

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-04/0095 of 21 July 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System W-VIZ

Bonded fastener for use in concrete

Adolf Würth GmbH & Co. KG Reinhold Würth Straße 12-17 74653 Künzelsau

Werk 1 Werk 3

32 pages including 3 annexes which form an integral part of this assessment

330499-01-0601, Edition 04/2020

ETA-04/0095 issued on 11 May 2017

European Technical Assessment ETA-04/0095 English translation prepared by DIBt

Page 2 of 32 | 21 July 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-04/0095

Page 3 of 32 | 21 July 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System V-WIZ is a torque controlled bonded fastener consisting of a cartridge with injection mortar WIT-VIZ, WIT-VIZ EXPRESS, WIT-VM 100 or WIT-EXPRESS and an anchor rod with expansion cones and external connection thread (type W-VIZ-A) or with internal connection thread (type W-V-Z-IG).

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 – C3, C10, B5 – B6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C4 – C5, C11
Displacements under short-term and long-term loading	See Annex C8 – C9, C11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C6 – C9

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

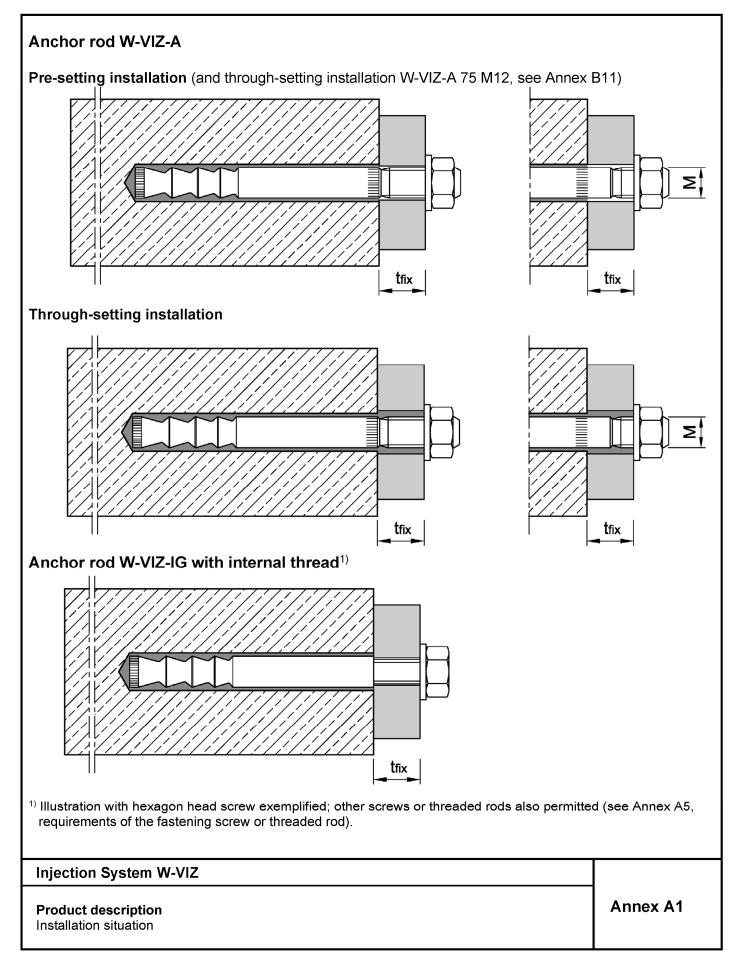
European Technical Assessment ETA-04/0095

Page 4 of 32 | 21 July 2023

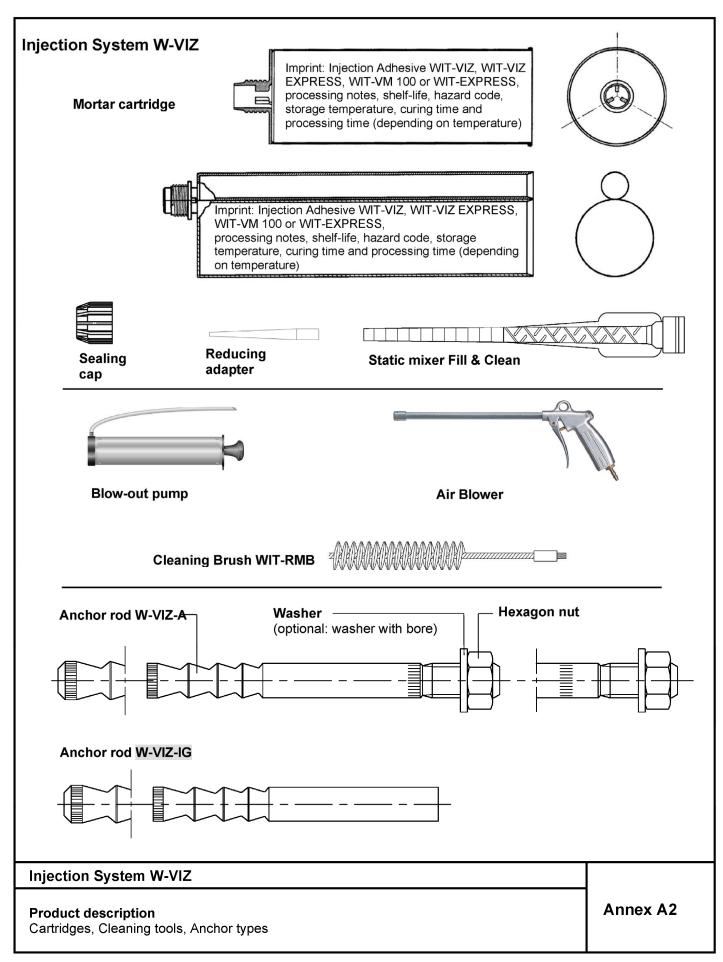
English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC] The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 21 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider

