

Allgemeine bauaufsichtliche Zulassung/Allgemeine

Bauartgenehmigung

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Zulassungs- und Genehmigungsstelle für Bauprodukte und Bauarten

Datum: Geschäftszeichen: 05.01.2022 I 87-1.14.5-81/21

Nummer:

Z-14.5-686

Antragsteller:

JORIS IDE NV Hille 174 8750 ZWEVEZELE BELGIEN

Gegenstand dieses Bescheides:

JORIS IDE Z- und Sigma-Trägersystem

Geltungsdauer

vom: 5. Januar 2022 bis: 29. August 2023

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst acht Seiten und 29 Anlagen.

Diese allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung ersetzt die allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung Nr. Z-14.5-686 vom 1. August 2018. Der Gegenstand ist erstmals am 29. August 2013 allgemein bauaufsichtlich zugelassen worden.

Seite 2 von 8 | 5. Januar 2022

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungs- bzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.

Seite 3 von 8 | 5. Januar 2022

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

Zulassungsgegenstand sind Kippschlaudern und Schrägabhängungen zur Verwendung im "Joris IDE Z- und Sigma-Trägersystem".

Genehmigungsgegenstand ist die Planung, Bemessung und Ausführung des "Joris IDE Z- und Sigma-Trägersystems" als Dachpfetten und Wandriegel (siehe Anlage 1, "Sigma" ist nachfolgend mit " Σ " bezeichnet).

Das Trägersystem besteht aus kaltgeformten Blechprofilen mit Z- oder Σ -förmigem Querschnitt (Z- oder Σ -Profile) sowie zugehörigen Kopplungsstücken, Stahlwinkeln (Pfettenstühle), Kippschlaudern und Schrägabhängungen.

Die Träger (Z- oder Σ -Profile) können als Einfeld- oder Mehrfeldträger ausgebildet werden. Z-Profile werden durch Überlappung zweier Profile, Σ -förmige Träger mit Kopplungsstücken (Stoßlaschen) an den Zwischenstützen biegesteif gestoßen.

2 Bestimmungen für Kippschlaudern und Schrägabhängungen

2.1 Eigenschaften und Zusammensetzung

2.1.1 Werkstoffe

Für die Herstellung der Kippschlaudern nach den Anlagen 8.1 und 8.2 ist Stahl bzw. Stahlrohr der Sorte S235JR nach den in DIN EN 1993-1-11, Tabelle 3.1 genannten Normen zu verwenden.

Für die Herstellung der Schrägabhängungen nach Anlage 9 ist mindestens Stahl der Sorte S220GD+Z275 nach DIN EN 10346² zu verwenden. Für das Stahlseil gelten die beim Deutschen Institut für Bautechnik hinterlegten Angaben.

2.2 Herstellung und Kennzeichnung

2.2.1 Herstellung

Die Kippschlaudern und Schrägabhängungen sind entsprechend den Abmessungen, die in den Anlagen angegeben sind herzustellen. Für die Toleranzmaße gelten DIN EN 1090-2³ und die beim Deutschen Institut für Bautechnik hinterlegten Angaben.

2.2.2 Kennzeichnung

Der Lieferschein oder die Verpackung der Kippschlaudern und Schrägabhängungen muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

2.3 Übereinstimmungsbestätigung

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Bauprodukte mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einer Übereinstimmungserklärung des Herstellers auf der Grundlage einer Erstprüfung durch den Hersteller und einer werkseigenen Produktionskontrolle erfolgen. Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung des Bauproduktes mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

1	DIN EN 1993-1-1:2010-12	Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-1: Allgemeine
		Bemessungsregeln und Regeln für den Hochbau; in Verbindung mit
		DIN EN 1993-1-1/A1:2014-07 und in Verbindung mit DIN EN 1993-1-1/NA:2015-08
2	DIN EN 10346:2009-07	Kontinuierlich schmelztauchveredelte Flacherzeugnisse aus Stahl – Technische Lieferbedingungen
3	DIN EN 1090-2:2018-09	Ausführung von Stahltragwerken und Aluminiumtragwerken – Teil 2: Technische Regeln für die Ausführung von Stahltragwerken

Seite 4 von 8 | 5. Januar 2022

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen.

Im Herstellwerk sind die in Abschnitt 2.2.1 geforderten Abmessungen und Toleranzmaße durch regelmäßige Messungen zu überprüfen.

Bei jeder Materiallieferung sind die nach Abschnitt 2.1.1 geforderten Werkstoffeigenschaften des Ausgangsmaterials zu überprüfen. Der Nachweis der Werkstoffeigenschaften des Ausgangsmaterials ist durch ein Werkszeugnis "2.2" nach DIN EN 10204⁴ Abschnitt 3.2 zu erbringen.

Die Tragfähigkeit der Kippschlaudern nach Anlage 8.1 sowie der Schrägabhängung nach Anlage 9 sind regelmäßig nach dem beim Deutschen Institut für Bautechnik hinterlegten Prüfplan zu überprüfen. Die ermittelten Bruchkräfte dürfen nicht geringer sein als die in den Anlagen 8.1 und 9 jeweils angegebene charakteristische Tragfähigkeit N_{Rk}.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile,
- Art der Kontrolle oder Prüfung,
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile,
- Ergebnis der Kontrollen und Prüfungen und Vergleich mit den Anforderungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

3 Bestimmungen für Planung, Bemessung und Ausführung

3.1 Planung

3.1.1 Allgemeines

Ergänzend zu den nachfolgenden Planungsvorgaben sind die Angaben zur Bemessung nach Abschnitt 3.2 und zur Ausführung nach Abschnitt 3.3 in der Planung zu berücksichtigen.

Die Tragsicherheit und Gebrauchstauglichkeit sind in jedem Einzelfall durch eine statische Berechnung nachzuweisen. Soweit nachfolgend nichts anderes bestimmt ist, gelten für Entwurf und Bemessung die jeweiligen Technischen Baubestimmungen.

⁴ DIN EN 10204:2005-01 Metallische Erzeugnisse – Arten von Prüfbescheinigungen

Seite 5 von 8 | 5. Januar 2022

3.1.2 Z- und Σ-Profile und Kopplungsstücke

Die Z- und Σ-Profile sowie Kopplungsstücke sind aus einem für die Kaltumformung geeignetem, korrosionsgeschütztem Stahlblech (vgl. Abschnitt 3.1.4) entsprechend Tabelle 1 hergestellt, wobei das noch nicht profilierte Ausgangsmaterial mindestens die mechanischen Eigenschaften eines Stahls der Sorte S350GD+Z nach DIN EN 10346² besitzt.

Tabelle 1:

Profil	Werkstoff
Z140 – Z400	S350GD+Z
Σ140 – Σ230 und zugehörige Kopplungsstücke	S350GD+Z

Für die Herstellung gilt DIN EN 1090-2³. Die werkseigene Produktionskontrolle des Herstellers muss nach DIN EN 1090-1⁵ zertifiziert sein.

Die Abmessungen der Z- und Σ -Profile sowie Kopplungsstücke sind in den Anlagen angegeben.

Für die Grenzabmaße der Nennblechdicke der Z- und Σ-Profile sowie der Kopplungsstücke gelten die Toleranzen nach DIN EN 10143⁶ (normale Grenzabmaße), für die unteren Grenzabmaße jedoch die besonderen Toleranzen (S) nach DIN EN 1993-1-3⁷, Abschnitt 3.2.4(4).

3.1.3 Pfettenstühle

Pfettenstühle bestehen aus Stahl der in DIN EN 1993-1-1¹, Tabelle 3.1 aufgeführten Festigkeitsklassen S355JR oder S235JR nach DIN EN 10025-2⁸ gemäß Tabelle 2.

Tabelle 2:

Pfettenstuhl für die Profile	Werkstoff
Z140 – Z220	S235JR
Z250 – Z400	S355JR
Σ140 – Σ230	S235JR

Für die Herstellung gilt DIN EN 1090-2³. Die werkseigene Produktionskontrolle des Herstellers muss nach DIN EN 1090-1⁵ zertifiziert sein.

Die Abmessungen der Pfettenstühle sind in den Anlagen 7.1 bis 7.5 angegeben.

3.1.4 Korrosionsschutz

Es gelten die Bestimmungen in DIN 55634-19, DIN 55634-210 und DIN EN 1090-23.

3.1.5 Brandschutz

Unbeschichtete und bandverzinkte Bauprodukte aus Stahl sind Baustoffe der Klasse A 1 nach DIN EN 13501-1¹¹.

