

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0374 of 27 October 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti metal expansion anchor HSA

Mechanical fastener for use in uncracked concrete

Hilti AG BU Anchors Feldkircherstraße 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

19 pages including 3 annexes which form an integral part of this assessment

330232-01-0601, Edition 05/2021

ETA-11/0374 issued on 3 November 2022

European Technical Assessment ETA-11/0374

Page 2 of 19 | 27 October 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0374

Page 3 of 19 | 27 October 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti metal expansion anchor HSA is a torque-controlled expansion fastener which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading) Method A	See Annex B3 and C1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2
Displacements	See Annex C3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

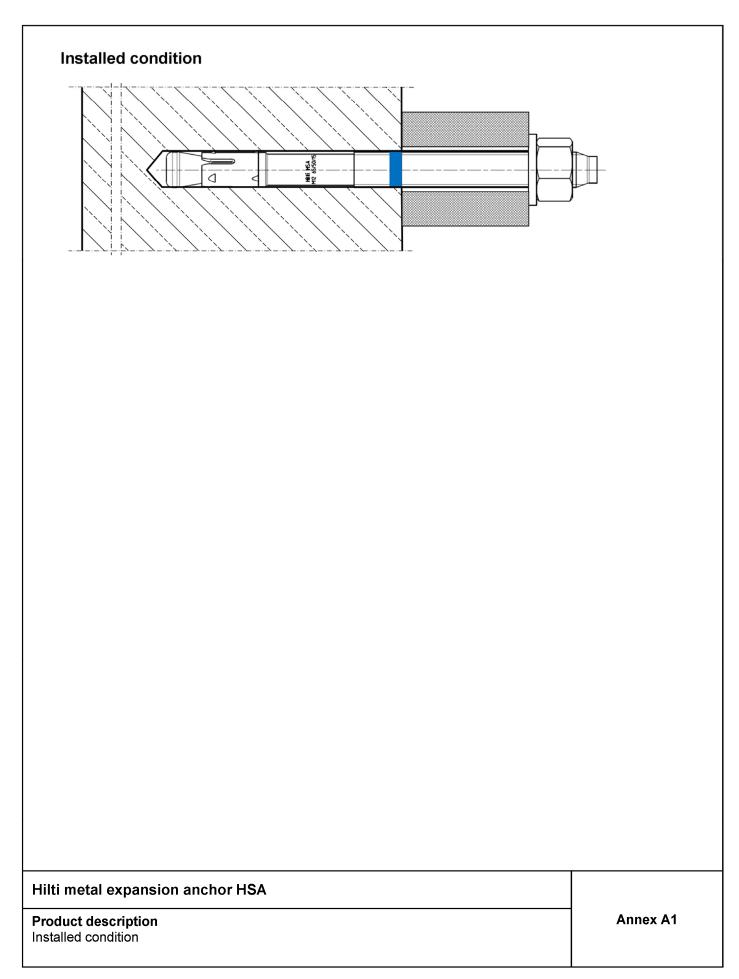
European Technical Assessment ETA-11/0374

Page 4 of 19 | 27 October 2023

beglaubigt:

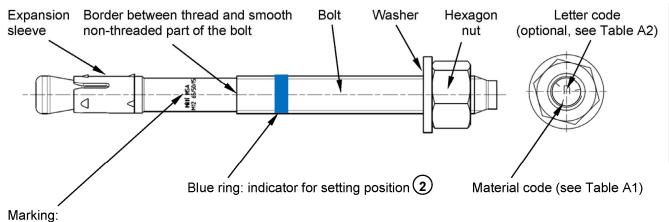
Ziegler

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 27 October 2023 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section

Product description: Hilti metal expansion anchor HSA, HSA-BW, HSA-F, HSA-R2 and HSA-R

Hilti HSA M... t_{fix,1}/t_{fix,2}/t_{fix,3}

Brand and metal expansion anchor type as well as metal expansion anchor size and max. fixture thicknesses $t_{\text{fix},1}/t_{\text{fix},2}/t_{\text{fix},3}$

Table A1: Material code for identification of different materials

	HSA, HSA-BW, HSA-F	HSA-R2	HSA-R
Material code			
	Letter code without mark	Letter code with two marks	Letter code with three marks

