

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-02/0001 of 28 November 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR

Mechanical fastener for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 1

15 pages including 3 annexes which form an integral part of this assessment

330232-01-0601, Edition 05/2021

ETA-02/0001 issued on 2 February 2021

European Technical Assessment ETA-02/0001

Page 2 of 15 | 28 November 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-02/0001

Page 3 of 15 | 28 November 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static loading) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static loading)	See Annex C3
Displacements	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-02/0001

Page 4 of 15 | 28 November 2023

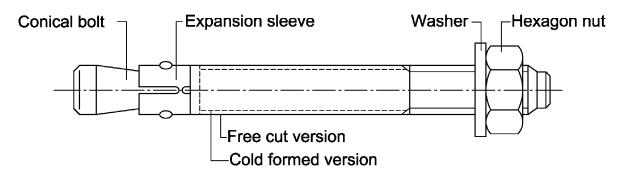
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 28 November 2023 by Deutsches Institut für Bautechnik

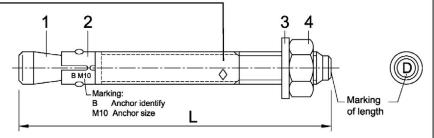
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR

Table A1: Dimensions

Ancharaina		M/venels eine		
Anchor size	Embedment depth hef,1	Embedment depth hef,2	Embedment depth hef,3	Wrench size
M6	t _{fix hef,1} + 47,4 t _{fix,hef,2} + 57,4		$t_{fix,hef,3} + 77,4$	10
M8	$t_{fix hef, 1} + 57,4$	t _{fix,hef,2} + 66,4	t _{fix,hef,3} + 92,4	13
M10	t _{fix hef,1} + 68,0 t _{fix,hef,2} + 74,0		t _{fix,hef,3} + 106,0	17
M12	t _{fix hef,1} + 82,3	t _{fix,hef,2} + 97,3	t _{fix,hef,3} + 132,3	19
M16	$t_{\text{fix hef},1} + 103,0$ $(t_{\text{fix hef},1} + 101,8)^{1)}$	$t_{fix,hef,2}$ + 121,0 ($t_{fix,hef,2}$ + 117,8) ¹⁾	$t_{fix,hef,3} + 159,0$ $(t_{fix,hef,3} + 157,8)^{1)}$	24
M20	$t_{fix hef,1} + 120,7$	t _{fix,hef,2} + 142,7	t _{fix,hef,3} + 157,7	30

¹⁾ Anchor version W-FA/A2, W-FA/A4, W-FA/HCR


Marking: e.g.: <> 15/21 −

- Identifying mark of manufacturing plant
- 15 maximum thickness of fixture for hef,2
- 21 maximum thickness of fixture for hef,1

additional marking:

A2 stainless steel A4 stainless steel

HCR high corrosion resistant steel

Marking of length	Α	В	С	D	E	F	G	Н	1	J	K	L	M
Length of anchor min ≥	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of length N O P O R S T II V W X Y Z													
Marking of length	N	0	Р	C	R	S	Т	U	V	W	Х	Υ	Z
Marking of length	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
Marking of length Length of anchor min ≥		O 215,9	-	Q 241,3		_	T 304,8	U 330,2	V 355,6		X 406,4	Y 431,8	Z 457,2
	203,2	, , ,	228,6		254,0	279,4	,	, ,	,	381,0	X 406,4 431,8	Y 431,8 457,2	Z 457,2 483,0

Dimensions in mm

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Product description Marking and Dimensions	Annex A1

Table A2: Materials

Part	Designation	Material
Zinc plated	steel	
W-FA/S	electroplated	≥ 5 µm
W-FA/F	hot-dip galvanized	≥ 50 µm
W-FA/SH	sherardized	≥ 45 µm
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel
3	Washer	Steel, zinc plated
4	Hexagon nut	Steel, zinc plated
Stainless st	eel	
W-FA/A2 sta	ninless steel CRC II 1)	
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
W-FA/A4 sta	ninless steel CRC III 1)	
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
W-FA/HCR	High corrosion resistant s	steel CRC V 1)
1	Conical bolt	High corrosion resistant steel
2	Expansion sleeve	Stainless steel
3	Washer	High corrosion resistant steel
4	Hexagon nut	High corrosion resistant steel