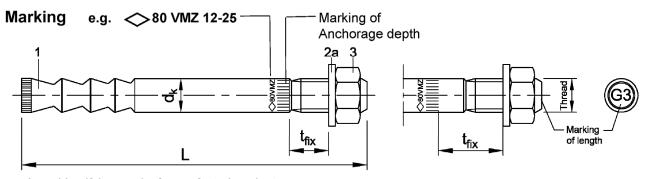


Table A1: Materials W-VIZ-A

			Steel, zinc plated					
Part	Designation	galvanised ≥ 5µm	hot-dip galvanised ≥ 40µm (50µm in average)	sherardized ≥ 45µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)		
		Steel a	acc. to EN ISO 683	-1:2018	Stainless steel, 1.4401, 1.4404,	High corrosion resistant steel		
1	Anchor rod	galvanised and coated	hot-dip galvanised and coated	sherardized and coated	1.4571, EN 10088:2014, coated	1.4529, 1.4565 EN 10088:2014, coated		
2a	Washer		.		Stainless steel,	High corrosion resistant steel		
2b	Washer with bore		Steel, zinc plated		EN 10088:2014	1.4529, 1.4565 EN 10088:2014		
		Property cla	ss 8 acc. to EN IS	O 898-2:2012	EN ISO 3506-2: 2020, A4-70,	EN ISO 3506-2:2020, Property class 70,		
3	Hexagon nut	galvanised hot-dip hot-dip		sherardized or hot-dip galvanised	A4-80 1.4401, 1.4571 EN 10088:2014	high corrosion resistant steel 1.4529, 1.4565 EN 10088:2014		
4	Mortar cartridge	Vinylester resin, styrene free, mixing ratio 1:10						

identifying mark of manufacturing plant

80 anchorage depthVMZ fastener identity12 size of thread

25 maximum thickness of fixture t_{fix} (when using washer 2a)

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

Marking of	length	В	С	D	E	F	G	Н	- 1	J	K	L	M	N
Length of	min ≥	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
anchor	max <	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2	215,9
							_			107	v		_	

Marking of le	ngth	0	P	Q	R	S	Т	U	V	W	X	Υ	Z	>Z
Length of	min ≥	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
anchor	max <	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6	

Injection System W-VIZ

Product description

W-VIZ-A: Materials, Marking, Marking of length

Annex A3

Table A2: Dimensions of anchor rod, W-VIZ-A M8 - M12

An	Anchor size W-VIZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Ad	ditior	nal marking	1	2	1	2	1	2	3	4	5	6	7
		Thread	N	18	М	10				M12			
	Б	Number of cones	2	3	3	3	3	3	4	4	6	6	6
1		d _k =	8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
	Anchor	Length L (with washer 2a)	52+t _{fix}	63+t _{fix}	75+t _{fix}	90+t _{fix}	95+t _{fix}	90+t _{fix}	100 +t _{fix}	115 +t _{fix}	120 +t _{fix}	130 +t _{fix}	145 +t _{fix}
		$\begin{array}{c} \text{Reduction } t_{\text{fix}}^{1)} \\ \text{(with washer with bore 2b)} \end{array}$	3,4	3,4	3	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5
3	Hexa	agon nut SW	13	13	17	17	19	19	19	19	19	19	19

¹⁾ When using washer with bore (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm

Table A3: Dimensions of anchor rod, W-VIZ-A M16 - M24

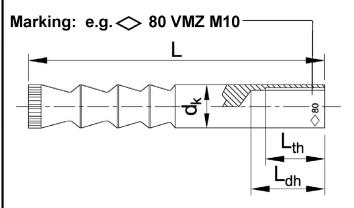
Aı	nchor si	ize W-VIZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Ad	dditional	marking	1	2	3	4	5	1	2	3	1	2	3
		Thread			M16				M20			M24	
	ק	Number of cones	3	4	6	6	6	3	6	6	6	6	6
 1	Anchor rod	d _k =	16,5	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
ľ	Anch	Length L (with washer 2a)	114 +t _{fix}	129 +t _{fix}	150 +t _{fix}	170 +t _{fix}	185 +t _{fix}	143 +t _{fix}	203 +t _{fix}	223 +t _{fix}	210 +t _{fix}	240 +t _{fix}	265 +t _{fix}
		Reduction $t_{\rm fix}^{13}$ (with washer with bore 2b)	2	2	2	2	2	2	2	2	2	2	2
3	Hexago	on nut SW	24	24	24	24	24	30	30	30	36	36	36

¹⁾ When using washer with bore (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm

Injection System W-VIZ

Product description


W-VIZ-A: Anchor dimensions

Annex A4

Table A4: Materials W-VIZ-IG

Part	Designation	Steel, zinc plated ≥ 5µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)
1	Anchor rod	Steel acc. to EN ISO 683-4:2018, galvanized and coated	Stainless steel, 1.4401, 1.4404, 1.4571 acc. to EN 10088:2014, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088:2014, coated
4	Mortar cartridge	Vinylest	ter resin, styrene free, mixing r	atio 1:10

identifying mark of manufacturing plant

80 anchorage depth
VMZ fastener identity
M10 size of internal thread

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant

steel

Table A5: Dimensions of anchor rod W-VIZ-IG

Anchor size	W-V IG	IZ-	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Internal thread		-	IV	16	M	18	М	10		M12		М	16	M20
Number of cones		-	2	3	3	3	3	4	3	4	6	3	6	6
Outer diameter	dk	[mm]	8,0	8,0	9,7	10,7	12,5	12,5	16,5	16,5	16,5	19,7	22,0	24,0
Thread length	L _{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Total length	L	[mm]	41	52	63	78	74	84	94	109	130	120	180	182
Length identifier		[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22,5	L _{dh} > 23,5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31,5	32,5 < L _{dh} < 34,5	L _{dh} > 35,5	d _k < 21	d _k > 21	-

Requirements of the fastening screw or the threaded rod and nut

- Minimum screw-in depth L_{sdmin} see Table B7
- The length of screw or the threaded rod must depending on the thickness of fixture t_{fix}, available thread length L_{th} (=maximum available thread length, see Table B7) and the minimum screw-in depth L_{sdmin} be established
- A₅ > 8 % ductility
- Material
 - Steel, zinc plated: Minimum property class 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2022
 - Stainless steel A4 or high corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506-1:2020 or according to EN ISO 3506-2:2020

Injection System W-VIZ Product description W-VIZ-IG: Materials, Marking, Anchor dimensions Annex A5

Specifications of intended use

Injection System W-VIZ	with anchor rod W-VIZ-A	M8	M10	M12	M16	M20	M24	
Static and quasi-static act	ion			,	/			
Seismic action (Category	C1 + C2)	_3)	✓	✓	✓	✓	✓	
Cracked or uncracked cor	ncrete			1	/			
Strength classes acc. to E	N 206-1:2013+A1:2016			C20/25 t	o C50/60			
Reinforced or unreinforce to EN 206-1: 2013+A1:20	d normal weight concrete acc. 16			,	/			
Temperature Range I	-40 °C to +80 °C		nax. short nax. long t					
Temperature Range II	-40 °C to +120 °C	max. short term temperature +120 °C max. long term temperature +72 °C						
	Hammer drill bit			•	/			
Making of drill hole	Vacuum drill bit ¹⁾	_3)	✓	✓	✓	✓	✓	
Waking of anii flore	Diamond drill bit (seismic action excluded)	_3)	✓	✓	✓	✓	✓	
	dry concrete			1	/			
Installation allowable in	wet concrete			•	/			
	water-filled hole	_3)	_3)	√ 2)	✓	✓	√	
Overhead installation				,	/			
Pre-setting installation				1	/			
Trough-setting installation		_3)	✓	✓	✓	✓	✓	

