

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-22/0481 vom 9. November 2022

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Mungo Betonschraube MCSsr, MCSshr

Mechanische Dübel zur Verwendung im Beton

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Mungo Herstellwerk 12

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 05/2021

Europäische Technische Bewertung ETA-22/0481

Seite 2 von 19 | 9. November 2022

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z81491.22 8.06.01-146/22

Europäische Technische Bewertung ETA-22/0481

Seite 3 von 19 | 9. November 2022

Besonderer Teil

1 Technische Beschreibung des Produkts

Die Mungo Betonschraube MCSsr, MCSshr ist ein Dübel in den Größen 6, 8 und 10 mm aus nichtrostendem Stahl. Der Dübel wird in ein vorgebohrtes, zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B4, C1 und C2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 und C2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C5
Charakteristischer Widerstand und Verschiebungen für die seismische Leitungskategorie C1	Siehe Anhang C3

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C4

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

Z81491.22 8.06.01-146/22

Europäische Technische Bewertung ETA-22/0481

Seite 4 von 19 | 9. November 2022

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

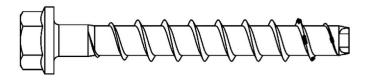
Folgendes System ist anzuwenden: 1

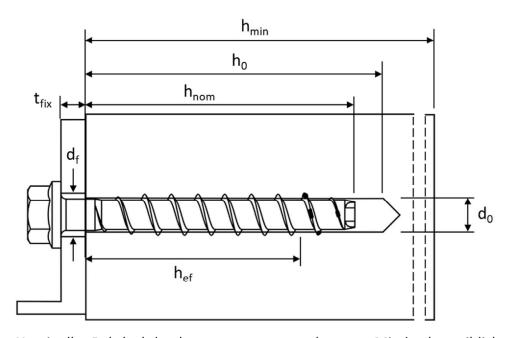
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 9. November 2022 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Tempel


Z81491.22 8.06.01-146/22


Produkt und Einbauzustand

Mungo Betonschraube MCSsr, MCSshr

- nichtrostender Stahl A4
- hochkorrosionsbeständiger Stahl HCR

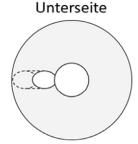
z.B. MCSsr, Ausführung mit Sechskantkopf und Anbauteil

