitsbeiwert nach Tabelle D1

Tabelle D1: Charakteristische Widerstände w_{Rk} bei Windsog für ausgewählte Plattenformate und Lagerungsarten abhängig von Festigkeitsklasse, Plattendicke, Setztiefe und Randabstand

Klasse	h	hs	a _{rx}	a _{ry}	Plattenformat	Lagerungsart 1)	W Rk	γм
[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]	[kN/m²]	[-]
В	≥ 11,5	≥ 7	60-120	100-200	600 × 1200	4 Agraffen	5,4	
В	≥ 11,5	≥ 7	60-120	75-150	600 × 900	4 Agraffen	8,1	
В	≥ 9,5	≥ 7	60-120	60-120	600 × 600	4 Agraffen	10,8	
Α	≥ 13	≥ 8,5	123	240-350	900 × 1200	4 Agraffen	2,2	1,8
Α	≥ 13	≥ 8,5	123	240-350	900 × 1200	6 Agraffen	2,7	
Α	≥ 13	≥ 8,5	123	240-350	900 × 1200	8 Agraffen	4,3	
С	≥ 13	≥ 7	100	100	900 × 900	4 Agraffen	4,3	

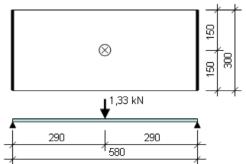
¹⁾ maximale Agraffengröße: Breite = 30 mm, Höhe = 60 mm

Objektbezogene Berechnungen können zu anderen Plattenformaten und Dübelabstände führen.

Imola Tecnica KEIL Hinterschnittanker KH

Informativ
Nachweis gegen Windsog für ausgewählte Plattenformate und Lagerungsarten

Anhang D 3



Vorgaben für statische Berechnung mittels FE – Methode:

Bei einer statischen Berechnung mittels FE-Programmen sind die Fassadentafeln mit ihren tatsächlichen Abmessungen (Größe und Dicke) als Plattenelemente zu idealisieren. Das gewählte System muss in der Lage sein, den Spannungs- und Verformungszustand sowie die Auflagerkräfte der Fassadenplatten hinreichend genau abzubilden Für die Netzeinteilung sind im Bereich des Bemessungspunktes Elementgrößen von maximal 10 mm zu wählen.

Das gewählte FE-Modell ist durch Vergleichsrechung wie folgt zu kalibrieren:

- Modellierung eines Plattenabschnittes von 580 mm x 300 mm mit einer Plattendicke von 13,3 mm
- zweiseitige gelenkige Lagerung an den kurzen Seiten
- Belastung mittig mit einer Einzellast von 1,33 kN
- Ermittlung eines Faktors f_{cal,FE} = 41,8 / σ_{FE}
- die ermittelten Biegespannung sind mit dem Faktor $f_{cal.FE}$ zu multiplizieren ($\sigma_{Sk} = \sigma_{FE} \cdot f_{cal.FE}$); der Faktor $f_{cal.FE}$ ist nur bei den Spannungen durch Stützmomente zu berücksichtigen

σ_{FE} = maximale Hauptzugspannung [N/mm²]

Imola Tecnica KEIL Hinterschnittanker KH

Informativ
Vorgaben für statische Berechnung mittels FE – Methode

Anhang D 4