¹⁾ e.g. Würth vacuum drill bit, MKT vacuum drill bit or Heller Duster Expert

³⁾ No performance assessed

Injection System W-VIZ wit	h anchor rod	W-VIZ-IG	М6	M8	M10	M12	M16	M20		
Static and quasi-static action	1		✓							
Seismic action (Category C1	+ C2)				ئے	2)				
Cracked and uncracked con	crete				v	/				
Strength classes acc. to EN	206-1:2013+A1:2	2016			C20/25 to	o C50/60				
Reinforced or unreinforced r acc. to EN 206-1:2013+A1:2		ncrete			ν	/				
Temperature Range I	-40	°C to +80 °C			term temp					
Temperature Range II	-40 °(C to +120 °C	max. short term temperature +120 °C max. long term temperature +72 °C							
	Har	mmer drill bit	✓							
Making of drill hole	Vacı	uum drill bit ¹⁾	_2)	✓	✓	✓	✓	✓		
	Dia	mond drill bit	_2)	✓	✓	✓	√	✓		
I set all ation		dry concrete			٧					
Installation -		wet concrete				<u> </u>				
allowable iii	wat	ter-filled hole	_2)	_2)	✓	✓	✓	✓		
Overhead installation			✓							
Pre-setting installation					٧					

¹⁾ e.g. Würth vacuum drill bit, MKT vacuum drill bit or Heller Duster Expert

Injection System W-VIZ

Intended use

Specifications and installation conditions

Annex B1

²⁾ Exception: W-VIZ-A 75 M12 (Installation in water-filled drill hole is not allowed)

²⁾ No performance assessed

Specifications of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions W-VIZ-A and W-VIZ-IG
- For all other conditions: Intended use of materials according to Annex A3, Table A1 and Annex A5, Table A4 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

Installation:

Electronic copy of the ETA by DIBt: ETA-04/0095

- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive WIT-VIZ, WIT-VIZ EXPRESS, WIT-VM 100 or WIT-EXPRESS using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

Injection System W-VIZ

Intended use Specifications

Annex B2

Table B1: Working and curing time WIT-VIZ, WIT-VM 100

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete 1)
- 15 °C to - 10 °C	45 min	7 d
-9°C to -5°C	45 min	10:30 h
-4°C to -1°C	45 min	6:00 h
0 °C to +4 °C	20 min	3:00 h
+5 °C to +9 °C	12 min	2:00 h
+10 °C to +19 °C	6 min	1:20 h
+20 °C to +29 °C	4 min	45 min
+30 °C to +34 °C	2 min	25 min
+35 °C to +39 °C	1,4 min	20 min
+ 40 °C	1,4 min	15 min
Cartridge temperature	≥ 5	5°C

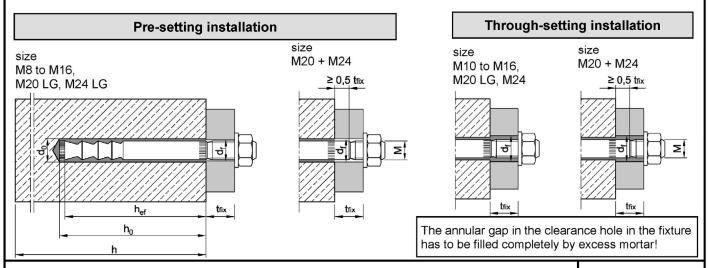
¹⁾ Curing time in wet concrete shall be doubled.

Table B2: Working and curing time WIT-VIZ EXPRESS, WIT-EXPRESS

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete ¹⁾
-5°C to -1°C	20 min	4:00 h
0 °C to +4 °C	10 min	2:00 h
+5°C to +9°C	6 min	1:00 h
+10 °C to +19 °C	3 min	40 min
+20 °C to +29 °C	1 min	20 min
+ 30 °C	1 min	10 min
Cartridge temperature	≥ 5°	C

¹⁾ Curing time in wet concrete shall be doubled.

Injection System W-VIZ	
Intended use Working and curing time	Annex B3


Table B3: Installation parameters, W-VIZ-A M8 - M12

Anchor size	W-V	IZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	75	85	100	105	115	130
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Installation torque	$T_{inst} \leq$	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Diameter of clearance hole	in the f	ixture											
Pre-setting installation	d _f ≤	[mm]	9	9	12	12	14	14	14	14	14	14	14
Through-setting installation	d f≤	[mm]	_2)	_2)	14	14	14 ¹⁾ /	16	16	16	16	16	16

¹⁾ see Annex B11

Table B4: Installation parameters, W-VIZ-A M16 - M24

Anchor size	W-\	/IZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Nominal diameter of drill hole	d ₀ =	[mm]	18	18	18	18	18	22	24	24	26	26	26
Depth of drill hole	$h_0\geq$	[mm]	98	113	133	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19,0	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Installation torque	$T_{inst} \leq$	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Diameter of clearance hole	in the	fixture											
Pre-setting installation	d _f ≤	[mm]	18	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Through-setting installation	$d_{f} \leq$	[mm]	20	20	20	20	20	24	26	26	28	28	28

Injection System W-VIZ

Intended use Installation parameters W-VIZ-A

Annex B4

Z59505.23

²⁾ No performance assessed

Table B5: Minimum spacing and edge distance, W-VIZ-A M8 - M12

Anchor size	W-V	IZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Cracked concrete													
Minimum spacing	Smin	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	55	50	50	50	50	50
Uncracked concrete													
Minimum spacing	Smin	[mm]	40	40	50	50	50	55	55	55	80 ²⁾	80 ²⁾	80 ²⁾
Minimum edge distance	C _{min}	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

Table B6: Minimum spacing and edge distance, W-VIZ-A M16 – M24

Anchor size	W-V	IZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Minimum thickness of concrete	h _{min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 ¹⁾	270 260 ¹⁾	300 290 ¹⁾
Cracked concrete													
Minimum spacing	Smin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimum edge distance	Cmin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Uncracked concrete													
Minimum spacing	Smin	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimum edge distance	Cmin	[mm]	50	60	60	60	60	80	80	80	80	105	105