Hilti metal expansion anchor HSA	
Product description Product marking and material code for identification of metal expansion anchor	Annex A2

Table A2: Letter code for identification of maximum fixture thickness (optional)¹⁾

Size	M6	M8	M10	M12	M16	M20
	t _{fix,1} /t _{fix,2} /t _{fix,3}					
	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm]	[mm]/[mm]/[mm
<u>z</u>	5/-/-	5/-/-	5/-/-	5/ -/-	5/-/-	5/-/-
У	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-
×	15/5/-	15/5/-	15/5/-	15/-/-	15/-/-	15/-/-
w	20/10/-	20/10/-	20/10/-	20/5/-	20/5/-	20/-/-
v	25/15/-	25/15/-	25/15	25/10/-	25/10/-	25/-/-
<u>u</u>	30/20/-	30/20/-	30/20/-	30/15/-	30/15/-	30/5/-
t	35/25/5	35/25/-	35/25/-	35/20/-	35/20/-	35/10/-
<u>s</u>	40/30/10	40/30/-	40/30/-	40/25/-	40/25/-	40/15/-
r	45/35/15	45/35/5	45/35/5	45/30/-	45/30/-	45/20/5
g	50/40/20	50/40/10	50/40/10	50/35/-	50/35/-	50/25/10
р	55/45/25	55/45/15	55/45/15	55/40/5	55/40/-	55/30/15
<u>o</u>	60/50/30	60/50/20	60/50/20	60/45/10	60/45/5	60/35/20
n	65/55/35	65/55/25	65/55/25	65/50/15	65/50/10	65/40/25
m	70/60/40	70/60/30	70/60/30	70/55/20	70/55/15	70/45/30
<u>I</u>	75/65/45	75/65/35	75/65/35	75/60/25	75/60/20	75/50/35
<u>k</u>	80/70/50	80/70/40	80/70/40	80/65/30	80/65/25	80/55/40
i	85/75/55	85/75/45	85/75/45	85/70/35	85/70/30	85/60/45
<u>i</u>	90/80/60	90/80/50	90/80/50	90/75/40	90/75/35	90/65/50
h	95/85/65	95/85/55	95/85/55	95/80/45	95/80/40	95/70/55
g	100/90/70	100/90/60	100/90/60	100/85/50	100/85/45	100/75/60
f	105/95/75	105/95/65	105/95/65	105/90/55	105/90/50	105/80/65
е	110/100/80	110/100/70	110/100/70	110/95/60	110/95/55	110/85/70
d	115/105/85	115/105/75	115/105/75	115/100/65	115/100/60	115/90/75
<u>c</u>	120/110/90	120/110/80	120/110/80	125/110/75	120/105/65	120/95/80
b	125/115/95	125/115/85	125/115/85	135/120/85	125/110/70	125/100/85
а	130/120/100	130/120/90	130/120/90	145/130/95	135/120/80	130/105/90
аа	-	-	-	155/140/105	145/130/90	.
ab	-	-	-	165/150/115	155/140/100	-
ac	=	-	-	175/160/125	165/150/110	-
ad	-	-	-	180/165/130	190/175/135	-
ae	-	-	-	230/215/180	240/225/185	-
af	-	-	-	280/265/230	290/275/235	-
ag	-	-	-	330/315/280	340/325/285	_

¹⁾ Anchor length in bold is standard item. For selection of other anchor lengths, check availability of the items.

Hilti metal expansion anchor HSA	
Product description Letter code for identification of metal expansion anchor	Annex A3