 d_0 = Nomineller Bohrlochdurchmesser

t_{fix} = Dicke des Anbauteils

d_f = Durchgangsloch im anzuschließenden Anbauteil h_{min} = Mindestbauteildicke

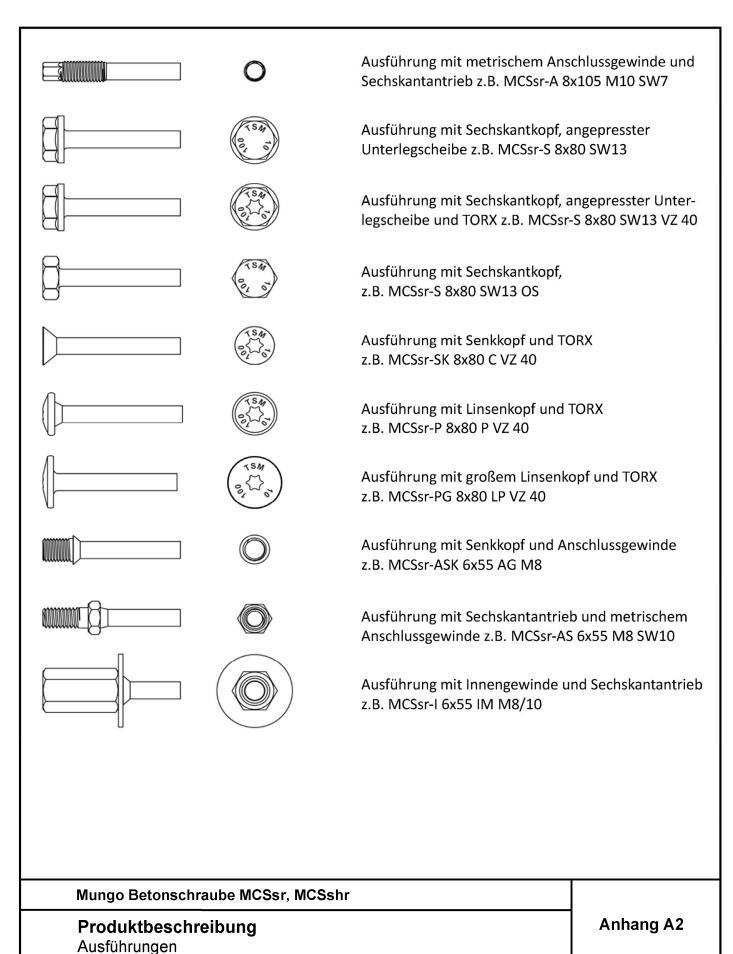
h_{nom} = Nominelle Einschraubtiefe


h₀ = Bohrlochtiefe


h_{ef} = Effektive Verankerungstiefe

Verfüllscheibe (optional) zur Verfüllung des Ringspaltes

Oberseite


Mungo Betonschraube MCSsr, MCSshr

Produktbeschreibung

Produkt und Einbauzustand

Anhang A1

Tabelle 1: Werkstoffe

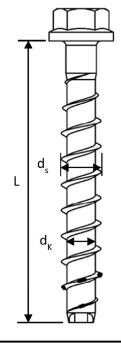
Teil	Bezeichnung	ezeichnung Werkstoff								
Alle	MCSsr	1.4401; 1.4404;	: 1.4571; 1.4578							
Ausführungen	MCSshr	1.4529								
		nominelle o	harakteristische	Drugh daharung						
Teil	Bezeichnung	Streckgrenze f _{yk} [N/mm²]	Zugfestigkeit f _{uk} [N/mm²]	Bruchdehnung A₅ [%]						
Alle	MCSsr	560	700	< Ω						
Ausführungen	MCSshr									

Tabelle 2: Abmessungen

Schraubengröße				6	8				10			
Nominelle		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Einschraubtiefe		[mm]	35	45	55	45	55	65	55	75	85	
Schraubenlänge	≤L	[mm]		500								
Kerndurchmesser	dĸ	[mm]		5,1			7,2		9,2			
Gewindeaußen- durchmesser	d _s	[mm]		7,6			10,5		12,5			
Dicke der Verfüllscheibe	t _v	[mm]		5				5				

¹⁾ nur für statisch unbestimmte nichtragende Systeme (Mehrfachbefestigung) nach EN 1992-4:2018, nur in trockenen Innenräumen

Prägung:


MCSsr
Schraubentyp: TSM
Schraubendurchmesser: 10
Schraubenlänge: 100
Werkstoff: A4

MCSshr

Schraubentyp: TSM
Schraubendurchmesser: 10
Schraubenlänge: 100
Werkstoff: HCR

Mungo Betonschraube MCSsr, MCSshr

Produktbeschreibung

Werkstoffe, Abmessungen und Prägungen

Anhang A3

Spezifizierung des Verwendungszwecks

Tabelle 3: Beanspruchung der Verankerung

MCSs Schraubengröße			6			8		10		
	h_{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominelle Einschraubtiefe	[mm]	35	45	55	45	55	65	55	75	85
Statische und quasi-statische	Lasten			Alle Grö	ißen un	d alle Ei	nschrau	ubtiefen		
Brandbeanspruchung										
C1 – Seismische Beanspruch	ung	х	ok	ok	ok	Х	ok	ok	Х	ok

¹⁾ nur für statisch unbestimmte nichtragende Systeme (Mehrfachbefestigung) nach EN 1992-4:2018, nur in trockenen Innenräumen

Verankerungsgrund:

- Verdichteter bewehrter und unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013
- gerissener und ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: Alle Schraubentypen
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 in Anhängigkeit von der Korrosionswiderstandsklasse CRC
 - Nichtrostender Stahl nach Anhang A3, Schraube mit Prägung A4: CRC III
 - Hochkorrosionsbeständiger Stahl nach Anhang A3, Schraube mit Prägung HCR: CRC V

Mungo Betonschraube MCSsr, MCSshr

Verwendungszweck
Spezifikation

Anhang B1

x keine Leistung bewertet

Spezifizierung des Verwendungszwecks - Fortsetzung

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, usw.) anzugeben.
- Die Bemessung der Verankerung erfolgt gemäß EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.

Die Bemessung von Verankerungen unter Querlast in Übereinstimmung mit EN 1992-4:2018, Abschnitt 6.2.2. gilt für alle in Anhang B3, Tabelle 4 angegebenen Durchgangslochdurchmesser d_f im Anbauteil.

Einbau:

- in hammergebohrte oder hohlgebohrte (sauggebohrte) Löcher;
 Hohlbohrer (Saugbohrer) nur für die Größen 8-10
- der Verankerung durch entsprechend geschultes Personal und unter der Aufsicht des Bauleiters.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder geringerem Abstand, wenn die Fehlbohrung mit hochfesten Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Nach der Montage ist ein leichtes Weiterdrehen des Dübels nicht möglich. Der Dübelkopf muss am Anbauteil anliegen und darf nicht beschädigt sein.
- Das Bohrloch darf mit Injektionsmörtel CF-T 300V oder ATA 2004C verfüllt werden
- Adjustierung nach Anhang B6: für Größen 6-10, aber nicht in Verbindung mit verfülltem Bohrloch und nicht für seismische Anwendungen.
- Bohrlochreinigung ist nicht notwendig, wenn ein Hohlbohrer (Saugbohrer) verwendet wird.

Mungo Betonschraube MCSsr, MCSshr

Verwendungszweck
Spezifikation - Fortsetzung

Anhang B2

Tabe	lle	4:	M	onta	gρ	nara	ame	ter
1 400	110	┰.	1 7 1 1			Daic	anc	···

MCSs Betonschraubengrö	ße			6			8			10		
Nominelle Einschraubtiefe		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Norminelle Emschraubtiele	raubtiele [i		35	45	55	45	55	65	55	75	85	
Nomineller Bohrlochdurchmesser	d ₀	[mm]		6			8			10		
Bohrerschneiden- durchmesser	d _{cut} ≤	[mm]	6,40				8,45		10,45			
Bohrlochtiefe	h ₀ ≥	[mm]	40	50	60	55	65	75	65	85	95	
Durchgangsloch im anzuschließenden Anbauteil	d _f ≤	[mm]	8				12		14			
Installationsmoment für Version Anschlussgewinde	T _{inst}	[Nm]		10			20			40		
Tangentialschlagschrauber		[-]	Ma	ax. Nen	ndrehr	nomen	oment gemäß der H			lerstellerangabe		
langentialsenlagsenlauber		נ־ו		160	·		300	·		450		

1) nur für statisch unbestimmte nichtragende Systeme (Mehrfachbefestigung) nach EN 1992-4:2018, nur in trockenen Innenräumen