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

Injection System W-VIZ

Intended use
Minimum spacing and edge distance, W-VIZ-A

Annex B5

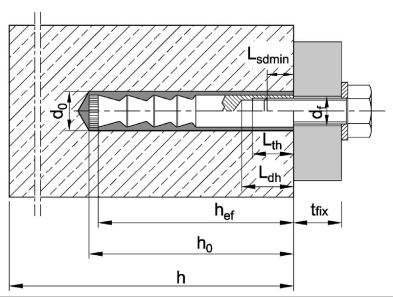
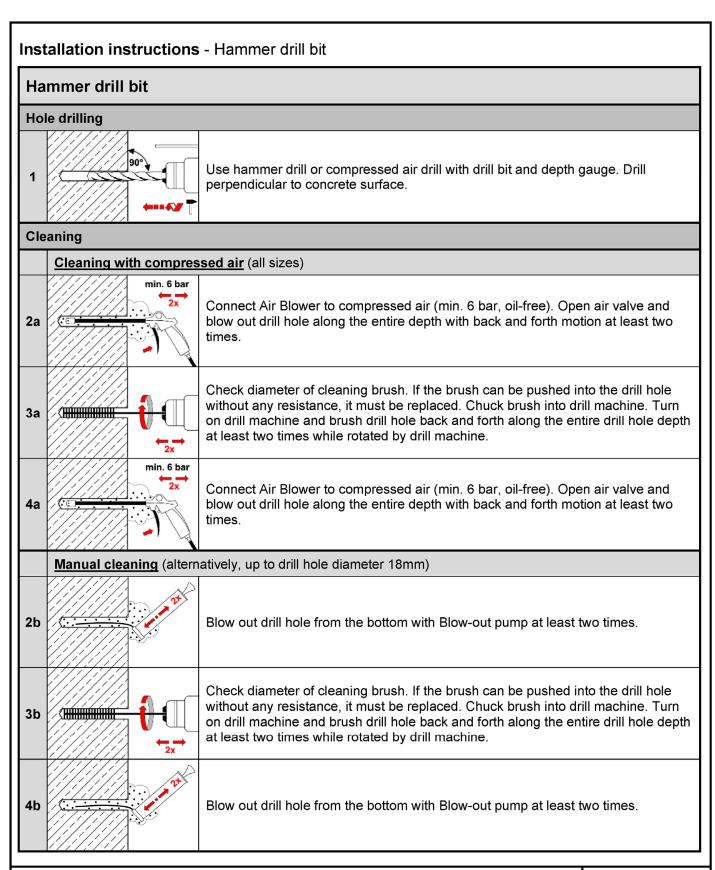

²⁾ For an edge distance c ≥ 80 mm a minimum spacing s_{min} = 55 mm is applicable.

Table B7: Installation parameters W-VIZ-IG

			40	50	60	75	70	80	90	105	125	115	170	170
Anchor size	W-V	/IZ-IG	40 M6	M6	M8	75 M8	M10	M10	90 M12	M12	M12	M16	M16	M20
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d ₀	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Installation torque	T _{inst} ≤	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	d f ≤	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Available thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L_{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220 ¹⁾
Cracked concrete														
Minimum spacing	Smin	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	C _{min}	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Uncracked concrete														
Minimum spacing	Smin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	C _{min}	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.


Injection System W-VIZ

Intended use

Installation parameters W-VIZ-IG

Annex B6

Injection System W-VIZ

Intended use

Installation instructions

Hole drilling and cleaning (hammer drill bit)

Annex B7

Installation instructions - Vacuum drill bit

Vacuum drill bit

Hole drilling and cleaning

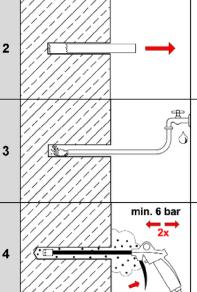
Drill hole perpendicular to concrete surface by using a vacuum drill bit (see Annex B1). The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa.

Pay attention to the function of the dust extraction system!

Make sure the dust extraction is working properly throughout the whole drilling process.

Additional cleaning is not necessary - continue with step 5!

Installation instructions - Diamond drilling


Diamond drilling

Hole drilling

Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface.

Cleaning

Remove drill core at least up to the nominal hole depth and check drill hole depth.

Flushing of drill hole:

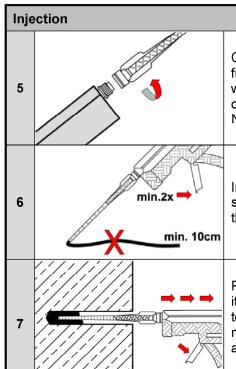
Flush drill hole with water, starting from the bottom, until clear water gets out of the drill hole.

Connect Air Blower to compressed air (min. 6 bar, oil-free).

Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

Injection System W-VIZ

Intended use


Installation instructions

Hole drilling and cleaning (vacuum drill bit and diamond drill bit)

Annex B8

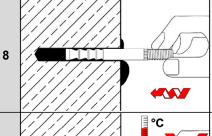
Installation instructions - Continuation

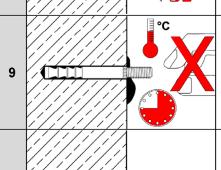
Check expiration date on cartridge. Never use when expired. Remove cap from cartridge. Attach the supplied static mixer to the cartridge. For every working interruption longer than the recommended working time (Table B1 or Table B2) as well as for a new cartridge always use a new static mixer. Never use static mixer without helix inside.

Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar.

Prior to injection, check if static mixer reaches the bottom of the drill hole. If it does not reach the bottom, plug Mixer Extension onto static mixer in order to fill the drill hole properly. Fill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets.

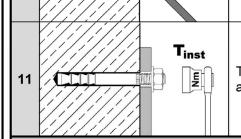
Injection System W-VIZ


Intended use Installation instructions Injection **Annex B9**


Installation instructions - Continuation

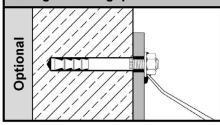
Anchor rod W-VIZ-A

Inserting the anchor rod



Insert the anchor rod W-VIZ-A by hand, rotating slightly up to the full embedment depth as marked on the anchor rod. The anchor rod is properly set when excess mortar seeps from the hole (Pre-setting installation) or the annular gap in the clearance hole in the fixture is completely filled by excess mortar (Through-setting installation). If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat entire cleaning process.

Follow minimum curing time shown in Table B1 or Table B2 During curing time, anchor rod must not be moved or loaded.


Remove excess mortar.

The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table B3 or Table B4 by using torque wrench.

Filling annular gap

10

Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on static mixer.

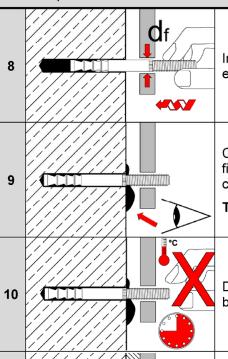
Annular gap is completely filled, when excess mortar seeps out.