5	DIN EN 1090-1:2012-02	Ausführung von Stahltragwerken und Aluminiumtragwerken – Teil 1: Konformitätsnachweisverfahren für tragende Bauteile
6	DIN EN 10143:2006-09	Kontinuierlich schmelztauchveredeltes Blech und Band aus Stahl – Grenzabmaße und Formtoleranzen
7	DIN EN 1993-1-3:2010-12	Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-3: Allgemeine Regeln – Ergänzende Regeln für kaltgeformte dünnwandige Bauteile und Bleche in Verbindung mit DIN EN 1993-1-3/NA:2010-12
8	DIN EN 10025-2:2019-10	Warmgewalzte Erzeugnisse aus Baustählen – Teil 2: Technische Lieferbedingungen für unlegierte Baustähle
9	DIN 55634-1:2018-03	Beschichtungsstoffe und Überzüge – Korrosionsschutz von tragenden dünnwandigen Bauteilen aus Stahl – Teil 1: Anforderungen und Prüfverfahren
10	DIN 55634-2:2018-03	Beschichtungsstoffe und Überzüge – Korrosionsschutz von tragenden dünnwandigen Bauteilen aus Stahl – Teil 2: Überwachung und Zertifizierungsanforderungen
11	DIN EN13501-1:2010-01	Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten – Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten;

Seite 6 von 8 | 5. Januar 2022

3.2 Bemessung

3.2.1 Allgemeines

Wenn kein genauerer Nachweis, z. B. nach Biegetorsionstheorie II. Ordnung unter Ansatz von Imperfektionen (DIN EN 1993-1-3 7 , Abschnitt 5.3 in Verbindung mit DIN EN 1993-1-3/NA:2010-12, Abschnitt NDP 5.3(4)) geführt wird, darf die Bemessung der Pfetten und Wandriegel nach DIN EN 1993-1-3 7 , Abschnitt 10.1 unter Beachtung der Regelung im Abschnitt 3.2.4 erfolgen. Dabei gilt für die Teilsicherheitsbeiwerte $\gamma_{M0} = \gamma_{M1} = 1,1$.

3.2.2 Lastannahmen (Einwirkungen)

3.2.2.1 Eigenlast der Pfetten und Wandriegel

Die Eigenlast der Z- und Σ-Profile ist den Anlagen 2.1, 2.2 und 3.1 zu entnehmen.

3.2.2.2 Einzellast

Auf den Tragsicherheitsnachweis für die Träger unter einer je Trägerfeld mittigen Einzellast von 1 kN nach DIN EN 1991-1-1¹², Abschnitt 6.3.4 während der Montage darf verzichtet werden, wenn das Biegedrillknicken der Träger durch konstruktive Maßnahmen solange verhindert wird, bis die planmäßig aussteifenden Flächenelemente (z. B. Stahltrapezprofile) verlegt und mit den Trägern verbunden sind.

3.2.3 Statisches System

Die Z- und Σ -Profile können als Einfeld- oder Durchlaufträger verlegt werden. Die Durchlaufwirkung kann mit Überlappungen (Z-Profile) oder Stoßlaschen (Σ -Profile) hergestellt werden.

3.2.4 Tragsicherheitsnachweis Z- und Σ-Profile

3.2.4.1 Berechnung der Beanspruchungen und Verformungen

Die Beanspruchungen sind grundsätzlich nach der Elastizitätstheorie zu berechnen. Wird die Durchlaufwirkung mittels Überlappung oder Stoßlaschen hergestellt, ist bei der Berechnung der Beanspruchungen und Verformungen um die starke Achse die Nachgiebigkeit der Verbindungen der Stoßdeckung zu berücksichtigen. Dies kann mit dem Ansatz von Drehfedern mit der Nachgiebigkeit ky nach Anlage 4 erfolgen, sofern die Überlappungslängen nach den Anlagen 2.3 bzw. 3.2 gewählt werden.

Bei der Berechnung der Beanspruchungen des freien Flansches aus der Abtriebskraft $k_h \cdot q$ (vgl. DIN EN 1993-1-3⁷, Abschnitt 10.1.4.1) darf die Nachgiebigkeit in den Überlappungs- und Laschenstößen vernachlässigt werden. Die Drehbettungswerte $c_{D,A}$ dürfen nach DIN EN 1993-1-3⁷, Abschnitt 10.1.5.2 (5) und (7) berechnet oder bei entsprechender konstruktiver Ausführung den Anlagen 5 und 6 entnommen werden. Bei Verwendung von Sandwich-Elementen gelten bezüglich der Drehbettungswerte die Angaben in der allgemeinen bauaufsichtlichen Zulassung der Sandwich-Elemente. Die Auflagerkräfte in der Dach- bzw. Wandebene dürfen nach dem Konzept des elastisch gebetteten Trägers berechnet werden. Kippschlaudern dürfen als seitliches Auflager angenommen werden. Wird keine genauere Berechnung durchgeführt, dürfen die Auflagerkräfte nach DIN EN 1993-1-3⁷, Abschnitt 10.1.6 berechnet werden.

3.2.4.2 Nachweis der Pfetten und Wandriegel auf Biegung bzw. Druck und Biegung

Es gelten die Regelungen in DIN EN 1993-1-3⁷, Abschnitt 10.1. Die charakteristischen Querschnittswerte können den Anlagen 2.4.1, 2.4.2, 2.5.1, 2.5.2, 2.6.1, 2.6.2, 3.3 und 3.4 entnommen werden.

3.2.4.3 Nachweis der Pfetten und Wandriegel auf Biegung und Querkraft

Es gelten die Regelungen in DIN EN 1993-1-3⁷, Abschnitt 6.1.10. Die charakteristischen Querschnittswerte können den Anlagen 2.4.1, 2.4.2, 2.5.1, 2.5.2, 2.6.1, 2.6.2, 3.3 und 3.4 entnommen werden.

DIN EN 1991-1-1:2010-12 Eurocode 1: Einwirkungen auf Tragwerke – Teil 1-1: Allgemeine Einwirkungen auf Tragwerke Wichten, Eigengewicht und Nutzlasten im Hochbau in Verbindung mit DIN EN 1991-1-1/NA:2010-12

Seite 7 von 8 | 5. Januar 2022

3.2.4.4 Örtliche Lasteinleitung am Auflager über den Bindern

Bei konstruktiver Ausführung der Trägerauflager nach den Anlagen 7.1 bis 7.5 oder gleichwertig braucht kein Nachweis für die lokale Lasteinleitung (Stegkrüppeln) geführt zu werden. Die Tragsicherheit der Schraubenverbindung der Pfetten bzw. Wandriegel mit den Pfettenstühlen und der Pfettenstühle selbst ist nach den gelten Technischen Baubestimmungen nachzuweisen.

Bemessungswerte des Widerstandes für Zugkräfte senkrecht zur Dach- bzw. Wandebene können den Anlagen 7.1 bis 7.5 entnommen werden.

Pfetten, die als Pfosten eines Windverbands in Rechnung gestellt werden, sind erforderlichenfalls als Doppelpfetten in symmetrischer Anordnung auszubilden.

Werden andere als in den Anlagen 7.1 bis 7.5 dargestellte Pfettenstühle verwendet, so müssen diese ein Lochbild entsprechend den Anlagen 7.1 bis 7.5 aufweisen. Sie sind so zu befestigen, dass zwischen Trägeruntergurt und der Unterkonstruktion ein Zwischenraum von mindestens 3 mm bleibt.

3.2.5 Berechnung von Formänderungen Z- und Σ-Profile

Der charakteristische Wert J_{eff} für das Biegeträgheitsmoment der Z- und Σ -Profile ist den Anlagen 2.4.1, 2.4.2, 2.5.1, 2.5.2, 2.6.1, 2.6.2 und 3.4 zu entnehmen. Abschnitt 3.2.4.1 gilt sinngemäß.

3.2.6 Dachschub

3.2.6.1 Allgemeines

Die Aufnahme des Dachschubs ist nachzuweisen. Bei Entwurf des Tragwerkes ist zu berücksichtigen, dass der resultierende Dachschub sowohl in Richtung Traufe als auch in Richtung First wirken kann.

Bei Voraussetzung einachsiger Biegung der Träger muss der resultierende Dachschub durch andere Bauteile als die Z- und Σ -Profile, z. B. durch eine an Festpunkten angeschlossene Eindeckung und / oder Abhängungen, aufgenommen werden.

3.2.6.2 Schubsteife Eindeckung

Bei einer Eindeckung der Träger mit einer schubsteifen Eindeckung darf ggf. auftretender Dachschub sowohl über eine Schubfeldwirkung der Stahltrapezprofiltafeln als auch über konstruktive Maßnahmen abgeleitet werden (z.B. Anschluss der Trapezprofile an Festpunkten der Dachkonstruktion).

3.2.6.3 Pfettensteg seitlich durch Kippschlaudern gehalten

Bei Verwendung von Kippschlaudern nach den Anlagen 8.1 und 8.2 darf davon ausgegangen werden, dass der Dachschub anteilig durch die Abhängungen übertragen wird. Die Abhängungen und die Weiterleitung ihrer Kräfte in die Unterkonstruktion, z.B. durch Schrägabhängungen nach Anlage 9, sind statisch nachzuweisen. Die Bemessungswerte des Widerstandes für Zugbeanspruchung können den Anlagen 8.1, 8.2 und 9 entnommen werden.

3.2.7 Scheibenwirkung

Die Träger dürfen als Randglieder von Schubfeldern mit herangezogen werden, wenn als Eindeckung genormte bzw. allgemein bauaufsichtlich zugelassene und entsprechend bemessene Stahltrapezprofiltafeln verwendet werden.

Die Beanspruchungen aus der Scheibenwirkung sind bei der Bemessung der Verbindungen, der Träger und der Randglieder zu berücksichtigen.

3.2.8 Stabiliserung der Unterkonstruktion

Die Binderobergurte der Unterkonstruktion dürfen an den Trägerauflagern als seitlich gehalten angesehen werden, sofern die mit den Trägern verbundene Dacheindeckung bereichsweise als Schubfeld ausgebildet wird oder die Träger an Festpunkten horizontal gehalten sind (z. B. durch einen Verband). Die Binderuntergurte dürfen bei einer Anordnung von Flanschstreben als seitlich gehalten angesehen werden.

Der Einfluss von Flanschstreben darf beim Nachweis der Pfetten vernachlässigt werden.