t_{fix}

h_{nom}

h_{nom}

h_{nom}

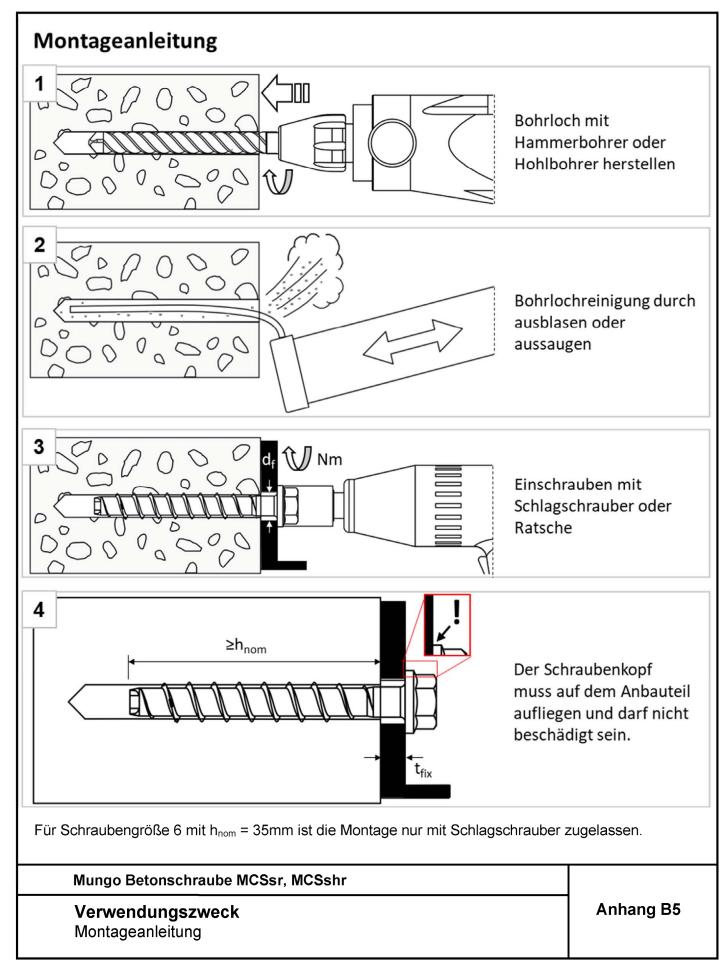
d₀

Mungo Betonschraube MCSsr, MCSshr

Verwendungszweck Montageparameter **Anhang B3**

Tabelle 5: Minimale Bauteildicke, minimale Achs- und Randabstände

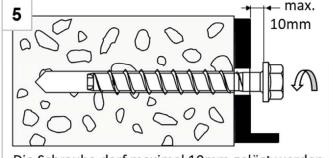
MCSs Betonschraube			8		10						
Nominelle Einschraub	tiofo	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominelle Einschraub	ueie	[mm]	35	45	55	45	55	65	55	75	85
Mindestbauteildicke	h _{min}	[mm]	80	80	100	80	100	120	100	130	130
Minimaler Randabstand	C _{min}	[mm]	35	35	35	35	35	35	40	40	40
Minimaler Achsabstand	S _{min}	[mm]	35	35	35	35	35	35	40	40	40

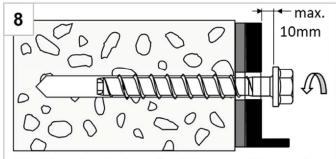

¹⁾ nur für statisch unbestimmte nichtragende Systeme (Mehrfachbefestigung) nach EN 1992-4:2018, nur in trockenen Innenräumen

Mungo Betonschraube MCSsr, MCSshr

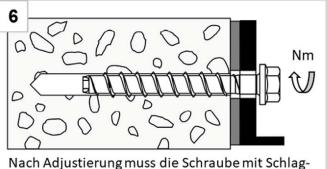
Verwendungszweck
Minimaler Bauteildicke, minimale Achs- und Randabstände

Anhang B4

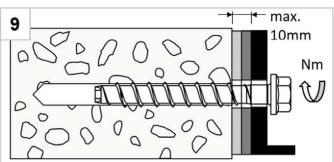


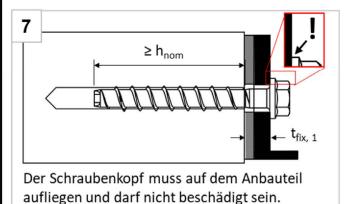

Montageanleitung – Adjustierung

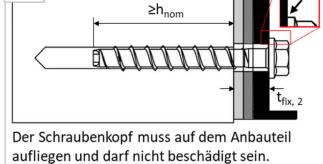
1. Adjustierung



Die Schraube darf maximal 10mm gelöst werden.