 $^{^{1)}}$ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3 $\,$

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Product description Materials	Annex A2

Specifications of intended use

Fixanchor W-FA		M6	M8	M10	M12	M16	M20		
	W-FA/S (electroplated)	✓	✓	✓	✓	✓	✓		
zinc plated steel	W-FA/F (hot-dip galvanized)	_1)	✓	✓	✓	✓	✓		
	W-FA/SH (sherardized)	✓	✓	✓	✓	✓	✓		
	W-FA/A2	✓	✓	✓	✓	✓	✓		
stainless steel	W-FA/A4	✓	✓	✓	✓	✓	✓		
	W-FA/HCR	✓	✓	✓	✓	✓	✓		
allyonsians	static or quasi-static action	tatic or quasi-static action ✓							
all versions	uncracked concrete			٧			·		

¹⁾ No performance assessed

Base materials:

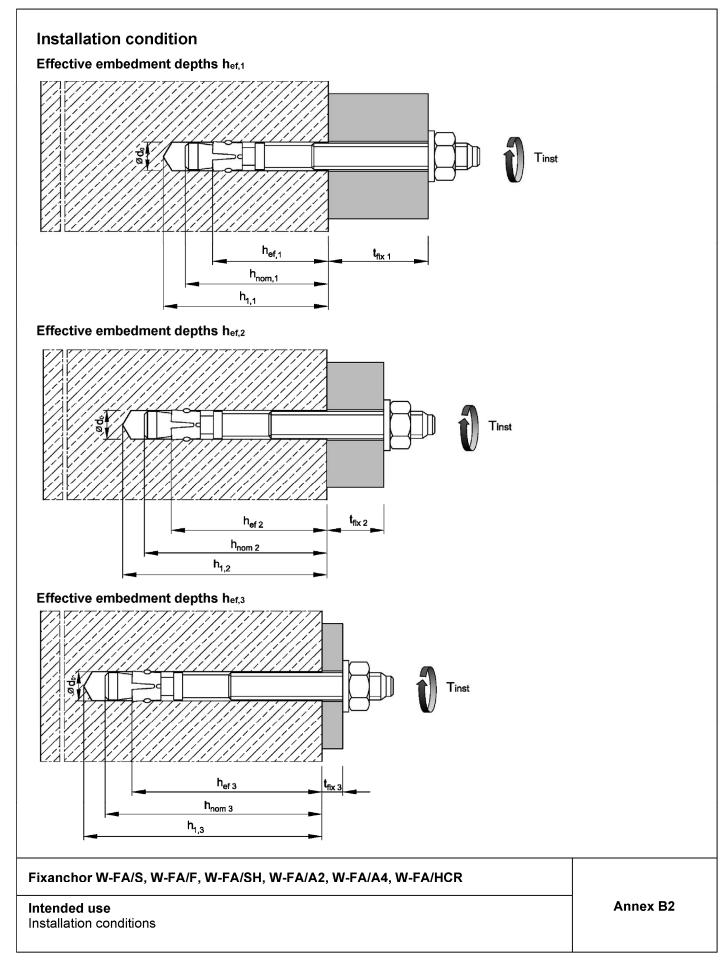
- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table/A2
W-FA/A2	CRC II
W-FA/A4	CRC III
W-FA/HCR	CRC V

Design:


- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 or TR 055:2018.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site
- Hole drilling by hammer drill bit or vacuum drill bit.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.
- The anchor can be set in pre-positioned installation or in-place installation

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Intended use Specifications	Annex B1