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Nr. Z-14.5-686

Seite 8 von 8 | 5. Januar 2022

3.2.9 Verbindungen

Verbindungselemente müssen durch eine allgemeine bauaufsichtliche Zulassung oder durch eine europäisch technische Bewertung oder europäische harmonisierte Norm geregelt sein und nach den jeweils geltenden Bemessungsvorschriften nachgewiesen werden.

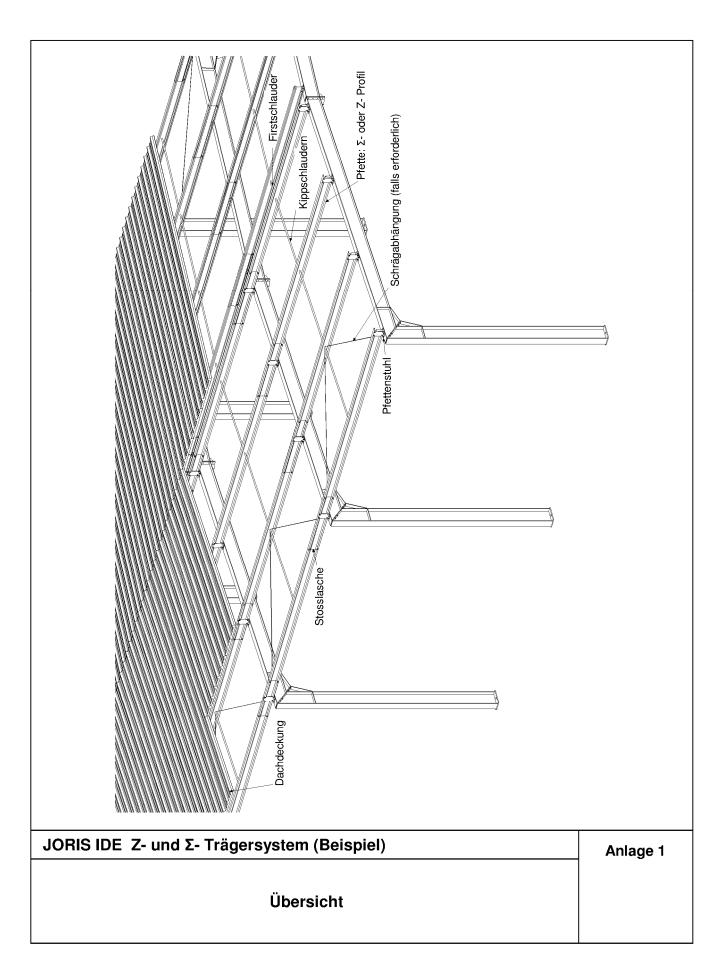
Für die in den Anlagen 7.1 bis 7.5, 8.1 und 8.2 beschriebenen Verbindungselemente sind Schrauben der Güte 8.8 zu verwenden.

Die Verbindungselemente zur Verbindung der Dachelemente mit den Pfettenobergurten sind unter Berücksichtigung der Übertragung des anteiligen Dachschubs und der Kräfte aus den dachparallelen Abtriebskräften nachzuweisen.

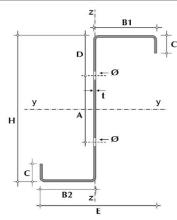
Für die Ausführung von Schweißnähten gelten, in Abhängigkeit von den Anforderungen, die für die Konstruktion festgelegt sind und - in Abstimmung mit dem Tragwerksplaner und der Genehmigungsbehörde – die Regelungen für EXC 2 oder EXC 3 nach DIN EN 1090-2³.

3.3 Ausführung

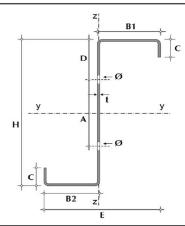
Die Ausführung erfolgt nach den Konstruktionszeichnungen und der Ausführungsanweisung des Herstellers und ist beispielhaft auf den Anlagen 1, 2.3, 3.2 und 7 angegeben.


Das Trägersystem darf nur von Fachkräften des Herstellwerks oder durch vom Hersteller entsprechend angeleitete und bevollmächtigte Firmen eingebaut werden. Vom Hersteller ist eine Ausführungsanweisung für den Einbau des Trägersystems anzufertigen und den Montagefirmen auszuhändigen.

Die bauausführende Firma hat, zur Bestätigung der Übereinstimmung des JORIS IDE Z- und Sigma-Trägersystems mit der von diesem Bescheid erfassten allgemeinen Bauartgenehmigung, eine Übereinstimmungserklärung gemäß §§ 16a Abs.5 i.V.m. 21 Abs. 2 MBO abzugeben.


Dr.-Ing. Ronald Schwuchow Referatsleiter

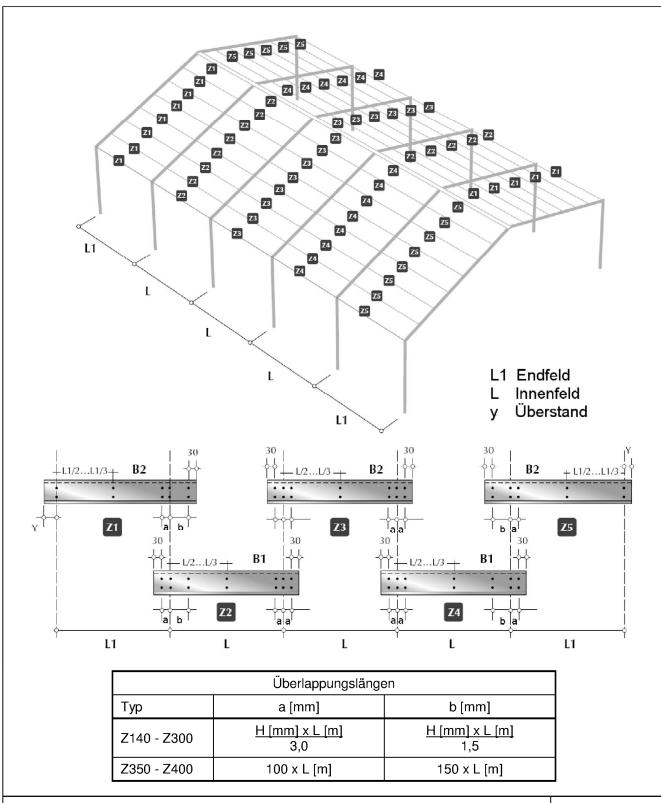
Beglaubigt Gregor Bertram



Tun	t	G	B1	B2	С	Е	Н	Α	D	Ø	f _{yb}
Тур	mm	N/m	mm	mm	mm	mm	mm	mm	mm	mm	N/mm²
	1,5	34,5	65,5	59,5	22,0	123,5	140	70,0	36,00	14	350
Z140	2,0	45,6	65,5	59,5	22,0	123,0	140	70,0	36,00	14	350
	2,5	56,6	65,5	59,5	22,0	122,5	140	70,0	36,00	14	350
	1,5	36,9	65,5	59,5	22,0	123,5	160	70,0	46,00	14	350
Z160	2,0	48,8	65,5	59,5	22,0	123,0	160	70,0	46,00	14	350
	2,5	60,5	65,5	59,5	22,0	122,5	160	70,0	46,00	14	350
	1,5	39,2	65,5	59,5	22,0	123,5	180	81,5	50,25	14	350
Z180	2,0	51,9	65,5	59,5	22,0	123,0	180	81,5	50,25	14	350
2100	2,5	64,4	65,5	59,5	22,0	122,5	180	81,5	50,25	14	350
	3,0	77,2	65,5	59,5	22,0	122,0	180	81,5	50,25	14	350
	1,5	41,6	65,5	59,5	22,0	123,5	200	100,0	51,00	14	350
Z200	2,0	55,1	65,5	59,5	22,0	123,0	200	100,0	51,00	14	350
2200	2,5	68,3	65,5	59,5	22,0	122,5	200	100,0	51,00	14	350
	3,0	81,9	65,5	59,5	22,0	122,0	200	100,0	51,00	14	350
	1,5	44,1	65,5	59,5	22,0	123,5	220	120,0	51,00	14	350
7220	2,0	58,2	65,5	59,5	22,0	123,0	220	120,0	51,00	14	350
Z220	2,5	72,3	65,5	59,5	22,0	122,5	220	120,0	51,00	14	350
	3,0	86,6	65,5	59,5	22,0	122,0	220	120,0	51,00	14	350