2. Adjustierung





Nach Adjustierung muss die Schraube mit Schlagschrauber oder Ratsche eingeschraubt werden.

Nach Adjustierung muss die Schraube mit Schlagschrauber oder Ratsche eingeschraubt werden

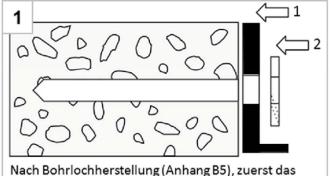
Hinweis:

Der Dübel darf maximal zweimal adjustiert werden. Dabei darf der Dübel jeweils maximal um 10mm zurückgeschraubt werden. Die bei der Adjustierung erfolgte Unterfütterung darf insgesamt maximal 10mm betragen. Die erforderliche Setztiefe h_{nom} muss nach der Adjustierung noch eingehalten sein.

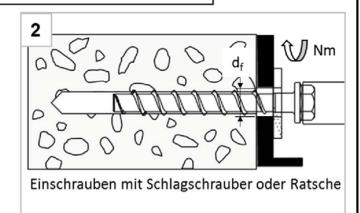
10

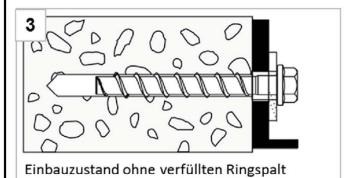
Mungo Betonschraube MCSsr, MCSshr

Verwendungszweck

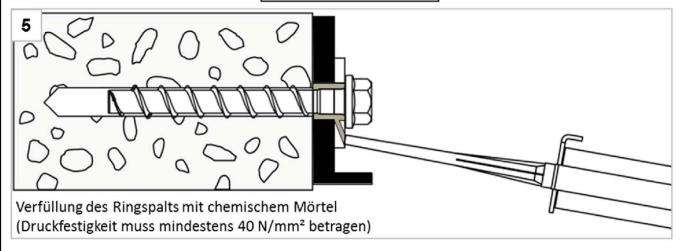

Montageanleitung - Adjustierung

Anhang B6




Montageanleitung - Ringspaltverfüllung

Positionierung der Verfüllscheibe und Anbauteil


Nach Bohrlochherstellung (Anhang B5), zuerst das Anbauteil (1), dann die Verfüllscheibe (2) positionieren

Ringspaltverfüllung

Hinweis

Für seismische Auslegung ist die Anwendung mit Ringspaltverfüllung und ohne Ringspaltverfüllung zugelassen. Leistungsunterschiede können in Anhang C3 entnommen werden.

