

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0586 of 25 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system EP 131v2 for concrete

Bonded fastener for use in concrete

Hard Produtos para Construcao Ltda Rua Dr. Humberto Pinheiro Vieira, 150 Lote 1 B Distrito Industrial Norte JOINVILLE/SC. CEP 89219-570 BRASILIEN

Hard Plant 1

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0586

Page 2 of 24 | 25 October 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0586

Page 3 of 24 | 25 October 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system EP 131v2 for concrete" is a bonded anchor consisting of a cartridge with injection mortar EP 131 V2 and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-22/0586

Page 4 of 24 | 25 October 2022

English translation prepared by DIBt

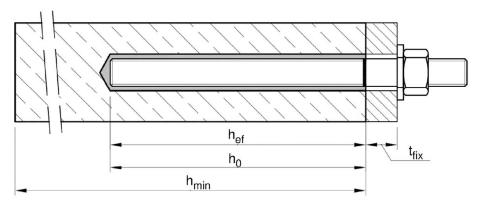
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

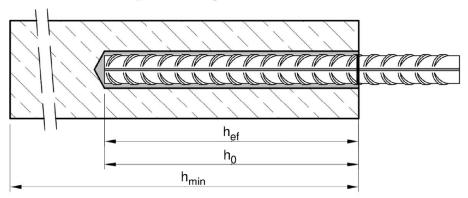
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin 25 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider



Installation threaded rod M8 up to M30

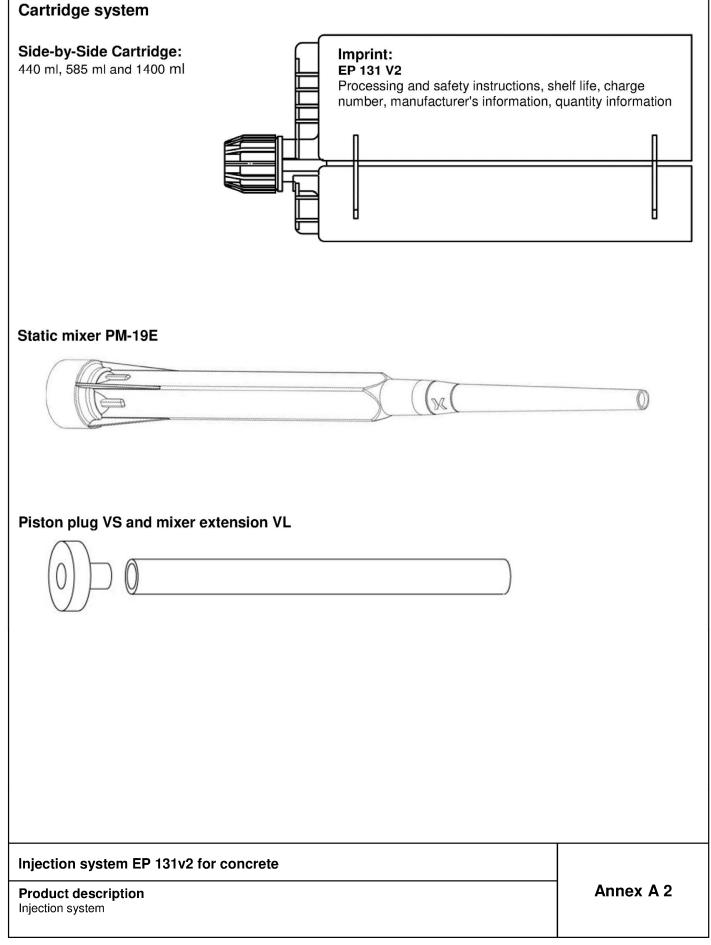
prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

 t_{fix} = thickness of fixture

h₀ = nominal drill hole diameter

 h_{ef} = effective anchorage depth


 h_{min} = minum thickness of member

Injection system EP 131v2 for concrete

Product description
Installed condition

Annex A 1

Threaded rod M8 up to M30 with washer and hexagon nut

Mark of the embedment depth

Lges

hef

1 3a 2

Commercial standard rod with:

Electronic copy of the ETA by DIBt: ETA-22/0586

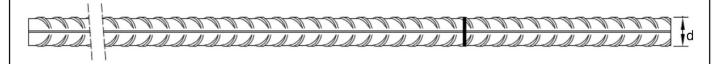
- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Injection system EP 131v2 for concrete

Product description
Threaded rod

Annex A 3

Та	ble A1: Mate	erials				
Part	Designation	Material				
		el acc. to EN ISO 683-4:2				
		5 μm acc. to EN ISO				
		: 40 μm acc. to EN ISO : 45 μm acc. to EN ISO		:2009 and EN ISO 10684:	2004+AC:2009 or	
- 51	lerardized 2		1700	Characteristic steel	Characteristic steel	Elongation at
		Property class		ultimate tensile strength	yield strength	fracture
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
693		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		LN 130 090-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%
		acc. to	4	for anchor rod class 4.6 o	10 1000000	
2	Hexagon nut	EN ISO 898-2:2012	5	for anchor rod class 5.6 o	r 5.8	
		22.00 12.00	8	for anchor rod class 8.8		
3	Washer			alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 709	94:2000)
				1 / 1.4567 or 1.4541, acc. to		
				/ 1.4362 or 1.4578, acc. to		
High	corrosion resista	nce steel (Material 1.45	29 or	1.4565, acc. to EN 10088		Flavortion at
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
1	Threaded rod ¹⁾²⁾		50	f _{uk} = 500 N/mm ²	f _{vk} = 210 N/mm ²	A ₅ ≥ 8%
.	Timeaded Tod	acc. to EN ISO 3506-1:2020	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A ₅ > 8%
		EN 150 3506-1.2020	80	f _{uk} = 800 N/mm ²	f _{yk} = 600 N/mm ²	A ₅ > 8%
			50	for anchor rod class 50		'
2	Hexagon nut 1)2)	acc. to EN ISO 3506-1:2020	70	for anchor rod class 70		
		all the state of t	80	for anchor rod class 80		
				7 / 1.4311 / 1.4567 or 1.454		
3	Washer			/ 1.4571 / 1.4362 or 1.457		014
				565, acc. to EN 10088-1: 2 ISO 7089:2000, EN ISO 7		94.2000)
1) 5		10.9 E14 100 007.2000	J, LIV	100 7000.2000, 214 100 7	000.2000 01 214 100 700	7-1.2000)


¹⁾ Property class 70 or 80 for anchor rods and hexagon nuts up to M24

Injection system EP 131v2 for concrete	
Product description Materials threaded rod	Annex A 4

²⁾ Property class 80 only for stainless steel A4 and HCR

Reinforcing bar (rebar): ø8 up to ø32

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h_{rib} ≤ 0,07d
 (d: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Table A2: Materials Rebar

Part	Designation	Material
Reba	ar	
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} und k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Electronic copy of the ETA by DIBt: ETA-22/0586

Injection system EP 131v2 for concrete	
Product description Reinforcing bar Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life 50 years
Base material	Uncracked concrete Base material
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 bis M30, ∅8 bis ∅32
DD: Diamond drilling	No performance assessed
Temperature Range:	I: - 40°C to +40°C ¹⁾ II: - 40°C to +60°C ²⁾ III: - 40°C to +70°C ³⁾

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air mode(CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site

Injection system EP 131v2 for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max. long-term temperature +35°C and max. short-term temperature +60°C)

^{3) (}max. long-term temperature +35°C and max. short-term temperature +70°C)

Table B1: In	stallation par	ameters f	or threa	ided r	od						
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedmer	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	п аерт	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins		[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst} ≤	[Nm]	10	20	401)	60	100	170	250	300
Minimum thickness	of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm						
Minimum spacing		S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	ınce	c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ Maximum installation torque for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for reinforcing bar

Reinforcing bar			Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]		30 mm 00 mm	2			h _e	_f + 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Injection system EP 131v2 for concrete	
Intended Use Installation parameters	Annex B 2