Injection System W-VIZ

Intended use

Installation instructions
Installation Anchor rod W-VIZ-A

Annex B10


11

Installation instructions – Stand-off Installation

Stand-off installation with Anchor rod W-VIZ-A 75 M12 Requirement: Diameter of clearance hole in the fixture df ≤ 14 mm

Work step 1-7 as illustrated in Annexes B7 - B9

Insert the anchor rod W-VIZ-A by hand, rotating slightly up to the full embedment depth.

Check if excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat the entire cleaning process.

The annular gap in the fixture does not have to be filled.

During curing time according to Table B1 or Table B2 anchor rod must not be moved or loaded.

Washer and nut can be mounted after curing time and backfilling of anchor plate. Apply installation torque T_{inst} according to Table B3 by using torque wrench.

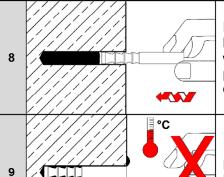
Injection System W-VIZ

Intended use

Installation instructions W-VIZ-A 75 M12

Through-setting installation with clearance between concrete and anchor plate

Annex B11


10

Installation instructions - Continuation Anchor rod W-VIZ-IG

Setting of anchor

Work step 1-7 as illustrated in Annexes B7 - B9

Insert the anchor rod W-VIZ-IG by hand, rotating slightly up to about 1 mm below the concrete surface in the drill hole. The anchor rod is properly set when excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat the entire cleaning process.

Follow minimum curing time shown in Table B1 and Table B2. During curing time anchor rod must not be moved or loaded.

Remove excess mortar.

The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table B7 by using torque wrench.

Injection System W-VIZ

Intended use Installation instructions Anchor installation W-VIZ-IG

Annex B12

Z59505.23

Table C1: Characteristic values for concrete failure and splitting

Anchor size			·VIZ-A VIZ-IG	all sizes
Concrete cone	e failure			
Captor for k	uncracked concrete	k ucr,N	[-]	11,0
Factor for k₁	<u>cracked</u> concrete	k cr,N	[-]	7,7
Characteristic	edge distance	C cr,N	[mm]	1,5 • h _{ef}
Characteristic	spacing	S _{cr,N}	[mm]	2 • C _{cr,N}
Case 1 Characteristic	resistance	N ⁰ Rk,sp	[kN]	see following tables
		N ⁰ Rk,sp	[kN]	see following tables
Characteristic	edge distance	C cr,sp	[mm]	1,5 • h _{ef}
Characteristic	spacing	S cr,sp	[mm]	2 · c _{cr,sp}
Case 2				
Characteristic	resistance	N^0 Rk,sp	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c}]
Characteristic	edge distance	C cr,sp	[mm]	see following tables
	· ·		<u> </u>	•

Injection System W-VIZ	
Performance Characteristic values for concrete failure and splitting, W-VIZ-A and W-VIZ-IG	Annex C1

Table C2: Characteristic values for tension loads, W-VIZ-A M8 – M12, static and quasi-static action

	Allo arra quas.		Statio and quasi static dotion												
Anchor size		W-	VIZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12	
Installation fac	tor	γinst	[-]						1,0						
Steel failure															
Characteristic	resistance	$N_{\text{Rk,s}}$	[kN]	15	18	2	25	35	49	5	54		57		
Partial factor		γMs	[-]						1,5						
Pull-out															
Characteristic	resistance (conc	rete C2	0/25)												
<u>uncracked</u>	50°C / 80°C ¹⁾	N _{Rk,p}	[kN]	9	17,4	22,9	32	32	28,8	35,2	40	49,2	50	50	
concrete	72°C / 120°C ¹⁾	INKK,P	[kN]	6	9	16	16	16	16	25	25	30	30	30	
<u>cracked</u>	50°C / 80°C ¹⁾	N _{Rk,p}	[kN]	8,7	12,2	16	22,4	22,4	20,2	24,6	31,9	34,4	39,7	48,1	
concrete	72°C / 120°C ¹⁾		[kN]	5	7,5	12	12	12	16	20	20	30	30	30	
Splitting															
	andard thickness	s of cor	crete	memb	er						ı				
Standard thick concrete	ness of	$h_{\text{min},1} \geq$	[mm]	10	00	120	150	150	140	160	190	200	220	250	
Case 1															
Characteristic (concrete C20/		N^0 Rk,sp	[kN]	7,5	O	16	20	2	20	35,2	30		40		
Case 2										•					
Characteristic	edge distance	C cr,sp	[mm]	3	h _{ef}	2,5h _{ef}	3,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}	2,5h _{ef}	2 h _{ef}	3 h _{ef}	2,5h _{ef}	
	inimum thicknes	s of co	ncrete	mem	ber										
Minimum thick concrete	ness of	$h_{\text{min},2} \geq$	[mm]	8	30	1(00		110		125	130	140	160	
Case 1															
Characteristic (concrete C20/		N^0 Rk,sp	[kN]	7,5	2)	1	16	16	20	25	25		30		
Case 2															
Characteristic	edge distance	C cr,sp	[mm]	3h _{ef}	3,5h _{ef}	3 h _{ef}	3,5h _{ef}	3,5	5h _{ef}	3h _{ef}	3,5h _{ef}		3h _{ef}		
	tor for _{Rk,p} (C20/25) and N ⁰ _{Rk,sp} (C20/25) ³⁾	Ψα	[-]					($\left(\frac{f_{ck}}{20}\right)^{0.5}$,					
Concrete con	e failure														
Effective ancho	orage depth	h _{ef}	[mm]	40	50	60	75	75	70	80	95	100	110	125	
43															

¹⁾ Maximum long-term temperature / Maximum short-term temperature

Injection System W-VIZ

Performance

Characteristic values for **tension loads**, **W-VIZ-A M8 – M12**, static and quasi-static action

Annex C2

²⁾ No performance assessed

 $^{^{3)}}$ Increasing factor for $N^0_{\text{Rk},\text{sp}}$ only for Case 1

Table C3: Characteristic values for tension loads, W-VIZ-A M16 – M24, static and quasi-static action