Mungo Betonschraube MCSsr, MCSshr

Verwendungszweck

Montageanleitung - Ringspaltverfüllung

Anhang B7

Tabelle 6: Leistu	ng für s	tatisc	he ur	nd quasi	i-statis	che Be	elastur	ng						
MCSs Betonschra	ubengrö	ße			6			8		10				
Nominelle Einschra	ubtiefe		h _{nom} [mm]	h _{nom1} 1) 35	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3} 85		
Stahlversagen für	Zug- un	d Que	rbear	nspruchi	ung									
Charakteristischer Widerstand bei Zug		N _{Rk,s}		·	14,0			27,0			45,0			
Charakteristischer Widerstand bei Qu	erlast	V ⁰ Rk,s	[kN]		7,0		13	3,5	17,0	22,5	34	,0		
Charakteristisches Biegemoment		M ⁰ _{Rk,s}	[Nm]		10,9			26,0			56,0			
Herausziehen im ungerissenen Beton														
Charakteristischer Widerstand bei Zug C20/25	derstand bei Zuglast in		[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0		
	C25/30			1,08	1,12	1,09	1,	1,12			1,12			
Erhöhungs- faktoren für N _{Rk,p}	C30/37	Ψς	[-]	1,15	1,22	1,17	1,	1,22		1,22				
$= N_{Rk,p} (C20/25) \cdot \Psi_c$	C40/50	T c	[-]	1,27	1,41	1,30		41	1,23		1,41			
	C50/60			1,38	1,58	1,42	1,	58	1,32		1,58			
Herausziehen im	gerissen	en Be	ton											
Charakteristischer Widerstand bei Zug C20/25	glast in	N _{Rk,p}	[kN]	2,5 ¹⁾	1,5	3,0	3,0	5,5	8,0	6,0	13,0	17,0		
C25/30				1,10	1,08	1,12		1,12		1,12	1,09			
Erhöhungs- faktoren für N _{Rk,p}	C30/37	Ψ	ſ - 1	1,18	1,15	1,22		1,22		1,22	1,1			
$= N_{Rk,p} (C20/25) \cdot \Psi_c$	C40/50	, c	[-] 	[-]	$\Psi_{c} \mid [-] \mid$	1,32	1,27	1,41		1,41		1,41	1,3	
Hityp (020) 25) 1 0	C50/60			1,45	1,38	1,58		1,58		1,58	1,4	3		

¹⁾ nur für statisch unbestimmte nichtragende Systeme (Mehrfachbefestigung) nach EN 1992-4:2018, nur in trockenen Innenräumen

Mungo Betonschraube MCSsr, MCSshr

Leistungsmerkmale
Leistung für statische und quasi-statische Belastung

Anhang C1

												=
Tabelle 7:	Leistung für st	tatisch	ie und	d quasi-	statis	che Be	elastur	ng Fort	setzur	ng		
MCSs Beto	MCSs Betonschraubengröße							8			10	
Naminalla I	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nommene	Einschraubtiefe		[mm]		45	55	45	55	65	55	75	85
Betonversa	agen und Spalte	n										
Effektive		h _{ef}	[mm]	25	34	42	32	41	49	40	57	65
Verankerun	gerissen	k _{cr}	[-]					77				
k-Faktor		1		7,7								
	ungerissen	k _{ucr}	[-]	11,0								
Beton-	Achsabstand	S _{cr,N}	[mm]									
versagen	Randabstand	C _{cr,N}	[mm]								<u> </u>	
Canlana	Widerstand	N ⁰ Rk,sp	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0
Spalten Fall 1	Achsabstand	S _{cr,Sp}	[mm]	120	160	240	200	240	290	230	280	320
	Randabstand	C _{cr,Sp}	[mm]	60	80	120	100	120	145	115	140	160
C lk	Widerstand	N ⁰ Rk,sp	[kN]	Х	2,5	5,5	5,5	8,0	11,0	7,0	15,0	20,0
Spalten Fall 2	Achsabstand	S _{cr,Sp}	[mm]	Х	116	168	128	164	196	160	224	260
T GII Z	Randabstand	C _{cr,Sp}	[mm]	Х	58	84	64	82	98	80	114	130
Betonausb	ruch auf der las	stabge	wandt	en Seite	Pryo	ut)						
Faktor für P	Pryoutversagen	k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5	
Montagebe	iwert	γinst	[-]	1,0								
Betonkant	enbruch											
Effektive Lä	nge in Beton	$I_f = h_{nom}$	[mm]	35	45	55	45	55	65	55	75	85
	durchmesser		[mm]		6			8			10	
1) nur für c	taticch unbactima	ata nich	tragan	da Suctan	00/N/OF	rfachh.	ofoction	nal nack	- EN 100	12 4.204	10 5115	in

¹⁾ nur für statisch unbestimmte nichtragende Systeme (Mehrfachbefestigung) nach EN 1992-4:2018, nur in trockenen Innenräumen