Table A3: Materials

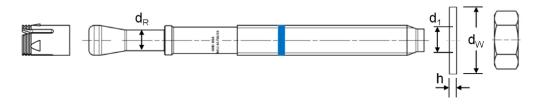
Designation	Material				
HSA, HSA-BW					
Expansion sleeve	M6: Stainless steel A2 according to EN 10088-1:2014 M8 – M20: Carbon steel, galvanized				
Bolt	Carbon steel, galvanized, rupture elongation (I ₀ = 5d) > 8 %				
Washer	Carbon steel, galvanized				
Hexagon nut	Carbon steel, galvanized				
HSA-F					
Expansion sleeve	Stainless steel A2 according to EN 10088-1:2014				
Bolt	Hot-dip galvanized, rupture elongation (l₀ = 5d) > 8%				
Washer	Hot-dip galvanized				
Hexagon nut	Hot-dip galvanized				
HSA-R2 (stainless Corrosion resistand	s steel) ce class II according to EN 1993-1-4:2006+A1:2015				
Expansion sleeve	Stainless steel A2 according to EN 10088-1:2014				
Bolt	Stainless steel according to EN 10088-1:2014, coated, rupture elongation (I ₀ = 5d) > 8%				
Washer	Stainless steel A2				
Hexagon nut	Stainless steel A2, coated				
HSA-R (stainless steel)					
Corrosion resistance class III according to EN 1993-1-4:2006+A1:2015					
Expansion sleeve	Stainless steel A2 according to EN 10088-1:2014				
Bolt	Stainless steel according to EN 10088-1:2014, coated, rupture elongation (I ₀ = 5d) > 8%				
Washer	Stainless steel A4				
Hexagon nut	Stainless steel A4, coated				

Hilti metal expansion anchor HSA	
Product description Materials	Annex A4

Table A4: Dimensions of Hilti metal expansion anchor HSA, HSA-BW, HSA-F, HSA-R2 and HSA-R

Size			М6	M8	M10	M12	M16	M20
Minimum inner diameter of washer	d ₁	[mm]	6,4	8,4	10,5	13	17	21
Minimum outer diameter of washer	dw	[mm]	12	16	20	24	30	37
Minimum thickness of washer	h	[mm]	1,6	1,6	2	2,5	3	3

Figure A1: Hilti metal expansion anchor HSA, HSA-F, HSA-R2, HSA-R



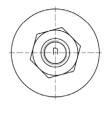


Figure A2: Hilti metal expansion anchor HSA-BW

Hilti metal expansion anchor HSA	
Product description Dimensions	Annex A5

Specifications of intended use

Anchorages subject to:

· Static and quasi static loading.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes Annex A, Table A3 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the metal expansion anchor is indicated on the design drawings (e. g. position of the metal
 expansion anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi static loading are designed in accordance with: EN 1992-4:2018 and EOTA Technical Report TR 055:2018.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The metal expansion anchor may only be set once.

Hilti metal expansion anchor HSA	
Intended use Specifications	Annex B1

Table B1: Drilling technique

Size		M6	M8	M10	M12	M16	M20		
Hammer drilling (HD)	CCCCC	✓							
Hammer drilling with Hilti hollow drill bit TE-CD/YD drilling system (HDB)		-	-	-	√				
Diamond coring (DD) with DD 30-W coring tool and C+ SPX-T (abrasive) core bits	€ •	-	-		,	/			

Table B2: Drill hole cleaning

Manual cleaning (MC): Hilti hand pump for blowing out drill holes.	
Automatic cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.	

Table B3: Setting alternatives

Size	М6	M8	M10	M12	M16	M20			
Hammer setting	√								
Machine setting (impact screwdriver with setting tool)	I.			✓					

Hilti metal expansion anchor HSA	
Intended use	Annex B2
Installation methods	

Table B4: Methods for application of torque moment

Size		М6	М8	M10	M12	M16	M20			
Torque wrench		✓								
Setting tool S-TB HSAwith	6.70 MB2 2/4	-		I.						
impact screwdriver Hilti SIW ¹⁾	9-TH KB2 3/8*	-	14-A /	14-A / 22-A / 6AT-A22 22T-A						
Setting speed	HSA, HSA-BW, HSA-F	-	1	I	III	_2)				
	HSA-R2, HSA-R	-		-						
Setting time	t _{set} [sec.]	-		1						
Machine torqueing with Hilti SIW impact wrench and SI-AT adaptive torque module										
• SIW 4AT-22 with SI-AT-22 ³⁾	HSA, HSA-BW		✓	✓	√	√	-			
• SIW 6AT-22 with SI-AT-22 ³⁾	HSA-R2, HSA-R		-	✓	✓	✓	✓			