static and quasi-static action														
Anchor size		W -'	VIZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation factor	.or	γinst	[-]						1,0					
Steel failure														
Characteristic	Steel, zinc	plated	[kN]	88	95	1.	11	97	96	18	88		222	
tension resistance N _{Rk,s}		, HCR	[kN]	88	95	1	11	97	114	16	65		194	
Partial factor		γMs	[-]			1,5			1,68	1	,5		1,5	
Pull-out														
Characteristic re	esistance (co	ncrete	C20/2	5)										
uncracked	50°C/80°C ¹⁾	NI	[kN]	42	52,9	68,8	75	90	60,7	109	128,8	109	139,1	166
concrete	72°C/120°C ¹⁾	N _{Rk,p}	[kN]	25	35	5	0	53	40	7	'5		95	
cracked	50°C/80°C ¹⁾	Nous	[kN]	29,4	37,1	48,1	60,1	69,7	42,5	76,3	90,2	76,3	97,4	116,
concrete	72°C/120°C ¹⁾	N _{Rk,p}	[kN]	25	30	5	0	51	30	6	0		75	
Splitting														
Splitting for sta		iess of	conc	rete										
Standard thickn concrete	iess of h	າ _{min,1} ≥	[mm]	180	200	250	290	320	230	340	380	340	400	450
Case 1									_					
Characteristic re (concrete C20/2	P.	N ⁰ Rk,sp	[kN]	40	5	50	60	80	60,7	109	115	109	139,1	140
Case 2									_			_		
Characteristic edge distance		C cr,sp	[mm]			2 h _{ef}			1,5	h _{ef}	2 h _{ef}	1,5	h _{ef}	1,8 h
Splitting for min		ness o	f conc	rete			1	1		1			,	
Minimum thickn concrete	iess of h	າ _{min,2} ≥	[mm]	130	150	160	180	200	160	220	240	220	260	290
Case 1							1	1	•	,		•		
Characteristic re (concrete C20/2	The state of the s	N^0 Rk,sp	[kN]	35	50	40	50	71	2)	7	'5	109	11	15
Case 2							_				_			
Characteristic edge distance		C cr,sp	[mm]	2,5	5h _{ef}	3h _{ef}	2,5	h _{ef}	2,5h _{ef}	2,6h _{ef}	2,2h _{ef}	2,6h _{ef}	2,2	2h _{ef}
Increasing facto $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ $N^0_{Rk,sp} = \psi_c \cdot N^0$	p (C20/25) and	^	[-]						$\left(\frac{f_{ck}}{20}\right)^{0.5}$	5				
Concrete cone) failure													
Effective ancho	rage depth	h_{ef}	[mm]	90	105	125	145	160	115	170	190	170	200	225
Marrian Inn 1		/ 1.4.		-44-			_							

¹⁾ Maximum long-term temperature / Maximum short-term temperature

Injection System W-VIZ

Performance

Characteristic values for **tension loads**, **W-VIZ-A M16 – M24**, static and quasi-static action

Annex C3

²⁾ No performance assessed

³⁾ Increasing factor for N⁰_{Rk,sp} only for Case 1

Table C4: Characteristic values for shear load, W-VIZ-A M8 – M12, static and quasi-static action

Anchor size	W-VI	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor	γinst	[-]						1,0					
Steel failure with	nout lever arm												
Characteristic resistance	Steel, zinc plated	[kN]	1	4	2	1				34			
V ⁰ _{Rk,s}	A4, HCR	[kN]	1	5	2	3				34			
Partial factor	γMs	[-]						1,25					
Ductility factor	k ₇	[-]						1,0					
Steel failure with	n lever arm												
Characteristic bending	Steel, zinc plated	[Nm]	3	0	6	0				105			
resistance M ⁰ _{Rk,s}	A4, HCR	[Nm]	3	0	6	0				105			
Partial factor	γMs	[-]						1,25	,				
Concrete pry-ou	t failure												
Pry-out factor	k ₈	[-]						2					
Concrete edge f	ailure												
Effective length o	f anchor I _f	[mm]	40	50	60	75	75	70	80	95	100	110	125
Outside diameter	of anchor d _{nom}	[mm]	1	0	1	2	12			1	4		

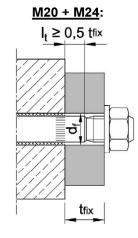

Injection System W-VIZ	
Performance Characteristic values for shear load, W-VIZ-A M8 – M12, static and quasi-static action	Annex C4

Table C5: Characteristic values for shear load, W-VIZ-A M16 – M24, static or quasi-static action

Anchor size	W-V	IZ-A	90 M16	90 105 125 145 160 115 M20 M							170 M24 (LG)	200 M24 (LG)	225 M24 (LG)		
Installation factor	γinst	[-]		1,0											
Steel failure withou	ıt lever arm														
Characteristic resistance	piated i				63			70		9 ¹⁾ 8)		178 ¹⁾ (141)			
V ⁰ _{Rk,s}	A4, HCR	[kN]			63			86		1 ¹⁾ 6)		156 ¹⁾ (123) 1,25			
Partial factor	γMs	[-]			1,25			1,4	1,	25					
Ductility factor	[-]						1,0								
Steel failure with le															
Characteristic bending resistance	Steel, zinc plated				266			392	5	19		896			
M ⁰ Rk,s	A4, HCR	[Nm]			266				454			784			
Partial factor	γMs	[-]			1,25			1,4	1,	25		1,25			
Concrete pry-out fa	concrete pry-out failure														
Pry-out factor	[-]	2,0													
Concrete edge fail															
Effective length of a in shear load	nchor I _f	[mm]	90	105	125	145	160	115	170	190	170	200	225		
Outside diameter of anchor	d_{nom}	[mm]			18			22	2	4		26			

 $^{^{1)}}$ This value may only be applied if $l_t \geq 0,5\ t_{\text{fix}}$

Injection System W-VIZ	
Performance Characteristic values for shear load, W-VIZ-A M16 – M24, static and quasi-static action	Annex C5

Table C6: Characteristic values for seismic action, W-VIZ-A M10 – M12 performance category C1 and C2

Anchor size			Z-A	60 M10	75 M10	75 M12			80 95 M12 M12		100 110 M12 M12	
Tension loads												
Installation factor		γ́inst	[-]									
Steel failure, steel zin	ainless steel A4,	HCR										
Characteristic resistance	ce	N _{Rk,s,C1} N _{Rk,s,C2}	[kN]	2	25		49		4			
Partial factor		γMs	[-]		1,5							
Pull-out (concrete C20/25 to C50/60)		60)										
	Na	50°C / 80°C ¹⁾	[kN]	14	1,5	14,5		30,6		36,0 41,5		42,8
Characteristic _ resistance	N _{Rk,p,C1} -	72°C / 120°C ¹⁾	[kN]	10),9	10,9		20,0		30,0		
	No	50°C / 80°C ¹⁾	[kN]	7	,4	7,4		8,7		17,6		
	N _{Rk,p,C2} -	72°C / 120°C ¹⁾	[kN]	5	,1	5,1		6,5		12,3		

