

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0364 of 28 November 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

SPIT TAPCON XTREM LT A4

Mechanical fasteners for use in concrete

SPIT Route de Lyon 26500 BOURG-LÉS-VALENCE FRANKREICH

Plant 1

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-22/0364 issued on 9 June 2022

European Technical Assessment ETA-22/0364 English translation prepared by DIBt

Page 2 of 19 | 28 November 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0364

Page 3 of 19 | 28 November 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The concrete screw SPIT TAPCON XTREM LT A4 is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance and displacements for seismic performance categorie C1	See Annex C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C4		

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-22/0364

Page 4 of 19 | 28 November 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

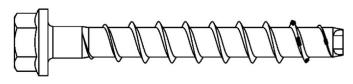
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

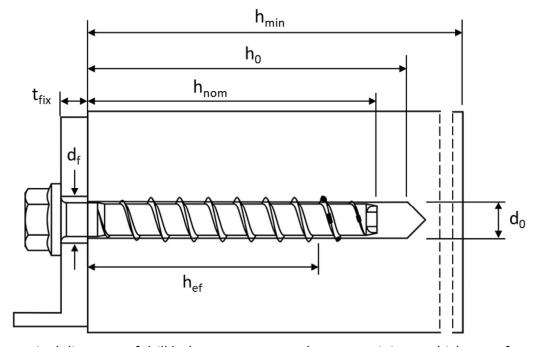
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 28 November 2022 by Deutsches Institut für Bautechnik


Beatrix Wittstock beglaubigt:
Head of Section Tempel


Product in installed condition

SPIT TAPCON XTREM LT A4

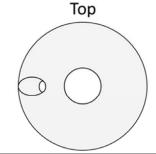
- stainless steel A4
- high corrosion resistant steel HCR

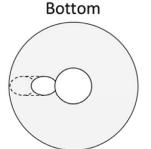
e.g. SPIT concrete screw with hexagon head and fixture

 d_0 = nominal diameter of drill hole

t_{fix} = thickness of fixture

d_f = diameter of clearance hole


h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth

 h_0 = depth of drill hole

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

SPIT TAPCON XTREM LT A4

Product description

Product in installed condition

Annex A1

	0	Version with metric connection thread and hexagon drive e.g. TAPCON XTREN SW7; Type ST			
	(154) (0), 5)	Version with washer and hexagon hea e.g. TAPCON XTREM LT A4 8x80 SW13			
	(5 A)	Version with washer, hexagon head an TORX drive e.g. TAPCON XTREM LT A4			
	(5 M)	Version with hexagon head e.g. TAPCON XTREM LT A4 8x80 SW13	OS; Type S		
	(SA)	Version with countersunk head and TC TAPCON XTREM LT A4 8x80 C VZ 40; Ty	· ·		
	(\$ A)	Version with pan head and TORX drive e.g. TAPCON XTREM LT A4 8x80 I	P VZ 40; Type P		
	(SM)	Version with large pan head and TORX drive e.g. TAPCON XTREM LT A4 8x80 LP VZ 40; Type P			
		Version with countersunk head and connection thread e.g. TAPCON XTRENTYPE ST-6	Л LT A4 6x55 AG M8;		
		Version with hexagon drive and connection thread e.g. TAPCON XTREN SW10; Type ST-6	Л LT A4 6x55 M8		
		Version with internal thread and hexagon drive e.g. TAPCON XTREM LT. Type I	A4 6x55 IM M8/10;		
SPIT TAPCON XT	REM LT A4				
Product descr Screw types	iption		Annex A2		

English	translation	prepared	by	DIBt
---------	-------------	----------	----	------

_			 			• 1	
1 2	n	le 1	N /	121	r	17	
10	u		 ıv	_		10	

Part	Product name	Material					
all tumos	TAPCON XTREM LT A4	1.4401; 1.4404; 1.4	1.4401; 1.4404; 1.4571; 1.4578				
all types	TAPCON XTREM LT HCR	1.4529	1.4529				
		Nominal characteristic steel		Rupture			
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]			
all tunos	TAPCON XTREM LT A4	560	700	≤8			
TAPCON XTREM LT HCR		300	700	≥ 0			