Table B1: Installation parameters

Ancho	or size			М6	M8	M10	M12	M16	M20
Nominal drill hole diameter d ₀ =			[mm]	6	8	10	12	16	20
Cutting	diameter of drill bit	d cut ≤	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
	W-FA/S	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque	W-FA/F	T _{inst} =	[Nm]	_2)	15	30	40	90	120
stallatio torque	W-FA/SH	T _{inst} =	[Nm]	5	15	30	40	90	120
<u>u</u>	W-FA/A2, W-FA/A4, W-FA/HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
Diame in the f	ter of clearance hole ïxture	$d_f \leq$	[mm]	7	9	12	14	18	22
Embed	dment depth h _{ef,1}								
Effectiv	ve embedment depth	h _{ef,1} ≥	[mm]	30	35	42	50	64	78
Depth	of drill hole	h _{1,1} ≥	[mm]	45	55	65	75	95	110
Embed	lment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Embed	dment depth h _{ef,2}								
Effectiv	ve embedment depth	h _{ef,2} ≥	[mm]	40	44	48	65	82 (80)1)	100
Depth	of drill hole	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Embed	lment depth	$h_{\text{nom},2} \geq$	[mm]	49	56	62	82	102	121
Embed	dment depth h _{ef,3}								
Effectiv	ve embedment depth	h _{ef,3} ≥	[mm]	60	70	80	100	120	115
Depth	of drill hole	h _{1,3} ≥	[mm]	75	91	102	125	148	145
Embed	lment depth	h _{nom,3} ≥	[mm]	69	82	94	117	140	136

¹⁾ Anchor version W-FA/A2, W-FA/A4, W-FA/HCR

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Intended use Installation parameters	Annex B3

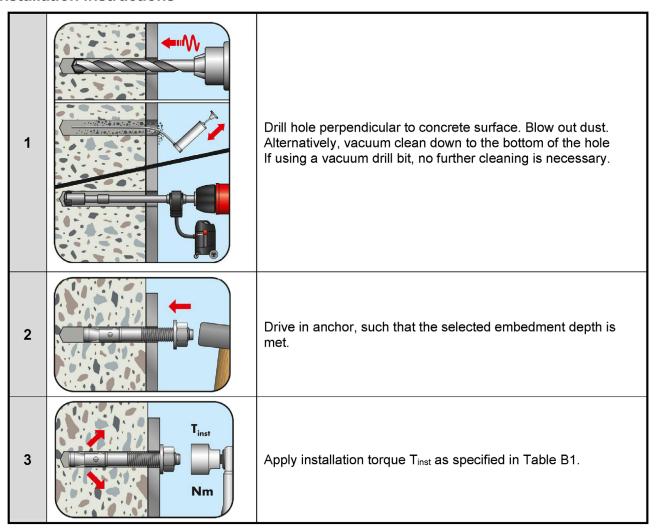
²⁾ No performance assessed

Table B2: Minimum spacings and edge distances, zinc plated steel 1)

Anchor size			М6	M8	M10	M12	M16	M20
Embedment depth hef,1								
Minimum member thickness	$\boldsymbol{h}_{\text{min}}$	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140
Embedment depth hef,2								
Minimum member thickness	h_{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125
Embedment depth hef,3								
Minimum member thickness	h_{min}	[mm]	120	126	132	165	208	215
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125

¹⁾ Anchor version W-FA/F: only M8-M20

Table B3: Minimum spacings and edge distances, stainless steel


Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth h _{ef,1}								
Minimum member thickness	h_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140
Embedment depth h _{ef,2}								
Minimum member thickness	h_{min}	[mm]	100	100	100	130	160	200
	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Minimum ada distance	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180
Embedment depth hef,3								
Minimum member thickness	h_{min}	[mm]	120	126	132	165	200	215
Minimum	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c ≥	[mm]	40	65	70	100	120	150
Minimum ada distance	C _{min}	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180

Intermediate values by linear interpolation.