Shear loads							
Steel failure v	without lever arm, steel	zinc plated					
Characteristic	rociatoros	$V_{Rk,s,C1}$	[kN]	11,8	27,2		
Characteristic	resistance —	$V_{Rk,s,C2}$	[kN]	12,6	27,2		
Partial factor		γMs	[-]		1,25		
Steel failure v	without lever arm, stainl	ess steel A4	, HCR				
Characteristic	rocietonos	$V_{Rk,s,C1}$	[kN]	12,9	27,2		
Characteristic	resistance —	$V_{Rk,s,C2}$	[kN]	13,8	27,2		
Partial factor		γMs	[-]		1,25		
Factor for filled annular gap		αgap	[-]		1,0		
anchorages with	αgap	[-]	0,5				

¹⁾ Maximum long-term temperature / Maximum short-term temperature

Injection System W-VIZ	
Performance Characteristic values for seismic action, W-VIZ-A M10 – M12, performance category C1 and C2	Annex C6

Table C7: Characteristic values for seismic action, W-VIZ-A M16 – M24, performance category C1 and C2

Anchor size	Anchor size W-VIZ-A		90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)		225 M24 (LG)	
Tension loads														
Installation fa	actor	γinst	[-]						1,0					
Steel failure	, steel zinc pla	ted												
Characteristi resistance	ic	$N_{\text{Rk,s,C1}} \\ N_{\text{Rk,s,C2}}$			111 97 96 188		188			222				
Steel failure	teel failure, stainless steel A4, HCR													
		$N_{\text{Rk,s,C1}} \\ N_{\text{Rk,s,C2}}$	[kN]	88	95	95 111		97	114	16	5		194	
Partial factor	•	γMs	[-]	1,5			1,68	1,	5		1,5			
Pull-out (concrete C20/25 to C50/60)														
	50°C / 80°C ¹⁾ [kN] 30,7 38,7 43,7			44,4	88,2		90							
Charac-	N _{Rk,p,C1} 72°C /	′ 120°C ¹⁾	[kN]	25,0	30,0		38,5		29,4	55,8			59,3	
teristic - resistance	50°C	; / 80°C ¹⁾	[kN]	16,3	22,1		26,1		30,9	59	,7		59,7	
	N _{Rk,p,C2} 72°C /	′ 120°C ¹⁾	[kN]	10,5	14,4		19,5		16,2	44	,4		44,4	

Shear loads						
Steel failure withou	ıt lever arm, stee	l zinc	plated			
Characteristic	$V_{Rk,s,C1}$	[kN]	39,1	39,1	82,3	107
resistance	V _{Rk,s,C2}	[kN]	50,4	51	108,8 ¹⁾ (71,5)	154,9 ¹⁾ (122,7)
Partial factor	γMs	[-]	1,25	1,4	1,25	1,25
Steel failure withou	ıt lever arm, stai	nless	steel A4, HCR			
Characteristic	$V_{Rk,s,C1}$	[kN]	39,1	39,1	72,2	93
resistance	V _{Rk,s,C2}	[kN]	50,4	62,6	95,6 ¹⁾ (62,8)	135,7 ¹⁾ (107)
Partial factor	γMs	[-]	1,25	1,4	1,25	1,25
	nnular gap α _{gap}	[-]		1,0		
anchorages unfille with	ed annular gap ^{αgap}	[-]		0,5		

 $^{^{1)}}$ This value may only be applied if $l_{t} \geq 0,5\ t_{\text{fix,}} \, (\text{see Annex C4})$

Injection System W-VIZ	
Performance Characteristic values for seismic action, W-VIZ-A M16 – M24, performance category C1 and C2	Annex C7

	Table C8: Dis	placements	under tension	n loads.	, W-VIZ-A	M8 - M12
--	---------------	------------	---------------	----------	-----------	----------

Anchor size W-\		IZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12	
Tension load in cracked concrete	N	[kN]	4,3 6,1		8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0	
Displacement	δ_{N0}	[mm]	0	0,5		0,6			0,6			0,	,7	
Displacement	$\delta_{N\infty}$	[mm]						1,3						
Tension load in uncracked concrete	N	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8	
Displacement	δ_{N0}	[mm]	0,2	0,4	0,4 0,4							0	,6	
Displacement	$\delta_{N\infty}$	[mm]	•					1,3						
Displacements under seismic tension loads C2														
Displacements for DLS $\delta_{N,0}$	C2(DLS)	[mm]	no perfor- mance		1,0		1,0		1,3			1,1		
Displacements for ULS $\delta_{N,0}$	C2(ULS)	[mm]	asse		3,	0	3,0		3,9			3,0		

Table C9: Displacements under tension loads, W-VIZ-A M16 - M24

Anchor size W-V		/IZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Tension load in cracked concrete	N	[kN]	14,6	14,6 18,4 24		30,0	34,7	21,1	38,0	44,9	38,0	48,5	57,9	
Displacement	δ _{N0} [mm]		0,7 0,8				1,2	0,7	0	,8	0,8	0	,9	
Displacement $\delta_{N_{\infty}}$		[mm]	1,3				1,6	1,1 1,3		,3	1,3			
Tension load in uncracked concrete	N	[kN]	20,5	25,9	33,0	35,7	48,1	29,6	53,3	63,0	53,3	67,9	81,1	
Displacement	δηο	[mm]	0,6		0,6 0,8 0,5 0,6		3 0,5 0,6			0,6				
Displacement ${\delta_{N_0}}$		[mm]		1	,3		1,6	1,1	1	,3				
Displacements under seismic te	loads	C2												
Displacements for DLS $\delta_{N,C}$	2(DLS)	[mm]	1,6		1,5			1,7	7 1,9		1,9			
Displacements for ULS $\delta_{N,C}$	2(ULS)	[mm]	3	,7		4,4		4,0	4,5		4,5		4,5	

Injection System W-VIZ	
Performance Displacements under tension loads, W-VIZ-A	Annex C8

Table C10: Displacements under shear loads W-VIZ-A M8 - M12

Anchor size	W-VIZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12	
Shear load	V	[kN]	8,	3	13	13,3 19,3								
Dianlacomenta	δνο	[mm]	2,4	2,5	2,	9	3,3							
Displacements	δ _{V∞} [mm]			3,8	4,	4	5,0							
Displacements under seisn	nic shea	r load	s C2											
Displacements for DLS 8	V,C2(DLS)	[mm]		no perfor- mance		2,1				2,5				
Displacements for ULS 8	Sv,c2(ULS)	[mm]		ssed	3,	7	5,1							

Table C11: Displacements under shear loads W-VIZ-A M16 - M24

Anchor size	W-V	IZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Shear load	V	[kN]	36 44 75 (49)							89 (71)			
Displacements	δνο	[mm]] 3,8 3,0 4, ; (3,6							4,6 (3,5)			
Displacements	δν∞	[mm]			5,7			4,5	6 (4	,5 ,5)	6,9 (5,3		
Displacements under seism	ic shea	ır load	s C2										
Displacements for DLS δ_V	,C2(DLS)	[mm]	2,9				2,9 3,5		3,5			3,7	
Displacements for ULS δ_V	/,C2(ULS)	[mm]			6,8				9,3			9,3	