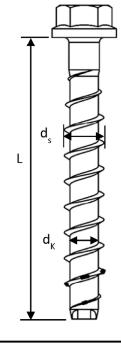
Table 2: Dimensions

Anchor size			6			8			10			
Nominal h _{nom}		h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3	
embedment dept				35 45 55 45 55			55	65	55	75	85	
Screw length	≤L	[mm]	500									
Core diameter	dκ	[mm]		5,1			7,2			9,2		
Thread outer diameter	d _s	[mm]	7,6			10,5			12,5			
Thickness of filling washer	t _v	[mm]	5			5			5			

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Marking:

TAPCON XTREM LT A4


Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

TAPCON XTREM LT HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

SPIT TAPCON XTREM LT A4

Product description

Material, dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

TAPCON XTREM LT size			6			8			10	
Nominal embedment	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	35	45	55	45	55	65	55	75	85
Static and quasi-static loads	All sizes and all embedment depths									
Fire exposure			All Size	es and a	ıı embe	ament	aeptns			
C1 category - seismic		х	ok	ok	ok	х	ok	ok	Х	ok

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws in structures subject to dry, internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

SPIT TAPCON XTREM LT A4	
Intended use Specification	Annex B1

x no performance assessed

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling. Hollow drilling only for size 8-10.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar SPIT VIPER XTREM or EPCON C8 XTREM
- Adjustability according to Annex B6 for sizes 6-10 except for applications with filled borehole and not for seismic applications.
- Cleaning of borehole is not necessary, if using a hollow drill.

SPIT TAPCON XTREM LT A4	
Intended use	Annex B2
Specification continuation	

TAPCON XTREM LT size			6			8			10		
No maissal a such a dura such da such		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth		[mm]	35	45	55	45	55	65	55	75	85
Nominal drill hole diameter	d ₀	[mm]	6			8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40			8,45			10,45		
Depth of drill hole	h ₀ ≥	[mm]	40	50	60	55	65	75	65	85	95
Clearance hole diameter	d _f ≤	[mm]		8		12			14		
Installation torque (version with connection thread)	Tinst	[Nm]	10			20			40		
Torque impact screw driver		[-]	Ma	ax. torq	ue acc	ording t	o manı	ufacture	rer's instructions		
		[-]		160			300	•	450		