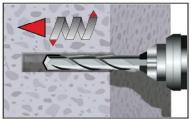
einforcing bar [mm] 8 8/10 10/12 12 14 16 20 24/25 28	d ₀ Drill bit - Ø HD, HDB, CD [mm] 10 12 14 16 18 20 22 25 28 30 32	RB10 RB12 RB14 RB16 RB18 RB20 RB22 RB25 RB28 RB30	-	d _{b,min} min. Brush - Ø [mm] 10,5 12,5 14,5 16,5 20,5 22,5 22,5 25,5 28,5	VS18 VS20 VS22 VS25	↓	n direction a piston plug	nd use o
[mm] 8 8 / 10 10 / 12 12 14 16 20 24 / 25 28	Drill bit - Ø HD, HDB, CD	RB10 RB12 RB14 RB16 RB18 RB20 RB22 RB25 RB28	[mm] 11,5 13,5 15,5 17,5 20,0 22,0 24,0 27,0	min. Brush - Ø [mm] 10,5 12,5 14,5 16,5 18,5 20,5 22,5 25,5	VS18 VS20 VS22 VS25	No plug	piston plug prequired	nd use o
8 8/10 10/12 12 14 16 20 24/25 28	10 12 14 16 18 20 22 25 28 30	RB12 RB14 RB16 RB18 RB20 RB22 RB25 RB28	11,5 13,5 15,5 17,5 20,0 22,0 24,0 27,0	10,5 12,5 14,5 16,5 18,5 20,5 22,5 25,5	VS20 VS22 VS25			1
8 / 10 10 / 12 12 14 16 20 24 / 25 28	12 14 16 18 20 22 25 28 30	RB12 RB14 RB16 RB18 RB20 RB22 RB25 RB28	13,5 15,5 17,5 20,0 22,0 24,0 27,0	12,5 14,5 16,5 18,5 20,5 22,5 25,5	VS20 VS22 VS25			
10 / 12 12 14 16 20 24 / 25 28	14 16 18 20 22 25 28 30	RB14 RB16 RB18 RB20 RB22 RB25 RB28	15,5 17,5 20,0 22,0 24,0 27,0	14,5 16,5 18,5 20,5 22,5 25,5	VS20 VS22 VS25			
12 14 16 20 24 / 25 28	16 18 20 22 25 28 30	RB16 RB18 RB20 RB22 RB25 RB28	15,5 17,5 20,0 22,0 24,0 27,0	14,5 16,5 18,5 20,5 22,5 25,5	VS20 VS22 VS25			
14 16 20 24 / 25 28	18 20 22 25 28 30	RB18 RB20 RB22 RB25 RB28	17,5 20,0 22,0 24,0 27,0	16,5 18,5 20,5 22,5 25,5	VS20 VS22 VS25	- - h _{ef} >	h>	
16 20 24 / 25 28	20 22 25 28 30	RB20 RB22 RB25 RB28	20,0 22,0 24,0 27,0	20,5 22,5 25,5	VS20 VS22 VS25	- h _{ef} >	h _e ; >	
20 24 / 25 28	22 25 28 30	RB22 RB25 RB28	22,0 24,0 27,0	20,5 22,5 25,5	VS22 VS25	- h _{ef} >	h _{et} >	
24 / 25 28	25 28 30	RB25 RB28	27,0	25,5	VS25	- h _{ef} >	h _{at} >	
24 / 25 28	28 30	RB28				h _{ef} >	h., >	
28	30		30,0	28.5	VCCC	l'ef /	1 105	
28		BB30			VS28	0=0	h _{ef} >	all
28	32	LIDOO	31,8	30,5	VS30	250 mm	250 mm	
		RB32	34,0	32,5	VS32	1		
	35	RB35	37,0	35,5	VS35	1		
32	40	RB40	43,5	40,5	VS40	1		
drill bit sys			9	Expert I minimur rate of r	Hohlbohrer m negative minimum 1 essed air	and a class pressure of 50 m³/h (42	M hoover wi 253 hPa and	th a
, , , , , , , , , , , , , , , , , , ,	u _s , u ₀ 3 2011111)	CERCHAT			4.5			
	8444		I, h ₀ ≥ 10 d _s , d ₀ ≤ 20mm)	Cawor as a second secon	Expert I minimum rate of r I, $h_0 \ge 10 \text{ d}_s$, $d_0 \le 20 \text{mm}$) Compression (min 6 b) Pistole	Expert Hohlbohrer minimum negative rate of minimum 1 Compressed air (min 6 bar) Pistole Plug VS	Expert Hohlbohrer and a class minimum negative pressure of rate of minimum 150 m³/h (42) Compressed air tool (min 6 bar) Pistole Plug VS	I, h ₀ ≥ 10 d _s , d ₀ ≤ 20mm) (min 6 bar) Pistole Plug VS