JORIS IDE Z- und Σ- Trägersystem	Anlage 2.1
Z- Profile	
Profil- Abmessungen	

Tura	t	G	B1	B2	С	Е	Н	Α	D	Ø	f _{yb}
Тур	mm	N/m	mm	mm	mm	mm	mm	mm	mm	mm	N/mm²
	1,5	49,2	77,0	66,0	21,0	141,5	248	150,0	50,5	18	350
	1,75	57,5	77,5	66,5	21,25	142,25	248,5	150,0	50,75	18	350
Z250	2,0	65,7	78,0	67,0	21,5	143,0	249	150,0	51,0	18	350
2230	2,5	82,5	79,0	68,0	22,0	144,5	250	150,0	51,5	18	350
	3,0	99,3	80,0	69,0	22,5	146,0	251	150,0	52,0	18	350
	3,5	117	81,0	70,0	23,0	147,5	252	150,0	52,5	18	350
	2,0	81,3	93,0	85,0	29,5	176,0	299	190,0	56,0	18	350
	2,5	101,9	94,0	86,0	30,0	177,5	300	190,0	56,5	18	350
Z300	3,0	122,7	95,0	87,0	30,5	179,0	301	190,0	57,0	18	350
	3,5	143,5	96,0	88,0	31,5	180,5	302	190,0	57,5	18	350
	4,0	165,7	97,0	89,0	32,0	182,0	303	190,0	58,0	18	350
	2,0	89,1	93,0	85,0	29,5	176,0	349	240,0	56,5	18	350
	2,5	111,7	94,0	86,0	30,0	177,5	350	240,0	56,5	18	350
Z350	3,0	134,4	95,0	87,0	30,5	179,0	351	240,0	56,5	18	350
	3,5	157,3	96,0	88,0	31,5	180,5	352	240,0	56,5	18	350
	4,0	181,4	97,0	89,0	32,0	182,0	353	240,0	56,5	18	350
	2,0	97,0	93,0	85,0	29,5	176,0	399	290,0	56,5	18	350
	2,5	121,5	94,0	86,0	30,0	177,5	400	290,0	56,5	18	350
Z400	3,0	146,2	95,0	87,0	30,5	179,0	401	290,0	56,5	18	350
	3,5	171,0	96,0	87,0	31,5	179,5	402	290,0	56,5	18	350
	4,0	197,1	97,0	89,0	32,0	182,0	403	290,0	56,5	18	350