Injection System W-VIZ	
Performance Displacements under shear loads, W-VIZ-A	Annex C9

Anchor size		W	-VIZ- IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation facto	or	γinst	[-]	1010	1010	1010	1110	10		,0	10112	10112	10	10110	1012
Steel failure	·	Tilloc								, -					
Characteristic	Steel, zinc	plated	[kN]	15	16	19	29	3	5		67		52	125	108
resistance N _{Rk,s}		HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Partial factor		γMs	[-]			•		•	1	,5			•		
Pull-out		•													
Characteristic re	esistance (concre	/25)													
<u>uncracked</u>	50°C / 80°C ¹⁾		[kN]	9	17,4	22,9	32	28,8	35,2	42	52,9	68,8	60,7	109	10
concrete	72°C / 120°C ¹⁾	$N_{Rk,p}$	[kN]	6	9	16	16	16	25	25	35	50	40	75	95
cracked	50°C / 80° C ¹⁾		[kN]	8,7	12,2	16	22,4	20,2	24,6	29,4	37,1	48,1	42,5	76,3	76,
	72°C / 120° C ¹⁾	N _{Rk,p}	[kN]	5	7,5	12	12	16	20	20	30	50	30	60	75
Splitting															
Splitting for sta	andard thicknes	s of co	ncret	е											
Standard thickne	ess of concrete h	າ _{min,1} ≥	[mm]	10	00	120	150	140	160	180	200	250	230	340	34
Case 1											1		<u> </u>		
Characteristic re (concrete C20/2	P	√ ⁰ Rk,sp	[kN]	7,5	9	16	20	20	35,2	40	50	50	60,7	109	10
Case 2															
Characteristic e	dge distance	C cr,sp	[mm]	3	h _{ef}	$2,5h_{ef}$	3,5h _{ef}	$2,5h_{ef}$	1,5h _{ef}		$2\;h_{\text{ef}}$		1,5	h _{ef}	1,5
Splitting for mi	nimum thicknes	s of c	oncret	:e			l		ı				•		
Minimum thickne	ess of concrete h	າ _{min,2} ≥	[mm]	8	80	100	110	1	10	130	150	160	160	220	22
Case 1													1		
Characteristic re (concrete C20/2	P	√ 0Rk,sp	[kN]	7,5	2)	1	6	20	25	35	50	40	2)	75	10
Case 2															
Characteristic e	dge distance	C _{cr,sp}	[mm]	3h _{ef}	3,5h _{ef}	3h _{ef}	3,5h _{ef}	$3,5h_{ef}$	3h _{ef}	$2,5h_{ef}$	2,5h _{ef}	3h _{ef}	$2,5h_{ef}$	2,6h _{ef}	2,6ľ
Increasing factor $\begin{split} N_{Rk,p} &= \psi_c \cdot N_{Rk,l} \\ N^0_{Rk,sp} &= \psi_c \cdot N^0 \end{split}$	_p (C20/25) and	Ψο	[-]						$\left(\frac{f_{ck}}{20}\right)$	0,5					
Concrete cone	failure														
Effective ancho	d (l)	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	17

Injection System W-VIZ Annex C10 Performance Characteristic values for tension loads, W-VIZ-IG

No performance assessed
 Increasing factor for No_{Rk,sp} only for Case 1

Table C13: Characteristic val	ues for sh e	ear Ic	oad,	W-VI	Z-IG	
Anchor size	W-VIZ-IG	40	50	60	75	

				50	60	75	70	80	90	105	125	115	170	170		
Anchor size		W-V	IZ-IG	40 M6	M6	M8	M8			M12					M20	
Installation factor		γinst	[-]			1,0										
Steel failure without	lever arm															
Characteristic	Steel, zind	plated	[kN]	8,	0	9,5	15	1	8		34		26	63	54	
resistance V ⁰ _{Rk,s}	A	4, HCR	[kN]	5,	5	9,5	10	1	6		24		32	44	47	
Partial factor		γMs	[-]		1,25											
Ductility factor		k 7	[-]						1	,0						
Steel failure with lev	er arm															
Characteristic	Steel, zinc	plated	[kN]	1	2	3	30 60		0		105		212	266	519	
bending resistance M ⁰ _{Rk,s}	A	4, HCR	[kN]	8,	8,5		1	4	2	74			187	187	365	
Partial factor		γMs	[-]			1,25										
Concrete pry-out fai	lure															
Pry-out factor		k 8	[-]						2	,0						
Concrete edge failu	re															
Effective length of an shear load	chor in	lf	[mm]	40	50	60	75	70	80	90	105	125	115	170	170	
Outside diameter of a	ınchor	d _{nom}	[mm]	1	0	1	2	1	4		18		22	24	26	

Table C14: Displacements under tension loads, W-VIZ-IG

Anchor size	W-VIZ-IG		40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Tension load in cracked concrete	N	[kN]	4,3	6,1	8,0	11,1	10,0	12,3	14,6	18,4	24,0	21,1	38,0	38,0
Dianlacement		[mm]	0,	5	0,5	0,6	0,6		0,7			0,7	0,8	0,8
Displacement	δ _{N∞}	[mm]		1,3								1,1	1,3	1,3
Tension load in uncracked concrete	N	[kN]	4,3	8,5	11,1	15,6	14,1	17,2	20,5	25,9	33,0	29,6	53,3	53,3
Displacement		[mm]	0,2	0,4	0,4 0,4			4	0,6			0,5	0,6	0,6
Displacement		[mm]					1,3					1,1	1,3	1,3

Table C15: Displacements under shear loads, W-VIZ-IG

Anchor size	W-\	/IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Shear load Steel, zinc plated	V	[kN]	4,	4 ,6		8,4	10,1		19,3		14,8	35,8	30,7	
Displacement	δνο	[mm]	0,4		0,5	0,4	0,5		1,2			0,8	1,9	1,2
Displacement	δν∞	[mm]	0,7		0,8	0,7	0,8		1,9			1,2	2,8	1,9
Shear load Stainless steel A4 / HCR	V	[kN]	3,	3,2		5,9	9,3		13,5			18,5	25,2	26,9
Dianlacement	δ_{V0}	[mm]	0,	3	0,5	0,3	0,	5		0,9		1,0	1,4	1,1
Displacement	δν∞	[mm]	0,	4	0,7	0,5	0,7		1,4			1,5	2,1	1,6

Injection System W-VIZ

Performance

Characteristic values for shear load W-VIZ-IG, Displacements W-VIZ-IG

Annex C11