Injection system EP 131v2 for concrete	
Intended Use Cleaning and setting tools	Annex B 3

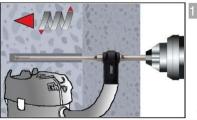
Table B4:	Working	and	curing	time

Temperature in base material			Maximum working time Minimum curing			
	Т		t _{work}	t _{cure}		
+ 5 °C	to	+ 9 °C	80 min	60 h		
+ 10°C	to	+ 14°C	60 min	48 h		
+ 15°C	to	+ 19°C	40 min	24 h		
+ 20 °C	to	+ 24 °C	30 min	12 h		
+ 25 °C	to	+ 34 °C	12 min	10 h		
+ 35 °C to + 39 °C		+ 39 °C	8 min	7 h		
	+ 40 °C		8 min	4 h		
Cartridge temperature			+5°C to	+40°C		

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Electronic copy of the ETA by DIBt: ETA-22/0586

Injection system EP 131v2 for concrete	
Intended Use Working time and curing time	Annex B 4

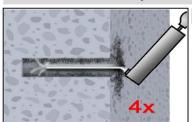


Installation instructions

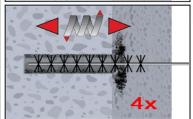
Drilling of the bore hole

Hammer drilling (HD) / Compressed air drilling (CD)
Drill a hole for the required embedment depth
Drill bit diameter according to Table B1 or B2. Proceed with Step 2.
In case of aborted drill hole, the drill hole shall be filled with mortar.

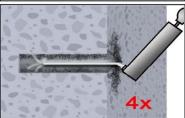
Hammer drilling with Hollow drill bit (HDB) (see Annex B 4)
Drill a hole for the required embedment depth Drill bit diameter according to Table B1 or B2. The hollow drill bit system removes the dust and cleans the bore hole during drilling (all conditions).


Proceed with Step 3.

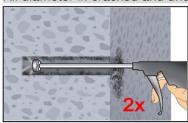
In case of aborted drill hole, the drill hole shall be filled with mortar.


Attention! Standing water in the bore hole must be removed before cleaning.

Manual Air Cleaning (MAC)


for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10$ d_{nom} (uncracked concrete only!)

Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).


Brush the bore hole minimum 4x with brush RB according to Table B3 over the entire embedment depth in a twisting motion (if necessary, use a brush extension RBL).

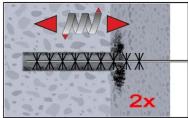
Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Compressed Air Cleaning (CAC):

All diameter in cracked and uncracked concrete

Blow the bore hole clean minimum of 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

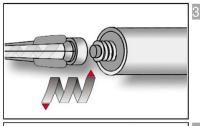
Injection system EP 131v2 for concrete


Intended Use

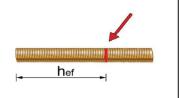
Installation instructions

Annex B 5

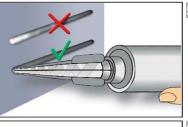
Installation instructions (continuation)



2b. Brush the bore hole minimum 2x with brush RB according to Table B3 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

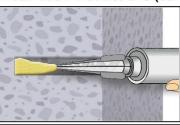

Screw on static-mixing nozzle PM-19E, and load the cartridge into an appropriate dispensing tool.

For every working interruption longer than the maximum working time t_{work} (Annex B 4) as well as for new cartridges, a new static-mixer shall be used.

Mark embedment depth on the anchor rod.

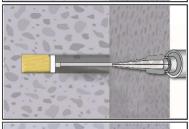
The anchor rod shall be free of dirt, grease, oil or other foreign material.

Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

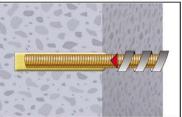
- Horizontal and vertical downwards direction: Drill bit-Ø d_0 ≥ 18 mm and embedment depth h_{ef} > 250mm
- Vertical upwards direction: Drill bit-Ø d₀ ≥ 18 mm

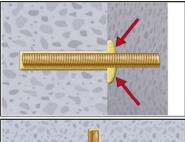
Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.