JORIS IDE Z- und Σ- Trägersystem

Anlage 2.2

Z- Profile

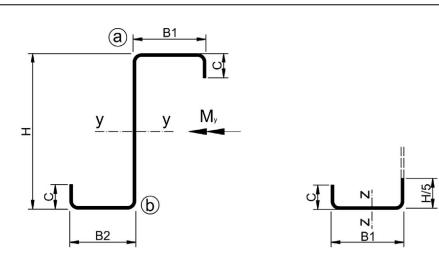
Profil- Abmessungen

JORIS IDE Z- und Σ- Trägersystem	Anlage 2.3
Z- Profile	
Überlappungslängen	

			Bru	ıttoquersch	Effektiver (Querschnitt	
Тур	t	f _{yb}	Ag	$J_{g,y}$	$J_{g,z}$	A _{eff}	$J_{eff,y}$
'',	mm	N/mm²	cm ²	cm⁴	cm⁴	cm ²	cm⁴
	1,5	350	4,40	135,8	43,69	2,77	106,7
Z140	2,0	350	5,81	177,9	56,54	4,41	161,8
	2,5	350	7,21	218,6	68,57	6,02	208,4
	1,5	350	4,70	185,4	43,70	2,76	142,5
Z160	2,0	350	6,21	243,2	56,55	4,42	217,2
	2,5	350	7,71	299,2	68,59	6,06	281,7
	1,5	350	5,00	244,4	43,71	2,75	183,3
Z180	2,0	350	6,61	321,0	56,56	4,42	281,0
2180	2,5	350	8,21	395,2	68,60	6,08	366,9
	3,0	350	9,85	468,5	81,52	7,87	450,6
	1,5	350	5,30	313,4	43,71	2,75	229,3
Z200	2,0	350	7,01	411,9	56,57	4,42	353,1
2200 [2,5	350	8,71	507,6	68,62	6,10	463,8
	3,0	350	10,45	602,9	81,77	7,92	572,5
	1,50	350	5,62	392,4	44,46	2,74	280,3
Z220	2,0	350	7,41	516,9	56,58	4,41	433,6
~~~ [	2,5	350	9,21	637,5	68,63	6,11	572,6
	3,0	350	11,05	758,3	82,00	7,96	710,1

t = Stahlkerndicke Achsendefinition nach Anlagen 2.1 und 2.2

JORIS IDE Z- und Σ- Trägersystem	Anlage 2.4.1
Z- Profile	
Charakteristische Querschnittswerte, zentrischer Druck	




			Bru	uttoquersch	Effektiver (	Querschnitt	
Тур	t	f _{yb}	Ag	$J_{g,y}$	$J_{g,z}$	A _{eff}	${\sf J}_{{\sf eff},{\sf y}}$
1,46	mm	N/mm²	cm ²	cm⁴	cm⁴	cm ²	cm⁴
	1,50	350	6,28	560,0	61,94	2,64	350,5
	1,75	350	7,34	656,7	73,13	3,51	460,1
7050	2,0	350	8,37	754,0	82,87	4,54	598,8
Z250 -	2,5	350	10,51	950,5	105,85	6,65	842,3
	3,0	350	12,66	1150,3	129,77	8,68	1059,7
	3,5	350	14,92	1.360,7	158,79	10,67	1252,5
	2,0	350	10,35	1363,8	163,24	4,96	963,0
	2,5	350	12,98	1716,5	211,81	7,36	1401,2
Z300	3,0	350	15,63	2073,9	258,54	10,04	1849,8
	3,5	350	18,28	2436,1	306,80	12,54	2244,7
	4,0	350	21,14	2823,8	366,81	15,04	2604,9
	2,0	350	11,35	1970,5	166,60	4,63	1252,3
	2,5	350	14,23	2478,5	211,85	6,95	1848,1
Z350	3,0	350	17,13	2992,8	258,59	9,78	2531,4
	3,5	350	20,03	3513,3	306,86	12,23	3088,7
	4,0	350	23,14	4073,1	367,90	15,08	3652,3
	2,0	350	12,35	2719,1	162,04	4,58	1639,5
	2,5	350	15,48	3418,5	211,88	6,89	2428,2
Z400	3,0	350	18,63	4125,7	258,64	9,40	3252,5
	3,5	350	21,78	4841,0	306,92	12,24	4117,4
	4,0	350	25,14	5612,6	368,81	15,10	4882,1

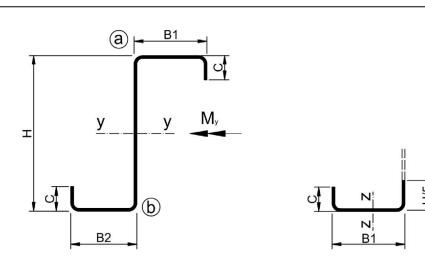
t = Stahlkerndicke Achsendefinition nach Anlagen 2.1 und 2.2

JORIS IDE Z- und Σ- Trägersystem	Anlage 2.4.2
Z- Profile	
Charakteristische Querschnittswerte, zentrischer Druck	





		Biegung	um die sta	rke Achse	Ersatzquerschnitt			
Tyro	t	f _{yb}	$J_{eff,y}$	$W_{eff,y,a}$	$W_{eff,y,b}$	A _{fz}	$J_{fz}$	$W_{fz}$
Тур	mm	N/mm²	cm⁴	cm ³	cm ³	cm ²	cm⁴	cm ³
	1,5	350	123,9	17,10	18,36	1,61	9,88	2,86
Z140	2,0	350	174,3	25,11	24,70	2,13	12,79	3,70
	2,5	350	218,2	31,80	30,57	2,63	15,51	4,49
	1,5	350	166,2	19,71	21,97	1,67	10,41	2,92
Z160	2,0	350	237,4	29,80	29,56	2,21	13,48	3,78
	2,5	350	297,7	37,79	36,65	2,73	16,36	4,59
	1,5	350	214,6	22,17	25,79	1,73	10,90	2,98
7400	2,0	350	312,4	34,74	34,69	2,29	14,12	3,86
Z180	2,5	350	392,0	44,07	43,06	2,83	17,15	4,68
	3,0	350	468,5	52,99	51,16	3,42	20,34	5,54
	1,5	350	269,5	24,60	29,80	1,79	11,36	3,02
7200	2,0	350	400,0	39,92	40,08	2,37	14,72	3,92
Z200	2,5	350	502,3	50,67	49,80	2,93	17,89	4,76
	3,0	350	602,2	61,18	59,28	3,54	21,20	5,64
	1,5	350	331,2	27,02	33,99	1,87	11,81	3,08
7000	2,0	350	492,2	43,81	45,73	2,45	15,28	3,97
Z220	2,5	350	629,5	57,58	56,88	3,03	18,58	4,83
	3,0	350	755,1	69,56	67,76	3,66	22,00	5,73


# JORIS IDE Z- und Σ- Trägersystem

**Anlage 2.5.1** 

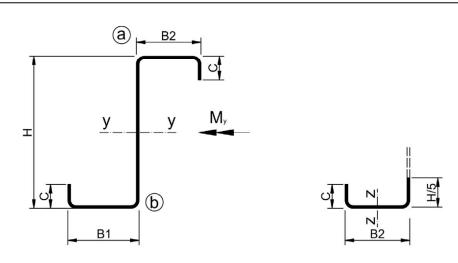
# **Z- Profile**

Charakteristische Querschnittswerte, Biegung um die starke Achse breiter Gurt gedrückt, Ersatzquerschnitt für den freien breiten Gurt





		Biegung um die starke Achse			Ersatzquerschnitt			
Tun	t	$f_{yb}$	$J_{eff,y}$	$W_{eff,y,a}$	$W_{eff,y,b}$	$A_{fz}$	$J_{fz}$	W _{fz}
Тур	mm	N/mm²	cm⁴	cm ³	cm ³	cm ²	cm⁴	cm ³
	1,50	350	429,7	29,68	41,63	2,11	17,88	3,88
	1,75	350	544,7	39,39	49,42	2,47	21,07	4,55
7250	2,0	350	687,1	52,80	57,81	2,80	24,13	5,17
Z250	2,5	350	922,7	73,37	74,27	3,52	30,67	6,51
	3,0	350	1125,3	88,73	90,62	4,23	37,42	7,87
	3,5	350	1337,2	107,65	104,65	5,05	45,22	9,44
	2,0	350	1154,7	69,39	87,08	3,46	44,30	8,14
	2,5	350	1590,5	101,55	110,93	4,34	56,14	10,22
Z300	3,0	350	2021,5	134,05	134,59	5,22	68,28	12,34
	3,5	350	2390,2	158,01	158,57	6,11	80,74	14,47
	4,0	350	2796,9	186,23	183,03	7,14	95,56	17,04
	2,0	350	1568,8	77,45	107,13	3,66	46,97	8,31
	2,5	350	2171,2	113,58	136,69	4,59	59,52	10,45
Z350	3,0	350	2792,9	152,66	166,19	5,52	72,41	12,61
	3,5	350	3400,2	191,34	195,08	6,46	85,64	14,80
	4,0	350	4015,9	228,66	226,41	7,54	101,29	17,44
	2,0	350	2096,1	88,63	128,99	3,86	49,36	8,46
	2,5	350	2903,7	129,75	164,79	4,84	62,56	10,64
Z400	3,0	350	3734,8	174,02	200,39	5,82	76,12	12,84
	3,5	350	4544,1	217,73	235,09	6,81	90,04	15,07
	4,0	350	5514,0	274,23	273,07	7,94	106,49	17,77


# JORIS IDE Z- und Σ- Trägersystem

**Anlage 2.5.2** 

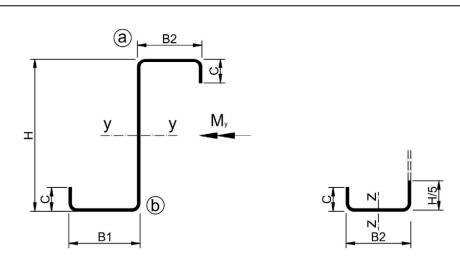
# **Z- Profile**

Charakteristische Querschnittswerte, Biegung um die starke Achse breiter Gurt gedrückt, Ersatzquerschnitt für den freien breiten Gurt





		Biegung	um die sta	rke Achse	Ersatzquerschnitt			
Tyro	t	f _{yb}	$J_{eff,y}$	$W_{eff,y,a}$	$W_{eff,y,b}$	A _{fz}	$J_{fz}$	$W_{fz}$
Тур	mm	N/mm²	cm⁴	cm ³	cm ³	cm ²	cm⁴	cm ³
	1,5	350	127,8	17,32	19,30	1,52	7,85	2,50
Z140	2,0	350	176,4	24,65	25,79	2,01	10,15	3,22
	2,5	350	218,2	30,57	31,80	2,48	12,28	3,90
	1,5	350	170,6	19,83	23,05	1,58	8,28	2,55
Z160	2,0	350	240,3	29,31	30,80	2,09	10,71	3,30
	2,5	350	299,1	36,71	38,09	2,58	12,97	3,99