Table B5: Battery state of charge of impact screwdriver

Ambient temperature		≤+5 °C	+5 to +10 °C	≥ +10 °C
Battery state of charge	low	-	-	.
	middle	-	=	✓
	high	-	✓	✓

Hilti metal expansion anchor HSA	
Intended use	Annex B3
Installation methods	

¹⁾ see Table B5 for battery state of charge depending on the ambient temperature.
2) Impact screwdriver operates with fixed speed.
3) Equivalent combination of Hilti SIW + SI-AT tool, compatible to this anchor type, may be used

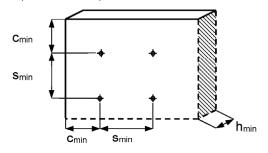


Table B6: Installation parameters

Size				M6			M8			M10			M12		M16			M20		
Nominal diameter of drill bit	d ₀	[mm]		6			8		10		12			16			20			
Maximum cutting diameter of drill bit	d _{cut}	[mm]		6,4			8,45		10,45		12,5			16,5			20,55			
Maximum diameter of clearance hole in the fixture		[mm]		7			9		12		14			18			22			
Width across flats	SW	[mm]		10			13			17			19			24			30	
Setting position			(1)	(3)	(E)	\odot	(2)	(E)	\odot	(2)	\odot	\odot	②	(E)	\bigcirc	2	\odot	\odot	(2)	(b)
Minimum thickness of concrete member	h _{min}	[mm]	.10	00	120	10		120	100	120	160	100	140	180	140	160	180	160	22	20
Nominal embedment depth	h _{nom}	[mm]	37	47	67	39	49	79	50	60	90	64	79	114	77	92	132	90	115	130
Effective embedment depth	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Drill hole depth (HD, HDB)	h₁ ≥	[mm]	42	52	72	44	54	84	55	65	95	72	87	122	85	100	140	98	123	138
Drill hole depth (DD)	h₁ ≥	[mm]		-		-			58	68	98	72	87	122	85	100	140	98	123	138
Standard installation	ı torq	ue mo	mei	nt																
Installation torque moment	Tinst	[Nm]		5			15 ¹⁾²	2)	25 ¹⁾²⁾		50 ¹⁾²⁾			80 ¹⁾²⁾			200			
Minimum spacing	Smin	[mm]		35			35			50			70		90			195	17	75
Minimum edge distance	C _{min}	[mm]		35		40	3	5	50	4	0	70	65	55	80	75	70	130	12	20
Maximum installatio	n torc	ue m	ome	nt																
Maximum installation torque moment	T _{max}	[Nm]		-		20		35		80		150		250						
Minimum spacing	Smin	[mm]		-			35			40		50		80			120			
Minimum edge distance	C _{min}	[mm]		-			100			150			190		200				225	

¹⁾ Alternatively, the metal expansion anchor can be tightened with an impact screwdriver in combination with a setting tool with the required setting time (see Annex B2).

²⁾ Alternatively, the metal expansion anchor can be tightened with an impact screwdriver in combination with module (see Annex B2).