Injection system EP 131v2 for concrete Intended Use Installation instructions (continuation) Annex B 6

Installation instructions (continuation)

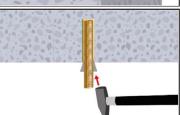
7a. Injecting mortar without piston plug VS


Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 4).

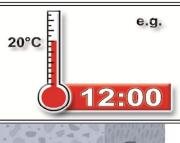

Injecting mortar with piston plug VS

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

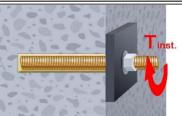
Observe the temperature related working time t_{work} (Annex B 4).



Insert the anchor rod while turning slightly up to the embedment mark.


Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.

Otherwise, the installation must be repeated starting from step 7 before the maximum working time $t_{\rm work}$ has expired.



10.

For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 4) must be observed. Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1).

Injection system EP 131v2 for concrete

Intended Use

Installation instructions (continuation)

Annex B 7

Z97881.22

T	Table C1: Characteristic value of threaded rods	s for ste	el ter	nsion r	esista	nce a	nd ste	eel sh	ear re	sista	псе
Th	nreaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	haracteristic tension resistance, Steel fa	ilure 1)									
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cł	haracteristic tension resistance, Partial f	actor ²⁾		-0.							
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0	C			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]	1,87							
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]	1,6							
Cł	haracteristic shear resistance, Steel failure 1)										
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm		V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	V ⁰ Rk.s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
		V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	112
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	179
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	112
Wit		M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	haracteristic shear resistance, Partial fac										
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	:5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]	1,56							
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			
1) Values are only valid for the given stress area A _c . Values in brackets are valid for undersized threaded rods with smaller											

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Injection system EP 131v2 for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ In absence of national regulation

Table C2: Characteristic values of tension loads under static and quasi-static action									
Fastener				All Fastener type and sizes					
Concrete cone fa	ailure								
Uncracked concre	ete	k _{ucr,N}	[-]	11,0					
Cracked concrete		k _{cr,N}	[-]	7,7					
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}					
Splitting									
	h/h _{ef} ≥ 2,0			1,0 h _{ef}					
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$					
	h/h _{ef} ≤ 1,3			2,4 h _{ef}					
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}					

Electronic copy of the ETA by DIBt: ETA-22/0586

Injection system EP 131v2 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 2

Thread	led rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel fa	ailure											
Charac	teristic tension res	istance	N _{Rk,s}	[kN]			$A_s \cdot f_l$	_{Jk} (or s	ee Tab	le C1)		
Partial	factor		γ _{Ms,N}	[-]				see Ta	ble C1			
Combi	ned pull-out and	concrete failure										
Charac	teristic bond resist	ance in uncracke	d concrete Ca	20/25								
iture	I: 40°C/24°C	Dry, wet			15	15	15	14	14	13	13	13
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,ucr	[N/mm ²]	10	10	10	9,5	9,5	9,0	9,0	9,0
Ten	III: 70°C/43°C				7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Charac	teristic bond resist	ance in cracked c	oncrete C20/	/25								
ture	I: 40°C/24°C	Dry, wet			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
Temperature range	II: 60°C/35°C	concrete and flooded bore	τ _{Rk,cr}	[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
Ten	III: 70°C/43°C	hole			3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0
Reduct	ion factor ψ ⁰ sus in	cracked and uncr	acked concre	ete C20/25								
	I: 40°C/24°C	Dry, wet			0,60							
Femperature range	II: 60°C/35°C	concrete and flooded bore	ψ^0 sus	[-]	0,60							
Tem	III: 70°C/43°C	hole						0,	60			
Increas	sing factors for con	crete	Ψc	[-]				(f _{ck} / 2	20) 0,1			
	teristic bond resist		$\tau_{Rk,ucr} = \psi_{c} \cdot \tau_{Rk,ucr}(C20/25)$									
on the	concrete strength	class		$\tau_{Rk,cr} =$	ψ _c • τ _{Rk,cr} (C20/25)							
Concre	ete cone failure											
	nt parameter							see Ta	ble C2			
Splittin												
	nt parameter							see Ta	ble C2			
	ation factor and wet concrete o	or flooded bore						SQ17				
hole		γinst	[-]				1	,4				