	1,5	350	219,8	22,30	27,01	1,64	8,68	2,60
7400	2,0	350	316,1	34,23	36,07	2,17	11,23	3,36
Z180	2,5	350	395,6	43,20	44,73	2,68	13,61	4,07
	3,0	350	468,5	51,16	52,99	3,24	16,09	4,80
	1,5	350	275,9	24,75	31,16	1,70	9,05	2,64
Z200	2,0	350	402,6	39,00	41,61	2,25	11,71	3,41
2200	2,5	350	507,1	49,80	51,66	2,78	14,20	4,13
	3,0	350	602,9	59,31	61,31	3,36	16,78	4,89
	1,5	350	338,8	27,20	35,49	1,78	9,41	2,68
7000	2,0	350	494,9	42,81	47,41	2,33	12,16	3,46
Z220	2,5	350	635,4	56,67	58,90	2,88	14,76	4,19
	3,0	350	758,3	67,87	70,04	3,48	17,42	4,96


# JORIS IDE Z- und Σ- Trägersystem

Anlage 2.6.1

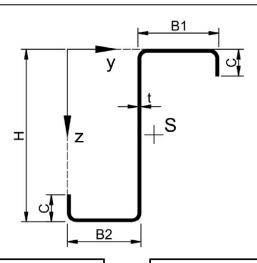
# **Z- Profile**

Charakteristische Querschnittswerte, Biegung um die starke Achse schmaler Gurt gedrückt, Ersatzquerschnitt für den freien schmalen Gurt





		Biegung um die starke Achse			Ersatzquerschnitt			
Tun	t	$f_{yb}$	$J_{eff,y}$	$W_{eff,y,a}$	$W_{eff,y,b}$	A _{fz}	$J_{fz}$	VV _{fz}
Тур	mm	N/mm²	cm⁴	cm ³	cm ³	cm ²	cm⁴	cm ³
	1,50	350	449,1	30,36	44,87	1,95	12,37	3,09
	1,75	350	565,9	39,88	53,09	2,28	14,61	3,63
Z250	2,0	350	697,2	51,31	61,63	2,58	16,77	4,13
2250	2,5	350	927,4	71,11	77,55	3,24	21,37	5,20
	3,0	350	1134,4	87,27	93,75	3,90	26,14	6,29
	3,5	350	1356,4	104,84	110,62	4,66	31,64	7,56
	2,0	350	1173,9	69,20	90,73	3,30	35,85	7,15
	2,5	350	1607,3	100,16	115,20	4,14	45,47	8,99
Z300	3,0	350	2028,5	130,77	139,06	4,98	55,37	10,86
	3,5	350	2402,1	155,17	163,20	5,83	65,56	12,74
	4,0	350	2820,0	183,29	189,07	6,82	77,66	15,01
	2,0	350	1591,7	77,23	111,38	3,50	38,01	7,30
	2,5	350	2198,3	112,74	141,82	4,39	48,23	9,19
Z350	3,0	350	2786,9	148,07	171,20	5,28	58,74	11,09
	3,5	350	3395,0	185,43	200,99	6,18	69,56	13,02
	4,0	350	4048,6	225,54	233,36	7,22	82,36	15,35
Z400	2,0	350	2124,1	88,41	133,82	3,70	39,94	7,43
	2,5	350	2934,6	128,73	170,58	4,64	50,69	9,34
	3,0	350	3720,4	168,69	206,17	5,58	61,75	11,29
	3,5	350	4531,6	211,22	241,73	6,53	73,13	13,25
	4,0	350	5526,8	268,06	280,80	7,62	86,60	15,64

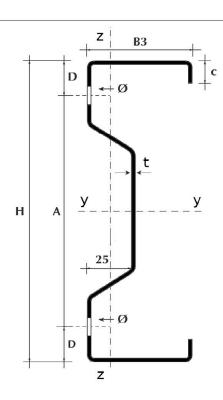

# JORIS IDE $\,$ Z- und $\,$ $\Sigma$ - Trägersystem

**Anlage 2.6.2** 

# **Z- Profile**

Charakteristische Querschnittswerte, Biegung um die starke Achse schmaler Gurt gedrückt, Ersatzquerschnitt für den freien schmalen Gurt

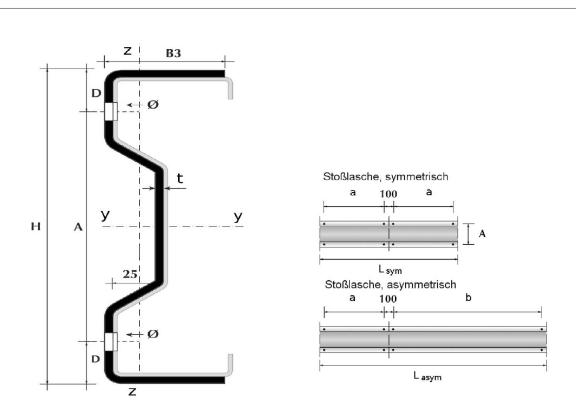





		Schwer	punkt S
Typ	t	<b>y</b> s	ZS
Тур	mm	mm	mm
	1,5	60,4	68,6
Z140	2,0	60,1	68,6
	2,5	59,9	68,6
	1,5	60,3	78,5
Z160	2,0	60,0	78,5
	2,5	59,8	78,5
	1,5	60,2	88,4
Z180	2,0	59,9	88,4
2100	2,5	59,7	88,4
	3,0	59,4	88,4
	1,5	60,1	98,3
Z200	2,0	59,9	98,3
2200	2,5	59,6	98,3
	3,0	59,3	98,3
	1,5	60,0	108,3
7220	2,0	59,8	108,2
Z220	2,5	59,5	108,2
	3,0	59,3	108,3

		Schwer	punkt S
Tyro	t	<b>y</b> s	ZS
Тур	mm	mm	mm
	1,5	67,6	120,8
	1,75	68,0	121,1
Z250	2,0	68,3	121,3
2250	2,5	69,1	121,8
	3,0	69,8	122,3
	3,5	70,6	122,9
	2,0	85,8	147,2
	2,5	86,5	147,7
Z300	3,0	87,3	148,2
	3,5	88,0	148,7
	4,0	88,8	149,3
	2,0	85,6	172,1
	2,5	86,4	172,6
Z350	3,0	87,1	173,1
	3,5	87,9	173,6
	4,0	88,6	174,1
	2,0	85,5	196,9
	2,5	86,2	197,4
Z400	3,0	87,0	197,9
	3,5	87,7	198,4
	4,0	88,5	199,0

JORIS IDE Z- und Σ- Trägersystem	Anlage 2.7
Z- Profile	
Lage des Schwerpunktes (Bruttoquerschnitt)	






	Pfetten										
Tyrn	t	G	В3	С	Н	Α	D	Ø	f _{y,b}		
Тур	mm	N/m	mm	mm	mm	mm	mm	mm	N/mm²		
	1,5	35,0	56	15	140	100	20	14	350		
Σ140	2,0	46,0	56	15	140	100	20	14	350		
	2,5	57,5	56	15	140	100	20	14	350		
	1,5	38,5	56	15	170	130	20	14	350		
Σ170	2,0	51,0	56	15	170	130	20	14	350		
	2,5	63,0	56	15	170	130	20	14	350		
	1,5	42,0	56	15	200	160	20	14	350		
Σ200	2,0	55,0	56	15	200	160	20	14	350		
	2,5	68,0	56	15	200	160	20	14	350		
	1,5	45,0	56	15	230	190	20	14	350		
Σ230	2,0	60,0	56	15	230	190	20	14	350		
	2,5	75,0	56	15	230	190	20	14	350		

JORIS IDE Z- und Σ- Trägersystem	Anlage 3.1
Σ- Profile	
Profil- Abmessungen	





	Stoßlaschen										
Tyro	t	Α	а	b	$L_{sym}$	L _{asym}	$f_{y,b}$				
Тур	mm	mm	mm	mm	mm	mm	N/mm ²				
Σ140	2,5	100	270	540	700	970	350				
Σ170	3,0	130	320	640	800	1120	350				
Σ200	3,0	160	420	840	1000	1420	350				
Σ230	3,0	190	520	1040	1200	1720	350				

Asymmetrische Stoßlasche an der ersten Innenstütze sinngemäß nach Anlage 2.3

JORIS IDE Z- und Σ- Trägersystem	Anlage 3.2
Σ- Profile	
Stoßlaschen- Abmessungen	



# **Pfetten**

		Bru	ttoquersch	nnitt	Effektiver Querschnitt		
Тур	t	Ag	$J_{g,y}$	W _{g,y}	A _{eff}	$J_{{ m eff,y}}$	
1 75	mm	cm ²	cm⁴	cm ³	cm²	cm⁴	
	1,5	4,40	127,1	18,16	3,99	108,2	
Σ140	2,0	5,82	166,4	23,78	5,62	157,6	
	2,5	7,21	204,3	29,20	7,05	197,4	
	1,5	4,85	201,9	23,76	4,29	171,2	
Σ170	2,0	6,42	264,9	31,17	6,19	249,9	
	2,5	7,96	325,8	38,34	7,77	313,4	
	1,5	5,30	298,5	29,86	4,34	252,2	
Σ200	2,0	7,02	392,2	39,23	6,43	369,0	
	2,5	8,71	483,1	48,31	8,35	463,2	
	1,5	5,75	419,0	36,44	4,36	351,5	
Σ230	2,0	7,62	551,1	47,93	6,51	516,6	
	2,5	9,46	679,5	59,09	8,54	649,6	

t = Stahlkerndicke Achsendefinition nach Anlage 3.1

# Stoßlaschen

		Bruttoquerschnitt			
Тур	t	$A_g$ $J_{g,y}$		$W_{g,y}$	
',	mm	cm ²	cm⁴	cm ³	
Σ140	2,5	6,65	194,8	26,87	
Σ170	3,0	8,90	371,7	42,24	
Σ200	3,0	9,80	547,5	53,16	
Σ230	3,0	10,70	767,3	65,03	

t = Stahlkerndicke Achsendefinition nach Anlage 3.2

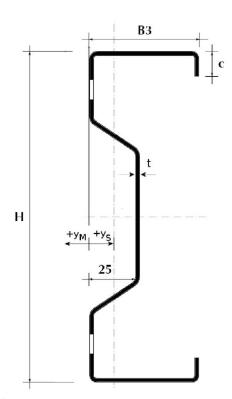
JORIS IDE Z- und Σ- Trägersystem	Anlage 3.3
Σ- Profile	
Charakteristische Querschnittswerte, zentrischer Druck	



# **Pfetten**

		Biegung um di	iegung um die starke Achse		Ersatzquerschnitt			
Tun	t	$J_{{\sf eff},y}$	$W_{\text{eff,y}}$	$A_{fz}$	$J_{fz}$	W _{fz}		
Тур	mm	cm⁴	cm ³	cm ²	cm⁴	cm ³		
	1,5	121,8	16,94	1,33	5,77	1,89		
Σ140	2,0	163,1	23,02	1,76	7,43	2,43		
	2,5	202,2	28,70	2,16	8,96	2,93		
	1,5	193,3	22,16	1,41	6,20	1,95		
Σ170	2,0	259,1	30,09	1,86	7,99	2,51		