SPIT TAPCON XTREM LT A4

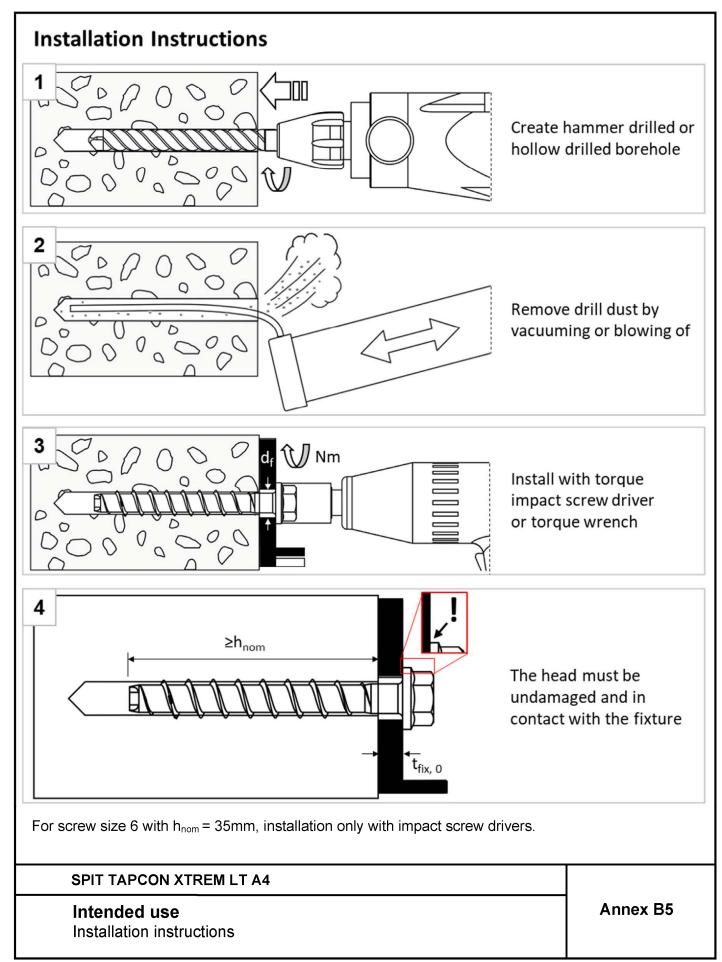
Intended use Installation parameters

Annex B3

Electronic copy of the ETA by DIBt: ETA-22/0364

Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

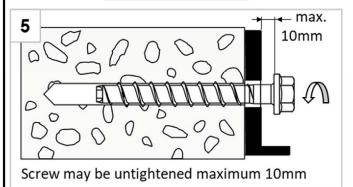
TAPCON XTREM LT size				6			8		10			
Nominal embedment depth $\frac{h_{nom}}{[mm]}$		h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
		[mm]	35	45	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	80	80	100	80	100	120	100	130	130	
Minimum edge distance	C _{min}	[mm]	35	35	35	35	35	35	40	40	40	
Minimum spacing	Smin	[mm]	35	35	35	35	35	35	40	40	40	

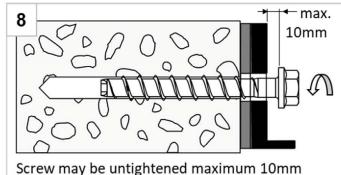

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

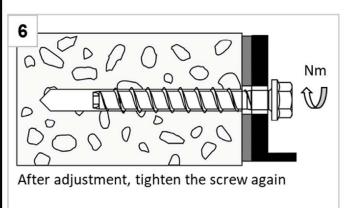
SPIT TAPCON XTREM LT A4

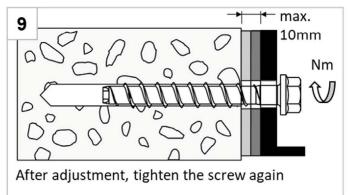
Intended use
Minimum thickness of member, minimum edge distance and minimum spacing

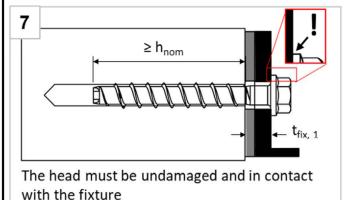
Annex B4

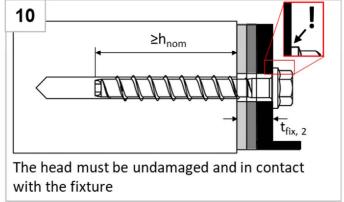



Z93304.22


Installation Instructions - Adjustment


1. Adjustment




2. Adjustment

Note:

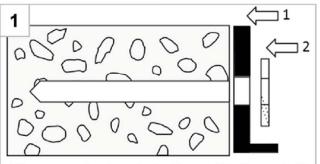
Electronic copy of the ETA by DIBt: ETA-22/0364