Hilti metal expansion anchor HSA	
Intended use Installation parameters	Annex B4

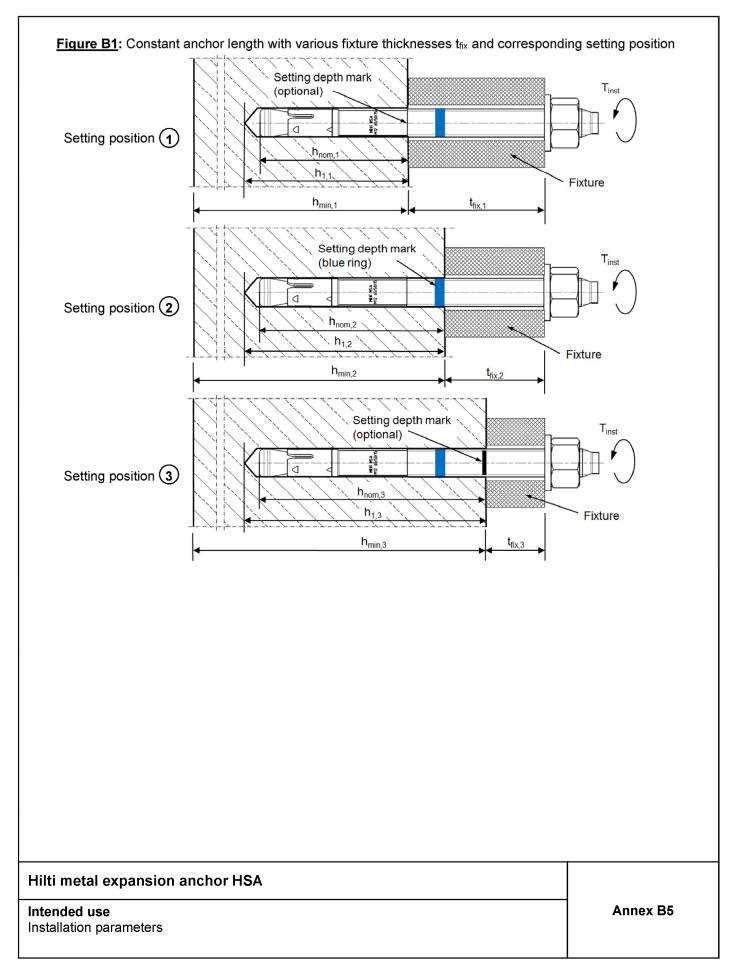
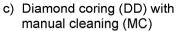
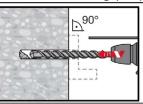


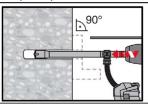
Figure B2: Various anchor lengths for different setting positions and corresponding fixture thickness t_{fix} Setting depth mark T_{inst} (optional) d Setting position 1 **Fixture** t_{fix,1} Setting depth mark T_{inst} (blue ring) Setting position (2) $\underline{h_{\text{nom,2}}}$ **Fixture** h_{min,2} t_{fix,2} Setting depth mark T_{inst} (optional) Setting position (3) h_{1,3} Fixture h_{min,3}

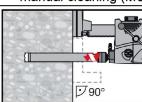
Table B7: Checking setting position

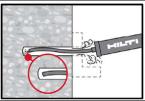
Setting position	Pre-setting	Through setting
1	with letter code "a" to " \underline{z} " (see Table A2): $h_{\text{nom},1}$ is reached when the non-threaded part of the bolt is completely below the concrete surface. with letter code "aa" to "ag" (see Table A2) and without letter code: $h_{\text{nom},1}$ has to be measured and marked by the installer.	h _{nom,1} , h _{nom,2} or h _{nom,3} is reached when the present thickness of the fixture t _{fix} and the maximum thickness of the fixture t _{fix,1} /t _{fix,2} /t _{fix,3} given by the anchor is identical.
2	h _{nom,2} is reached when the blue ring is completely below the concrete surface.	If the present thickness of the fixture t _{fix} is smaller than the maximum thickness of the fixture t _{fix,1} /t _{fix,2} /t _{fix,3} given by the anchor • position of washer and hexagon
3	h _{nom,3} has to be measured and marked by the installer.	nut has to be adjusted or drill hole depth h ₁ has to be increased.

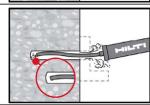

Hilti metal expansion anchor HSA	
Intended use Installation parameters	Annex B6

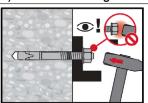


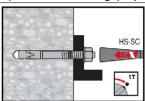

Installation instruction


Hole drilling and cleaning (see Table B1, Table B2 and Table B6)

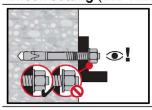

a) Hammer drilling (HD) with b) Hammer drilling with Hilti hollow drill bit manual cleaning (MC) (HDB) with automatic cleaning (AC)





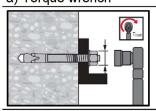


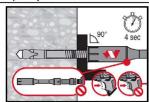
Anchor setting (see Table B3)

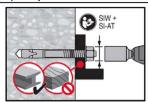

a) Hammer setting

b) Machine setting (impact screwdriver with setting tool)

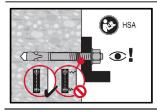
Check setting (see Table B7)