Injection system EP 131v2 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Threaded rod)	Annex C 3

Table C4: Characteristic values of shear loads under static and quasi-static action										
Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm			,							
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes VORK,S [kN] [kN] 0,5 • A _S • f _{uk} (or see Table C1)										
Partial factor	al factor $\gamma_{Ms,V}$ [-] see Table C1									
Ductility factor	k ₇	[-]	-] 1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • 1	W _{el} • f _{uk}	(or see	Table C	:1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]	$min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300mm)$							
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Injection system EP 131v2 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

English translation prepared by DIBt

Table C5: Characteristic v	alues of t	ension	load	s und	der s	tatic	and	quas	si-sta	tic a	ction	ĺ
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure										100000		
Characteristic tension resistance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}^{1)}$									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,N}	[-]					1,	42)				
Combined pull-out and concrete failu	ire											
Characteristic bond resistance in uncra	cked concre	te C20/25										
© I: 40°C/24°C Dry, wet			14	14	14	12	12	12	12	11	11	11
Example 1: 40°C/24°C Dry, wet concrete and flooded bore hole	^τ Rk,ucr	[N/mm ²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
Hole			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Characteristic bond resistance in cracked concrete C20/25												
E I: 40°C/24°C Dry, wet	^T Rk,cr	[N/mm²]	6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
Example 1: 40°C/24°C Dry, wet concrete and flooded bore hole			4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
Hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduction factor $\psi^0_{\hspace{0.5mm}\text{sus}}$ in cracked and ι	ıncracked co	oncrete C2	0/25									
일 I: 40°C/24°C Dry, wet			0,60									
Example 2 I: 40°C/24°C Dry, wet concrete and flooded bore hole	$\psi^0_{ { m sus}}$	[-]	0,60									
HII: 70°C/43°C hole			0,60									
Increasing factors for concrete	Ψc	[-]					(f _{ck} / 2	20) ^{0,1}				
Characteristic bond resistance		τ _{Rk,ucr} =				Ψ _c '	τ _{Rk,u}	_{cr} (C20	/25)			
depending on the concrete strength class		τ _{Rk,cr} =				Ψc	• τ _{Rk,c}	r(C20/	(25)			
Concrete cone failure												
Relevant parameter						,	see Ta	ble C2	2			
Splitting		1						UEN E COLEMA	_			
Relevant parameter						;	see Ta	able C2	2			
Installation factor	1											
for dry and wet concrete or flooded bore hole	γinst	[-]					1	,4				

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Injection system EP 131v2 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Reinforcing bar)	Annex C 5

²⁾ In absence of national regulation

English translation prepared by DIBt

Table C6: Characteristic values of shear loads under static and quasi-static action												
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]					0,5	· A _s ·	f _{uk} 1)			
Cross section area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾									
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure												
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)					mm)				
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 24 25 28 32					32				
Installation factor	γinst	[-]	1,0									

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Injection system EP 131v2 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 6

²⁾ in absence of national regulation

Table C7: Displacements under tension load ¹⁾											
Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete under static and quasi-static action											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041	
Temperature range II: 60°C/35°C	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061	
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077	
Cracked concrete unde	r static and q	uasi-static actioi	1								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171	
Temperature range II:	δ _{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110	
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121	
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252	
1) Calculation of the displant	acomont										

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$

Table C8: Displacements under shear load¹⁾

Threaded rod	M8	M10	M12	M16	M20	M24	M27	M30			
Uncracked and cracked concrete under static and quasi-static action											
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \ \cdot \ V;$

Injection system EP 131v2 for concrete	
Performances Displacements under static and quasi-static action (threaded rod)	Annex C 7

Table C9: Displacements under tension load ¹⁾												
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concrete under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concrete	under statio	and quasi-stat	ic actio	n						2		
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 $\boldsymbol{\tau}\text{:}$ action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and cracked concrete under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Injection system EP 131v2 for concrete	
Performances Displacements under static and quasi-static action (reinforcing bar)	Annex C 8