The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

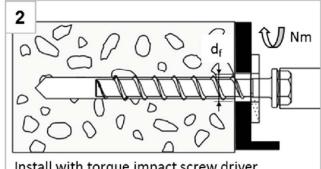
SPIT TAPCON XTREM LT A4

Intended use

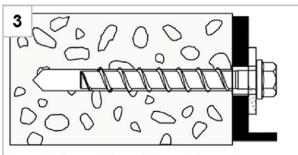
Installation instructions - Adjustment

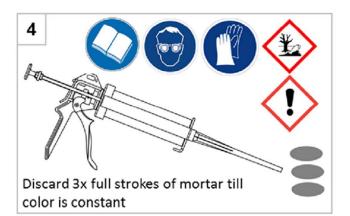

Annex B6

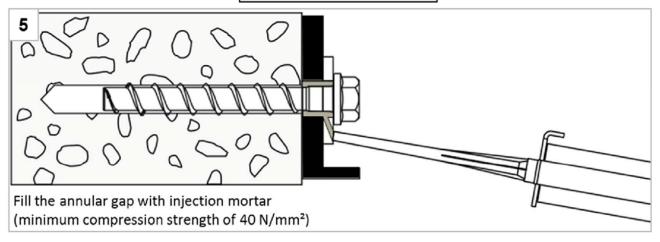
Z93304.22



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C3.

SPIT TAPCON XTREM LT A4

Intended use

Installation instructions – Filling annular gap

Annex B7

Table 6: Charac	teristic v	alues	for st	atic and	l quasi	-static	loadii	ng				
TAPCON XTREM	LT size				6			8			10	
Nominal embedm	ont donth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedir	ient depth		[mm]	35	45	55	45	55	65	55	75	85
Steel failure for tension and shear loading												
Characteristic ten		$N_{Rk,s}$	[kN]	J	14,0			27,0			45,0	
Characteristic she	ar load	$V^0_{Rk,s}$	[kN]		7,0		13	3,5	17,0	22,5	34	ŀ,0
Ductility factor		k ₇	[-]					0,8				
Characteristic ber load	nding	M ⁰ Rk,s	[Nm]								56,0	
Pull-out failure in uncracked concrete												
Characteristic ten load C20/25	N _{Rk,p}	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0	
	C25/30			1,08	1,12	1,09	1,	12	1,07		1,12	
Increasing	C30/37	,,,	,	1,15	1,22	1,17	1,22		1,13	1,22		
factor for $N_{Rk,p}$ = $N_{Rk,p}$ (C20/25) \cdot Ψ_c	C40/50	Ψ _c	[-]	1,27	1,41	1,30	1,41		1,41 1,23		3 1,41	
1 τκ,ρ (620/23)	C50/60			1,38	1,58	1,42	1,	1,58 1,3			1,58	
Pull-out failure i	n cracked	concre	ete									
Characteristic ten load C20/25	[kN]	2,5 ¹⁾	1,5	3,0	3,0	5,5	8,0	6,0	13,0	17,0		
	C25/30			1,10	1,08	1,12		1,12		1,12 1,0) 9
Increasing factor for N _{Rk,p} =	C30/37	Ψς	,	1,18	1,15	1,22		1,22		1,22 1,		17
$N_{Rk,p}$ (C20/25) \cdot Ψ_c	C40/50	T c	[-]	1,32	1,27	1,41	1,41			1,41	1,31	
(C20/23) 2 0	C50/60			1,45	1,38	1,58		1,58		1,58	1,43	