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Intended use Minimum spacings and edge distances	Annex B4

Installation instructions

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Intended use Installation instructions	Annex B5

Table C1: Characteristic values for tension loads, zinc plated steel 1)

Anchor size				M6	M8	M10	M12	M16	M20
Installation factor		γinst	[-]			1	,0		
Steel failure									
Characteristic resistance		N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107
Partial factor 4)		γMs	[-]		1,	5		1,	,6
Pull-out									
Characteristic resistance	for h _{ef,1}	N _{Rk,p}	[kN]	6,5 ²⁾	10,22)	13,4	17,4	25,2	33,9
in uncracked concrete	for h _{ef,2}	$N_{Rk,p}$	[kN]	10	13	16,4	25,8	36,5	49,2
C20/25	for h _{ef,3}	N _{Rk,p}	[kN]	10	13	16, 4	26	40	55
Increasing factor $N_{Rk,p} = \psi_C \cdot N_{Rk,p}$ (C20/25)		ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	-)0,5		$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$
Splitting									
Characteristic resistance		N^0 Rk,sp	[kN]		n	nin [N _{Rk,p}	; N ⁰ Rk,c ³)]	
Embedment depth hef,1									
Spacing		S cr,sp	[mm]	180	210	230	240	320	400
Edge distance		C _{cr,sp}	[mm]	90	105	115	120	160	200
Embedment depth hef,2									
Spacing		S cr,sp	[mm]	160	220	240	330	410	500
Edge distance		C cr,sp	[mm]	80	110	120	165	205	250
Embedment depth hef,3									
Spacing		S cr,sp	[mm]	160	220	240	330	410	520
Edge distance		C cr,sp	[mm]	80	110	120	165	205	260
Concrete cone failure									
		for h _{ef,1}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective embedment depth		for h _{ef,2}	[mm]	40	44	48	65	82	100
		for h _{ef,3}	[mm]	60	70	80	100	120	115
Spacing		Scr,N	[mm]				(1,2,3)		
Edge distance		C cr,N	[mm]				ef (1,2,3)		
Factor uncracked c	oncrete	k ucr,N	[-]			11	1,0		
cracked c	oncrete	$k_{\text{cr,N}}$	[-]		No p	erformar	nce asse	ssed	

¹⁾ Anchor version W-FA/F: only M8-M20

⁴⁾ In absence of other national regulations

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Performance Characteristic values for tension loads, zinc plated steel	Annex C1

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only</p>

³⁾ N⁰Rk,c according to EN 1992-4:2018

Table C2: Characteristic values for tension loads, stainless steel

An	chor size				М6	M8	M10	M12	M16	M20	
Ins	tallation factor	[-]			1	,0					
Ste	eel failure		·								
Ch	aracteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134	
Ра	rtial factor 3)		γMs	[-]		•	1,50	•	•	1,68	
Pu	ll-out										
<u>Ch</u>	avantaviatia vaniataman in	for hef,	1 N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9	
	aracteristic resistance in cracked concrete C20/25	for h _{ef,2}	N _{Rk,p}	[kN]	8	15	16,4	25	35,2	49,2	
<u> </u>		for h _{ef,} ;	N _{Rk,p}	[kN]	8	15	16,4	25	42	60	
	reasing factor $k_{k,p} = \psi_C \cdot N_{Rk,p} (C20/25)$		ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5			
Sp	litting										
Ch	aracteristic resistance		$N^0_{\text{Rk,sp}}$	[kN]		ı	min [N _{Rk,}	p; N ⁰ Rk,c 2)]		
Em	nbedment depth h _{ef,1}										
Sp	acing		S cr,sp	[mm]	180	210	230	300	320	400	
	ge distance		C cr,sp	[mm]	90	105	115	150	160	200	
Em	nbedment depth h _{ef,2}										
The	e higher one of the decisive	e resista	nces of	Case 1	and Case	e 2 is appl	icable				
	Characteristic resistance		$N^0_{\text{Rk,sp}}$	[kN]	6	9	12	20	30	40	
_	Spacing		S cr,sp	[mm]		3 h _{ef}					
ase	Edge distance		C cr,sp	[mm]		1,5 h _{ef}					
Ö	Increasing factor $N^0_{Rk,sp} = \psi_C \cdot N^0_{Rk,sp}$ (C20/	25)	ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5			
se 2	Spacing		S cr,sp	[mm]	160	220	240	340	410	560	
Cas	Edge distance		C _{cr,sp}	[mm]	80	110	120	170	205	280	
Em	nbedment depth h _{ef,3}										
Sp	acing		S cr,sp	[mm]	160	220	240	340	410	620	
	ge distance		C cr,sp	[mm]	80	110	120	170	205	310	
Со	ncrete cone failure										
			r h _{ef,1} ≥	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78	
Eff	ective embedment depth		r h _{ef,2} ≥	[mm]	40	44	48	65	80	100	
_		fo	r h _{ef,3} ≥	[mm]	60	70	80	100	120	115	
_	acing		S _{cr,N}	[mm]				h _{ef}			
⊏d	ge distance		C _{cr,N}	[mm]				h _{ef}			
Fa	ctor uncracked co		k ucr,N	[-]	11,0						
	cracked co	oncrete	$\mathbf{k}_{cr,N}$	[-]	No performance assessed						