Mungo Betonschraube MCSsr, MCSshr	
Leistungsmerkmale Leistung für statische und quasi-statische Belastung Fortsetzung	Anhang C2

x keine Leistung bewertet

Tabelle 8: Leistung für seismische Leistungskategorie C1 (nur Typ S, Typ SK, Typ A,
Typ AS/K ¹⁾ , Typ P und Typ I ¹⁾)

MCSs Betonschraubengröße	(5	8	3	10		
Nominelle Einschraubtiefe	h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom1}	h _{nom3}
Norminene Linschlaubtiele	[mm]	45	55	45	65	55	85

Stahlversagen für Zug- und Querlast (Ausführung Typ S, Typ SK, Typ A, Typ AS/K¹¹, Typ P und Typ I¹¹)										
Charakteristischer Widerstand bei Zuglast	N _{Rk,s,C1}	[kN]	14,0 27,0 45,0							
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]	1,5							
Charakteristischer Widerstand bei Querlast Typ S, Typ A, Typ P	V _{Rk,s,C1}	[kN]	3,5 4,0 8,0 10,0 14,0 16,0							
Charakteristischer Widerstand bei Querlast Typ SK	V _{Rk,s,C1}	[kN]	2,5 x 4,5 7,0 14,0 10,0							
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,25							
Ohne verfüllten Ringspalt ²⁾	$\alpha_{\sf gap}$	[-]	0,5							
Mit verfüllten Ringspalt ³⁾	$lpha_{\sf gap}$	[-]			1	,0				

Herausziehen (Ausführung Typ S, Typ SK, Typ A, Typ AS/K1), Typ P und Typ I1)										
Charakteristischer Widerstand bei Zuglast in gerissenem Beton C20/25	N _{Rk,p,C1}	[kN]	1,5	3,0	3,0	8,5	6,0	17,0		

Betonversagen (Ausführung Typ S, Typ SK, Typ A, Typ AS/K¹), Typ P und Typ I¹))											
Effektive Verankerungstiefe	h _{ef}	[mm]	[mm] 34 42 32 49 40 65								
Randabstand	C _{cr,N}	[mm]	1,5 x h _{ef}								
Achsabstand	S _{cr,N}	[mm]	3 x h _{ef}								
Montagebeiwert	γinst	[-]	1,0								

Betonausbruch auf der last	abgew	andten	Seite (Au	sführung Ty	/p S, Typ SK	, Typ A und	d Typ P)		
Faktor für Pryoutversagen k ₈ [-] 1,6 2,1 2,8 2,5									
Betonkantenbruch (Ausführung Typ S, Typ SK, Typ A und Typ P)									
Effektive Länge im Beton	I _f =h _{nom}	l _f =h _{nom} [mm] 45 55 45 65 55 85							
Nomineller Schraubendurchmesser	d _{nom}	[mm]	(5		3	1	.0	