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

SPIT TAPCON XTREM LT A4

Performances

Characteristic values for static and quasi-static loading

Annex C1

		$\overline{}$	$\overline{}$		$\overline{}$									
Table 7: C	haracteristic v	alues f	for sta	atic and	quasi	i-stati	c loadi	ng cor	ntinuat	tion				
TAPCON X	TREM LT size				6			8			10			
Nimalam			h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal en	nbedment depth		[mm]		45	55	45	55	65	55	75	85		
Concrete fa	ailure: concrete	cone f	failure	and spl	itting	failure								
Effective en depth	nbedment	h _{ef}	[mm]	25	25 34 42 32 41 49 40 57 65							65		
k-factor	cracked	k _{cr}	[-]		7,7									
K-IdCtOI	uncracked	k _{ucr}	[-]	11,0										
Concrete	spacing	S _{cr,N}	[mm]	m] 3 x h _{ef}										
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}									
Splitting failure	resistance	N ⁰ Rk,sp	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0		
	spacing	S _{cr,sp}	[mm]	120	160	240	200	240	290	230	280	320		
case 1	edge distance	C _{cr,sp}	[mm]	60	80	120	100	120	145	115	140	160		
Splitting	resistance	N ⁰ Rk,sp	[kN]	2)	2,5	5,5	5,5	8,0	11,0	7,0	15,0	20,0		
failure	spacing	S _{cr,sp}	[mm]	2)	116	168	128	164	196	160	224	260		
case 2	edge distance	C _{cr,sp}	[mm]	2)	58	84	64	82	98	80	114	130		
Pry-out fail	 lure													
Factor for p	ry-out failure	k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5			
Installation	γinst	[-]					1,0							
Concrete e	edge failure													
Effective length in concrete			[mm]	35	45	55	45	55	65	55	75	85		
Nominal ou	d_{nom}	[mm]		6			8			10				

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

SPIT	TAP	CON	XTF	REM	LT	Α4
------	-----	-----	-----	-----	----	----

Performances

Characteristic values for static and quasi-static loading continuation

Annex C2

²⁾ no performance assessed

Table 8: Seismic category C1 – Characteristic load values (only type S, type SK, ty	pe ST,
type ST-6 ¹⁾ , type P and type I ¹⁾)	

type ST-6 ¹⁾ , type P and ty	pe I ¹⁾)									
TAPCON XTREM LT size			(5		3	10			
Nominal embedment depth		h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom1}	h _{nom3}		
Nominal embedment depth		[mm]	45	55	45	65	55	85		
Steel failure for tension and	d shear	load (v	ersion type	S, type SK	, type ST, t	ype ST-6 ¹⁾ , t	type P and	type I ¹⁾)		
Characteristic tension load	N _{Rk,s,C1}	[kN]	14	1,0	27	7,0	45	5,0		
Partial factor	γ _{Ms,N}	[-]			1	,5				
Characteristic shear load Type S, Type ST, Type P	V _{Rk,s,C1}	[kN]	3,5 4,0 8,0 10,0 14,0 16							
Characteristic shear load Type SK	$V_{Rk,s,C1}$	[kN]	2,5 ²⁾ 4,5 7,0 14,0 10,0							
Partial factor	γ _{Ms,V}	[-]			1,	25				
Without filling of the annular gap ³⁾	$lpha_{\sf gap}$	[-]			0	,5				
With filling of the annular gap ⁴⁾	$lpha_{\sf gap}$	[-]			1	,0				
Pull-out failure (version type	S, type S	SK, type	ST, type S1	Γ-6 ¹⁾ , type P	and type I	¹⁾)				
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	1,5 3,0 3,0 8,5 6,0 17,0							
Concrete cone failure (version	on type :	S, type S	SK, type ST,	type ST-6 ¹	⁾ , type P an	d type I ¹⁾)				
Effective embedment depth	h _{ef}	[mm]	n] 34 42 32 49 40 65							
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}							

Concrete cone failure (version type S, type SK, type ST, type ST-61), type P and type I1)											
Effective embedment depth h _{ef} [mm] 34 42 32 49 40 65											
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}								
Spacing	S _{cr,N}	[mm]		3 x h _{ef}							
Installation safety factor	γinst	[-]	1,0								

Concrete pry-out failure (version type S, type SK, type ST and type P)									
Factor for pry-out failure k_8 [-] 1,6 2,1 2,8 2,5									
Concrete edge failure (version type S, type SK, type ST and type P)									
Effective length in concrete	l _f								
Nominal outer diameter of screw	d _{nom}	[mm]	6 8 10				.0		

¹⁾ only tension load

SPIT TAPCON XTREM LT A4	
Performances Seismic category C1 – Characteristic load values	Annex C3

²⁾ no performance assessed

 $^{^{3)}}$ without filling of the annular gap according to annex B5 $^{4)}$ with filling of the annular gap according to annex B7