¹⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

³⁾ In absence of other national regulations

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Performance Characteristic values for tension loads, stainless steel	Annex C2

 $^{^{2)}\,}N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

Table C3: Characteristic values for shear loads

Anchor size					М6	M8	M10	M12	M16	M20	
Installation factor	[-]			,	1,0						
Steel failure without le	ever arm										
Characteristic	zinc plated	zinc plated steel 1)		[kN]	5	11	17	25	44	69	
resistance	stainless s	teel	V^0 Rk,s	[kN]	7	12	19	27	50	86	
Ductility factor			k ₇	[-]			,	1,0			
Steel failure with level	r arm										
zinc plated s		steel 1)	M^0 Rk.s	[Nm]	9	23	45	78	186	363	
resistance	stainless s	teel	M^0 Rk,s	[Nm]	10	24	49	85	199	454	
Partial factor ⁴⁾ for	zinc plated steel ¹)		γMs	[-]	1,25				1,	1,33	
$V^0_{Rk,s}$ and $M^0_{Rk,s}$	stainless s	teel	γMs	[-]	1,25					1,4	
Concrete pry-out failu	re										
Factor for h ef	zinc plated	steel 1)	k 8	[-]	1,0	2,3	2,5	2,9	2,8	3,1	
ractor for flef	stainless s	teel	k 8	[-]	1,0	2,3	2,8	2,8	3,0	3,3	
Concrete edge failure											
		for h ef,1	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Effective length of anch shear loading	or in	for h _{ef,2}	lf	[mm]	40	44	48	65	82 (80) ³⁾	100	
		for h ef,3	lf	[mm]	60	70	80	100	120	115	
Outside diameter of and	Outside diameter of anchor d _{nom}					8	10	12	16	20	

¹⁾ Anchor version W-FA/F: only M8-M20

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Performance	Annex C3
Characteristic values for shear loads	

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version stainless steel

⁴⁾ In absence of other national regulations

Table C4: Displacements under tension loads

Anchor size			М6	M8	M10	M12	M16	M20	
Embedment depth hef,1									
zinc plated steel 1)									
Tension load	Ν	[kN]	2,9	5,0	6,5	8,5	12,3	16,6	
Displacement -	δηο	[mm]	0,3			0,4			
Displacement	$\delta_{N\infty}$	[mm]	0,6			1,8			
stainless steel									
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6	
Displacement	δηο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5	
Displacement	$\delta_{N\infty}$	[mm]			1,3			2,9	
Embedment depth hef,2 and hef,3									
zinc plated steel 1)									
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8	
Diaglacament	δηο	[mm]	0,4			0,5			
Displacement	$\delta_{N\infty}$	[mm]	0,7	2,3					
stainless steel									
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0	
Dianlacement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1	
Displacement -	δ _{N∞}	[mm]			1,8			4,2	

¹⁾ Anchor version W-FA/F: only M8-M20

Table C5: Displacements under shear loads

Anchor size			М6	М8	M10	M12	M16	M20
zinc plated steel 1)								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δνο	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δν∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
stainless steel								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version W-FA/F: only M8-M20

Fixanchor W-FA/S, W-FA/F, W-FA/SH, W-FA/A2, W-FA/A4, W-FA/HCR	
Performance Displacements	Annex C4