¹⁾ Nur für Zugbeanspruchung

x keine Leistung bewertet

Mungo Betonschraube	MCSsr,	MCSshr
---------------------	--------	--------

Leistungsmerkmale

Seismische Leistungskategorie C1

Anhang C3

²⁾ ohne Ringspaltverfüllung gemäß Anhang B5

³⁾ mit Ringspaltverfüllung gemäß Anhang B7

MCSs Betonschrauben	größe				6			8			10	
Wiess Betoriserrauber	igi Oisc		h	1 ¹⁾	2	3	1	2	3	1	2	3
Nominelle Einschraubtie	efe		h _{nom} [mm]	35	45	55	45	55	65	55	75	85
Stahlversagen für Zug- u	nd Querlas	t										
	R30	N _{Rk,s,fi30}	[kN]		0,9			2,4			4,4	
	R60	N _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
	R90	N _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
	R120	N _{Rk,s,fi120}	[kN]		0,4			0,7			1,7	
	R30	V _{Rk,s,fi30}	[kN]		0,9			2,4			4,4	
Charakteristischer	R60	V _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
Widerstand	R90	V _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
	R120	V _{Rk,s,fi120}	[kN]		0,4			0,7			1,7	
	R30	M ⁰ Rk,s,fi30	[Nm]		0,7			2,4			5,9	
	M ⁰ Rk,s,fi60	[Nm]	0,6				1,8		4,5			
	M ⁰ Rk,s,fi90	[Nm]		0,5		1,2			3,0			
	R120	M ⁰ Rk,s,fi120	[Nm]		0,3			0,9			2,3	
Herausziehen												
Charakteristischer	R30-90	N _{Rk,p,fi}	[kN]	0,6	0,4	0,8	0,8	1,4	2,0	1,5	3,3	4,3
Widerstand	R120	N _{Rk,p,fi}	[kN]	0,5	0,3	0,6	0,6	1,1	1,6	1,2	2,6	3,4
Betonversagen												
Charakteristischer	R30-90	N ⁰ Rk,c,fi	[kN]	0,5	1,2	2,0	1,0	1,9	2,9	1,7	4,2	5,9
Widerstand	R120	N ⁰ _{Rk,c,fi}	[kN]	0,4	0,9	1,6	0,8	1,5	2,3	1,4	3,4	4,7
Randabstand												
R30 - R120		C _{cr,fi}	[mm]					2 x h _{ef}	F			
Mehrseitiger Beanspruc	hung beträ	gt der Randa	abstand	≥ 300)mm							
Achsabstand												
R30 bis R120		S _{cr,fi}	[mm]					4 x h _e	F			
Betonausbruch auf de	r lastabge	wandten Se	ite									
R30 bis R120	_	k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5	
Im nassen Beton ist die ' 30 mm zu erhöhen.	Verankerur	igstiefe im V		mit o	dem a	ngege	bene	n Wer	t um ı	minde	stens	

Mungo Betonschraube MCSsr, MCSshr

Leistungsmerkmale
Leistung unter Brandbeanspruchung

Anhang C4

Tabelle 10: Verschiebungen	unter statischer u	nd quasi-statischer :	7ughelastung
Tabelle 10. Verseinebangen	arreer statistics a	Tid quasi statistici i	

MCSs Betonschraubengröße				ť		8			10		
Nominelle Einschraubtiefe h _{non}			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Northhelie Emschraubtiele			[mm]	45	55	45	55	65	55	75	85
	Zuglast	Ν	[kN]	0,72	1,45	1,63	2,74	4,06	3,04	6,22	8,46
Gerissener Beton	Mayaala ialaaa	δ_{NO}	[mm]	0,19	0,27	0,27	0,53	0,45	0,26	0,58	0,61
Beton	Verschiebung	$\delta_{N^{\infty}}$	[mm]	0,55	0,84	0,49	0,66	0,61	0,69	0,92	1,1
	Zuglast	N	[kN]	2,11	4,07	4,24	5,97	8,03	5,42	9,17	12,28
Ungerissener	Zugiast		[KIN]	,	,	<u> </u>	- 				
Beton	\	δ_{NO}	[mm]	0,42	0,43	0,33	0,49	0,58	0,84	0,62	0,79
Beton	Verschiebung	δ_{N^∞}	[mm]	0,42	0,43		0,58			0,79	

Tabelle 11: Verschiebungen unter statischer und quasi-statischer Querbelastung

MCSs Betonschraubengröße				6	5		8		10			
Nominelle Einschraubtiefe			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Lin	scillaubtiele		[mm]	45	55	45	55	65	55	75	85	
Gerissener	Querlast	٧	[kN]	3,	,3	8,6			16,2			
und ungerissener	Verschiebung	δ_{V0}	[mm]	1,!	1,55		2,7			2,7		
Beton	verschiebung	δ_{V^∞}	[mm]	3,1		4,1			4,3			

Mungo Betonschraube MCSsr, MCSshr	
Leistungsmerkmale Verschiebungen unter statischer und quasi-statischer Belastung	Anhang C5