TAPCON XTREM L	Γsize				6		8				10	
Namainal ambadha			h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3
Nominal embedme	nt aeptn		[mm]	35	45	55	45	55	65	55	75	8!
Steel failure for te	nsion and	shear load						-				
	R30	N _{Rk,s,fi30}	[kN]		0,9			2,4		4,4		
	R60	N _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
R90		N _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
	R120	N _{Rk,s,fi120}	[kN]		0,4			0,7			1,7	
	V _{Rk,s,fi30}	[kN]		0,9			2,4			4,4		
characteristic	V _{Rk,s,fi60}	[kN]		0,8			1,7			3,3		
Resistance	V _{Rk,s,fi90}	[kN]		0,6			1,1			2,3		
	R120	$V_{Rk,s,fi120}$	[kN]		0,4			0,7			1,7	
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,7			2,4			5,9		
	R60 R90	M ⁰ Rk,s,fi60	[Nm]	0,6			1,8			4,5		
	M ⁰ Rk,s,fi90	[Nm]		0,5			1,2			3,0		
	R120	M ⁰ Rk,s,fi120	[Nm]		0,3			0,9			2,3	
Pull-out failure								ı				
characteristic	R30-90	$N_{Rk,p,fi}$	[kN]	0,6	0,4	0,8	0,8	1,4	2,0	1,5	3,3	4,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,5	0,3	0,6	0,6	1,1	1,6	1,2	2,6	3,
Concrete cone fail	ure											
characteristic	R30-90	N ⁰ Rk,c,fi	[kN]	0,5	1,2	2,0	1,0	1,9	2,9	1,7	4,2	5
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,4	0,9	1,6	0,8	1,5	2,3	1,4	3,4	4,
Edge distance												
R30 - R120		C _{cr,fi}	[mm]					2 x h _{ef}	-			
In case of fire attacl	k from more	e than one s	ide, the	minir	num e	dge d	istanc	e shall	be ≥3	00mn	۱.	
Spacing												
R30 bis R120		S _{cr,fi}	[mm]					4 x h _{et}	:			
Pry-out failure												
R30 bis R120		k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5	

1)	only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry
	internal conditions

SPIT TAPCON XTREM LT A4	
Performances Fire exposure – characteristic values of resistance	Annex C4

Table 10: Displ	acements u	under static and	quasi-static t	ension load
Table To. Dispi	accilicitis c	illuci static aliu	uuasi-static t	ciisioii ioau

TAPCON XTREM LT size			(6 8		8	10				
Nominal embedment depth h _{nom}			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nonmai embedinent deptii		[mm]	45	55	45	55	65	55	75	85	
Cracked concrete displacement	N	[kN]	0,72	1,45	1,63	2,74	4,06	3,04	6,22	8,46	
	displacement	δ_{NO}	[mm]	0,19	0,27	0,27	0,53	0,45	0,26	0,58	0,61
	displacement	δ_{N^∞}	[mm]	0,55	0,84	0,49	0,66	0,61	0,69	0,92	1,1
Uncracked concrete	tension load	N	[kN]	2,11	4,07	4,24	5,97	8,03	5,42	9,17	12,28
	I displacement E	δ_{NO}	[mm]	0,42	0,43	0,33	0,49	0,58	0,84	0,62	0,79
		δ_{N^∞}	[mm]	0,42	0,43		0,58			0,79	

Table 11: Displacements under static and quasi-static shear load

TAPCON XTI	TAPCON XTREM LT size			6		8			10		
Nominal embedment depth			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nonlina embedment depth		[mm]	45	55	45	55	65	55	75	85	
Cracked and	shear load	٧	[kN]	3,3		8,6		16,2			
uncracked		δ_{V0}	[mm]	1,55		2,7		2,7			
concrete	displacement	δ_{V^∞}	[mm]	3,1		4,1		4,3			

SPIT TAPCON XTREM LT A4	
Performances Displacements under static and quasi-static loads	Annex C5