	2,5	321,7	37,57	2,29	9,65	3,02		
	1,5	285,7	27,86	1,51	6,69	2,01		
Σ200	2,0	383,2	37,81	1,98	8,63	2,59		
	2,5	476,3	47,23	2,45	10,42	3,12		
	1,5	401,0	34,03	1,59	6,99	2,03		
Σ230	2,0	538,0	46,15	2,10	9,01	2,62		
	2,5	669,1	57,68	2,60	10,88	3,16		

t = Stahlkerndicke Achsendefinition nach Anlage 3.1


# Stoßlaschen

		Biegung um di	Ersatzquerschnitt			
Typ t		$J_{{\it eff},y}$	W _{eff,y}	A _{fz}	J _{fz}	$W_{fz}$
l i yp	mm	cm⁴	cm ³	cm ²	cm⁴	cm ³
Σ140	2,5	170,1	21,36	1,79	5,34	1,56
Σ170	3,0	339,1	35,14	2,30	6,96	1,95
Σ200	3,0	499,8	43,65	2,45	7,41	2,02
Σ230	3,0	698,6	52,85	2,66	7,91	2,08

t = Stahlkerndicke Achsendefinition nach Anlage 3.2

JORIS IDE Z- und Σ- Trägersystem	Anlage 3.4
Σ- Profile	
Charakteristische Querschnittswerte, Biegung um die starke Achse,	
Ersatzquerschnitt für den freien Gurt	





# **Pfetten**

Typ	t	Уs	<b>У</b> м
Тур	mm	mm	mm
	1,5	21,0	-3,8
Σ140	2,0	21,1	-3,3
	2,5	21,2	-2,8
Σ170	1,5	21,4	3,6
	2,0	21,1	4,1
	2,5	21,1	4,6
	1,5	21,8	8,6
Σ200	2,0	21,9	9,1
	2,5	22,0	9,5
	1,5	22,1	12,2
Σ230	2,0	22,2	12,6
	2,5	22,4	13,0

t = Stahlkerndicke

# Stoßlaschen

Typ	t	<b>y</b> s
Тур	mm	mm
Σ140	2,6	20,2
Σ170	3,0	19,3
Σ200	3,0	18,2
Σ230	3,0	17,0

JORIS IDE Z- und Σ- Trägersystem	Anlage 3.5
Σ- Profile	
Lage des Schwer- und des Schubmittelpunktes	



Für die Berechnung der Schnittgrößen und Verformungen der Durchlaufträger darf die Nachgiebigkeit k_y am Überlappungs- bzw. Koppelstoß mit den Zahlenwertgleichungen (1) bis (6) berechnet werden.

#### **Profile Z140 - Z400**

Symmetrische Überlappung (2 x Länge " x " nach Anlage 2.3):

$$k_{y,sym} = 0,4494 (J_{y,eff,mittel})^{-1,157}$$
 (1)

Asymmetrische Überlappung (1 x Länge " x " und 1 x Länge " x' " nach Anlage 2.3):

$$k_{y,asym} = 0.1881 \left(J_{y,eff,mittel}\right)^{-1.044}$$

Lange Überlappung (2 x Länge " x' " nach Anlage 2.3):

$$k_{y,lang} = 0.5116 (J_{y,eff,mittel})^{-1.227}$$
 (3)

#### **Profile Σ140 – Σ230**

Symmetrische Kopplung (2 x Länge " x " nach Anlage 3.2):

$$k_{y,sym} = 4,637 (J_{y,eff,mittel})^{-1,5615}$$
 (4)

Asymmetrische Kopplung (1 x Länge " x " und 1 x Länge " x' " nach Anlage 3.2):

$$k_{y,asym} = 0.2044 (J_{y,eff,mittel})^{-0.9344}$$
 (5)

Lange Kopplung (2 x Länge "x' " nach Anlage 3.2):

$$k_{y,lang} = 0.02625 (J_{y,eff,mittel})^{-0.6307}$$
 (6)

Die Nachgiebigkeit  $k_y$  ergibt sich in rad/kNm. Für  $J_{y,\text{eff,mittel}}$  ist der Mittelwert der Trägheitsmomente  $J_{y,\text{eff}}$  der überlappten bzw. zu stoßenden Profile in cm⁴ einzusetzen.

# JORIS IDE Z- und Σ- Trägersystem Nachgiebigkeit am Überlappungsstoß Anlage 4



			Z140 – Z	220		Z250 – Z	<b>2</b> 400
Zeile	Dacheindeckung bzw. Wandbekleidung	RN	C _{D,A,A} Nm/m/rad	C _{D,A,S} Nm/m/rad	RN	C _{D,A,A} Nm/m/rad	C _{D,A,S} Nm/m/rad
1	TRP 45/333, t= 0,72 mm, Verbindung in jedem Obergurt mit Kalotte	01	885	780	31	995	880
2	Wie Zeile 1, jedoch t= 0,63 mm	02	820	440	02'	920	495
3	TRP 25/267, t= 0,55 mm, Verbindung in jedem anliegenden Gurt	03	615	685	03'	690	770
4	Wie Zeile 3, jedoch t= 0,60 mm	32'	615	685	32	910	770
5	TRP 35/207, t= 0,75 mm, Verbindung in jedem Untergurt	04	805	850	04'	905	955
6	TRP 33/250, t= 0,58 mm, Verb. in jedem 2. Obergurt mit Kalotte	05	275	305	05'	310	345
7	TRP 45/333, t= 0,75 mm, Verbindung in jedem anliegenden Gurt Abstand a ≤ 75 mm	09	310	255	09'	350	290
8	Wie Zeile 7, jedoch t= 0,72 mm	35'	290	240	35	410	290
9	Dach-Sandwich		*)	*)		*)	*)
10	Wand- Sandwich		*)	*)		*)	*)

C_{D,A,A} Anschlußsteifigkeit für andrückende Belastung RN Nummer des Anschlußtyps (Referenznummer)

*) Anschlußsteifigkeit für abhebende Belastung (Referenznummer)

* Sandwichelemente: Anschlußsteifigkeiten nach individueller Sandwichzulassung

JORIS IDE Z- und Σ- Trägersystem

Anschlußsteifigkeiten, Z- Profile



Ф			Z140 – Z	220		Z250 – Z	400
Zeile	Dacheindeckung bzw. Wandbekleidung		C _{D,A,A} Nm/m/rad	C _{D,A,S} Nm/m/rad	RN	C _{D,A,A} Nm/m/rad	C _{D,A,S} Nm/m/rad
11	TRP 45/333, t= 0,63 mm, auf thermischer Trennung "Clipshed Isover", Verbindung in jedem 2. Obergurt mit Kalotte	13	390	415	13'	440	465
12	TRP 45/333, t= 0,75 mm, Verbindung in jedem Obergurt mit Kalotte aus Stahl S280	40'	700	680	40	885	860
13	Wie Zeile 13, jedoch Kalotte aus Stahl S350	42'	700	680	42	885	860
14	TRP 42/252, t= 0,75 mm, Verbindung in jedem 2. anliegenden Gurt	21	740	440	51	800	560
15	TRP 42/252, t= 0,75 mm, Verbindung in jedem anliegenden Gurt	22	1240	675	52	1390	855
16	TRP 42/252 perforiert, t= 0,75 mm, Verbindung in jedem 2. anliegenden Gurt	23	740	441	53	940	560
17	TRP 42/252 perforiert, t= 0,75 mm, Verbindung in jedem anliegenden Gurt	24	1240	675	54	1505	855
18	TRP 37/262 perforiert, t= 0,72 mm, Verbindung in jedem 2. anliegenden Gurt	26	535	390	56	490	495
19	TRP 45/333, t= 0,75 mm, auf 60 mm Dämmung, Verbindung in jedem Obergurt mit Kalotte	30	655	790	41	690	790

 $\begin{array}{ll} C_{\text{D,A,A}} & \quad \text{Anschlußsteifigkeit für andrückende Belastung} \\ C_{\text{D,A,S}} & \quad \text{Anschlußsteifigkeit für abhebende Belastung} \end{array}$ 

RN Nummer des Anschlußtyps (Referenznummer)

JORIS IDE Z- und Σ- Trägersystem	Anlage 5.2
Anschlußsteifigkeiten, Z- Profile	

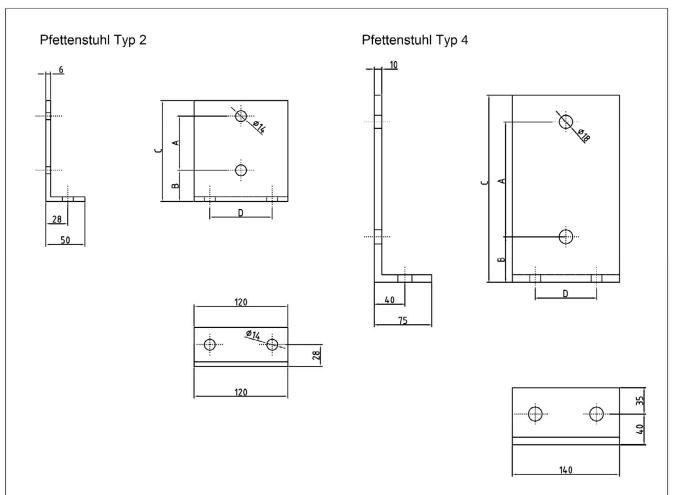


(I)			Σ140 – Σ	230
Zeile	Dacheindeckung bzw. Wandbekleidung	RN	C _{D,A,A} Nm/m/rad	C _{D,A,S} Nm/m/rad
1	TRP 45/333, t= 0,72 mm, Verbindung in jedem Obergurt mit Kalotte	61	785	690
2	Wie Zeile 1, jedoch t= 0,63 mm	62	725	390
3	TRP 25/267, t= 0,55 mm, Verbindung in jedem anliegenden Gurt	63	650	355
4	TRP 33/250, t= 0,58 mm, Verb. in jedem 2. Obergurt mit Kalotte	65	420	405
5	TRP 45/333, t= 0,75 mm, Verbindung in jedem anliegenden Gurt Abstand a ≤ 75 mm	69	305	255
6	TRP 45/333, t= 0,63 mm, auf thermischer Trennung "Clipshed Isover", Verbindung in jedem 2. Obergurt mit Kalotte	73	390	415
7	Dach- Sandwich		*)	*)
8	Wand- Sandwich		*)	*)

 $\begin{array}{lll} C_{D,A,A} & Anschlußsteifigkeit für andrückende Belastung & RN & Nummer des Anschlußtyps \\ C_{D,A,S} & Anschlußsteifigkeit für abhebende Belastung & (Referenznummer) \\ ^*) & Sandwichelemente: Anschlußsteifigkeiten nach individueller Sandwichzulassung \end{array}$ 

JORIS IDE Z- und Σ- Trägersystem	Anlage 6.1
Anschlußsteifigkeiten, Σ- Profile	



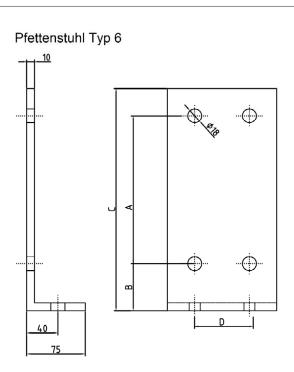

σ			Σ140 – Σ230					
Zeile	Dacheindeckung bzw. Wandbekleidung	RN	C _{D,A,A} Nm/m/rad	C _{D,A,S} Nm/m/rad				
9	TRP 42/252, t= 0,75 mm, Verbindung in jedem 2. anliegenden Gurt	81	530	390				
10	TRP 42/252, t= 0,75 mm, Verbindung in jedem anliegenden Gurt	82	650	490				
11	TRP 42/252 perforiert, t= 0,75 mm, Verbindung in jedem 2. anliegenden Gurt	83	390	350				
12	TRP 42/252 perforiert, t= 0,75 mm, Verbindung in jedem anliegenden Gurt	84	645	440				
13	TRP 45/333, t= 0,75 mm, auf 60 mm Dämmung, Verbindung in jedem Obergurt mit Kalotte	90	655	790				

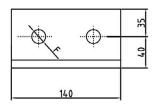
 $\begin{array}{ll} C_{\text{D,A,A}} & \text{Anschlußsteifigkeit für andrückende Belastung} \\ C_{\text{D,A,S}} & \text{Anschlußsteifigkeit für abhebende Belastung} \end{array}$ 

RN Nummer des Anschlußtyps (Referenznummer)

JORIS IDE Z- und Σ- Trägersystem	Anlage 6.2
Anschlußsteifigkeiten, Σ- Profile	







Typ	Pfette	Α	В	С	D	t	Schrauben	f _y	$F_{R,k}$	γм
Тур	Fielle	mm	mm	mm	mm	mm	Schrauben	N/mm²	kN	-
	Z140	70,0	40	130	80	≥ 6	M12-8.8			
	Z160	70,0	50	140	80	≥ 6	M12-8.8		35 39	1,25
2	Z180	81,5	55	155	80	≥ 6	M12-8.8	235		
	Z200	100	55	175	80	≥ 6	M12-8.8	]		
	Z220	120	55	195	80	≥ 6	M12-8.8			
4	Z250	150	60	245	70	≥ 10	M16-8.8	355	135	

Nachweis der Zugkraft in der Stegebene des Halters:  $R_{\text{Ed}}$  /  $(F_{\text{R,k}}$  /  $\gamma_{\text{M}}$  )  $\leq$  1

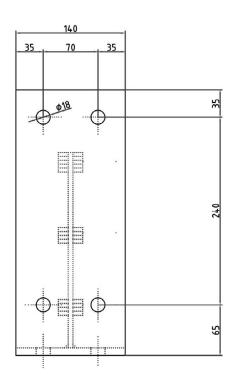
JORIS IDE Z- und Σ- Trägersystem	Anlage 7.1
Pfettenstühle Typen 2 und 4 Profile Z140 – Z250 Abmessungen und charakteristischer Wert der Zugtragfähigkeit	

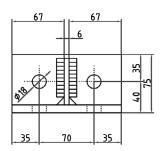






Тур	Pfette	Α	В	С	D	t	Schrauben	f _y	$F_{R,k}$	γм
Тур	Fielle	mm	mm	mm	mm	mm		N/mm²	kN	-
6	Z300	190	60	285	70	≥ 10	M16-8.8	355	144	1,25


Nachweis der Zugkraft in der Stegebene des Halters:  $R_{Ed}$  /  $(F_{R,k}$  /  $\gamma_M$  )  $\leq 1$ 


JORIS IDE Z- und Σ- Trägersystem	Anlage 7.2
Pfettenstuhl Typ 6 Profil Z300 Abmessungen und charakteristischer Wert der Zugtragfähigkeit	

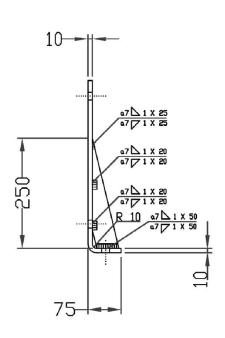


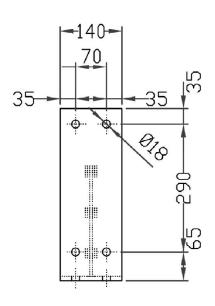
# Pfettenstuhl Typ 10

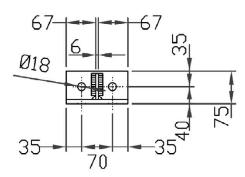







Тур	yp Pfette	Α	В	С	D	t	Schrauben	f _y	$F_{R,k}$	γм
Тур	Fielle	mm	mm	mm	mm	mm	Schrauben	N/mm²	kN	-
10	Z350	240	65	340	70	≥ 10	M16-8.8	355	100	1,25


Nachweis der Zugkraft in der Stegebene des Halters:  $R_{\text{Ed}}$  /  $(F_{\text{R,k}}$  /  $\gamma_{\text{M}}$  )  $\leq$  1


JORIS IDE Z- und Σ- Trägersystem	Anlage 7.3
Pfettenstuhl Typ 10 Profil Z350	
Abmessungen und charakteristischer Wert der Zugtragfähigkeit	



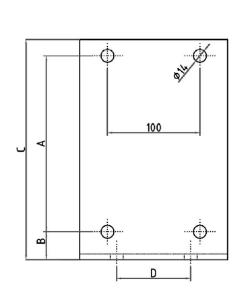
### Pfettenstuhl Typ 12

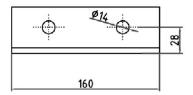






Typ	Pfette	Α	В	С	D	t	Schrauben	f _y	$F_{R,k}$	γм
Тур	Pielle	mm	mm	mm	mm	mm	Schlauben	N/mm²	kN	ı
12	Z400	290	65	390	70	≥ 10	M16-8.8	355	100	1,25


Nachweis der Zugkraft in der Stegebene des Halters:  $R_{Ed}$  /  $(F_{R,k}$  /  $\gamma_{M}$  )  $\leq$  1

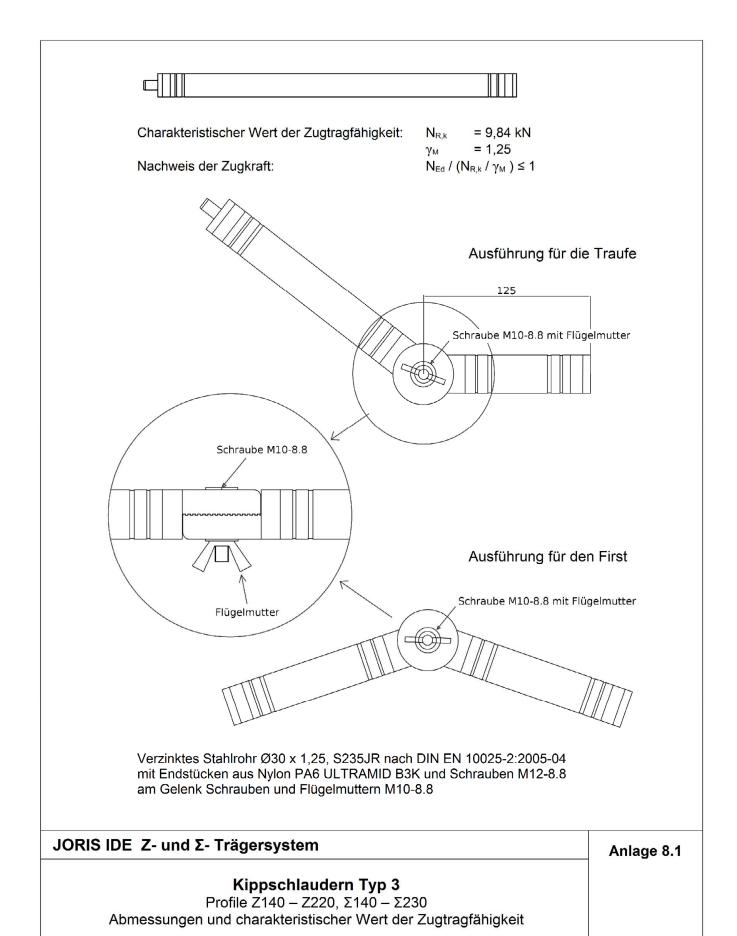

JORIS IDE Z- und Σ- Trägersystem	Anlage 7.4
Pfettenstuhl Typ 12 Profil Z400	
Abmessungen und charakteristischer Wert der Zugtragfähigkeit	



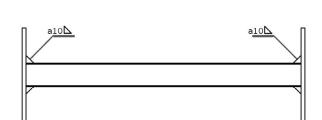
# Pfettenstuhl Typ 8





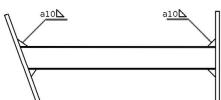


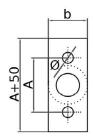

T. //2	Dfotto	А	В	С	D	t	Schrauben	<b>f</b> _y	$F_{R,k}$	γм
Typ Pfette	Pielle	mm	mm	mm	mm	mm		N/mm²	kN	-
	Σ140	100	30	148	80	≥ 6	M12-8.8			
	Σ170	130	30	178	80	≥ 6	M12-8.8	225	20	4.05
8	Σ200	160	30	208	80	≥ 6	M12-8.8	235	39	1,25
	Σ230	190	30	238	80	≥ 6	M12-8.8			


Nachweis der Zugkraft in der Stegebene des Halters:  $R_{Ed}$  /  $(F_{R,k}$  /  $\gamma_M$  )  $\leq$  1

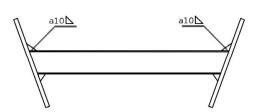
JORIS IDE Z- und Σ- Trägersystem	Anlage 7.5
<b>Pfettenstuhl Typ 8</b> Profile Σ140 – Σ230 Abmessungen und charakteristischer Wert der Zugtragfähigkeit	









Ausführung für die Traufe

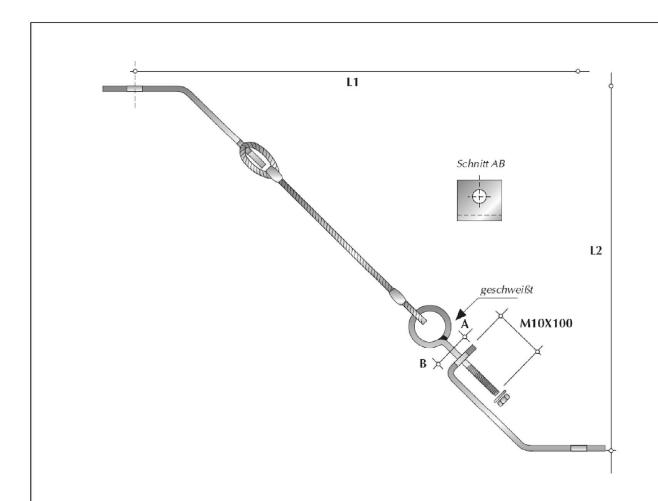




Ausführung für den First






Тур	Pfette	А	b	t _{Kopfplatte}	Ø	Schrauben	f _y	$N_{R,k}$	γм
		mm	mm	mm	mm		N/mm²	kN	
2	Z140	70,0	50	5	14	M12-8.8	235	11,7	
	Z160	70,0		5	14	M12-8.8			
	Z180	81,5		5	14	M12-8.8			
	Z200	100		5	14	M12-8.8			
	Z220	120		5	14	M12-8.8			1,25
4	Z250	150	- 60	5	18	M16-8.8		12,8	
6	Z300	190		5	18	M16-8.8	255	8,6	
8	Z350	240		10	18	M16-8.8	355	24,4	
10	Z400	290		10	18	M16-8.8		17,1	

Nachweis der Zugkraft:

 $N_{Ed}$  /  $(N_{R,k}$  /  $\gamma_M$  )  $\leq 1$ 

JORIS IDE Z- und Σ- Trägersystem	Anlage 8.2
Kippschlaudern Typen 2, 4, 6, 8 und 10 Profile 7140 – 7400	
Abmessungen und charakteristischer Wert der Zugtragfähigkeit	





Laschen Bl  $50 \times 4$  S220GD+Z275 nach DIN EN 10346:2009-07 Seil Ø 5mm

Charakteristischer Wert der Zugtragfähigkeit:  $N_{R,k} = 13,9 \text{ kN}$ 

 $\gamma_{\mathsf{M}} = 1,25$ 

Nachweis der Zugkraft:  $N_{Ed} \, / \, (N_{R,k} \, / \, \gamma_M \,) \leq 1$ 

JORIS IDE Z- und Σ- Trägersystem	Anlage 9
Schrägabhängung	
Abmessungen und charakteristischer Wert der Zugtragfähigkeit	