Anchor torquing (see Table B4 and Table B5)


a) Torque wrench

b) Impact screwdriver with setting tool


c) Impact screwdriver with module

Check installation

Hilti metal expansion anchor HSA

Intended use

Installation instructions

Annex B7

Table C1: Characteristic resistance under tension load in uncracked concrete

Size		M6 M8						M10 I				M12			M16			M20		
									\vdash						\vdash	$\overline{}$				$\overline{}$
Setting position	1 		(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾	40	60	30 ¹⁾	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Steel failure																				
Partial safety factor	$\gamma \rm Ms^{2)}$	[-]									.1,	,4								
HSA, HSA-BW	1																			
Characteristic resistance	$N_{Rk,s}$	[kN]		9,0			16,5			28,0			41,4			82,6			124	
HSA-F																				
Characteristic resistance	$N_{Rk,s}$	[kN]		9,5			15,9		27,0				40,4			80,1			3)	
HSA-R2, HSA-R																				
Characteristic resistance	$N_{Rk,s}$	[kN]		12,2			18,3			35,6			44,6			90,5		97,6		
Pullout failure																				
Installation safety factor	γinst	[-]									.1,	,0								
Characteristic resistance	$N_{Rk,p}$	[kN]	6	7,5	9	8,1	12,4	16	12,4	17,4	25	17,4	25,8	35	25,8	35,2	50	32	49,2	60,7
	C20/25	[-]		1,00																
Increasing factor ψ _c for	C30/37	[-]									11,2	22								
N _{Rk,p}	C40/50	[-]									.1,	41								
	C50/60	[-]									1,	55								
Concrete cone	and spli	tting f	ailur	е																
Installation safety factor	γinst	[-]									.1,	,0								
Factor for uncracked concrete	K _{ucr,N}	[-]									.11	,0								
Factor for cracked concrete	k _{cr,N}	[-]									3	3)								
Spacing	Scr,N	[mm]										h _{ef}								
opacing	Scr,sp	[mm]	100	120	130	130	180	200	190	210	290	200	250	310	230	280	380	260	370	400
Edge distance	C _{cr,N}	[mm]										· h _{ef}								
Lage distance	C _{cr,sp}	[mm]	50	60	65	65	90	100	95	105	145	100	125	155	115	140	190	130	185	200
Characteristic resistance	N^0 Rk,sp	[kN]	6	7,5	9	8,1	12,4	16	12,4	17,4	25	17,4	25,8	35	25,8	35,2	50	32	49,2	60,7

¹⁾ Use is restricted to anchoring of statically indeterminate structural components and dry internal conditions.

Hilti metal expansion anchor HSA	
Performance Characteristic resistance under tension load in uncracked concrete	Annex C1

²⁾ In absence of other national regulations.

³⁾ No performance assessed.

Table C2: Characteristic resistance under shear load in uncracked concrete

Size				М6		М8			M10			M12			M16			M20		
Setting position			1	2	3	\odot	2	3	\odot	2	3	1	2	3	(1)	2	3	(+)	2	3
Effective anchorage depth	h _{ef}	[mm]	30 ¹⁾	40	60	30 ¹⁾	40	70	40	50	80	50	65	100	65	80	120	75		115
Steel failure without lever arm																				
Partial safety factor	γMs ²⁾	[-]	[-] 1,25																	
Ductility factor	k ₇	[-]		1,0																
HSA, HSA-BW																				
Characteristic resistance	V^0 Rk,s	[kN]		6,5		10,6			18,9			29,5			51,0			85,8		
HSA-F																				
Characteristic resistance	V^0 Rk,s	[kN]	6,5				10,6		18,9			29,5			51,0			3)		
HSA-R2, HSA-I	₹																			
Characteristic resistance	V^0 Rk,s	[kN]	7,2			12,3			22,6			29,3		56,5		91,9				
Steel failure wi	Steel failure with lever arm																			
Partial safety factor	γMs ²⁾	[-]		1,25																
Ductility factor	k ₇	[-]									.1	,0								
HSA, HSA-BW																				
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	9,9			21,7			48,6		91,7		216		454					
HSA-F																				
Characteristic resistance	M ⁰ Rk,s	[Nm]	9,9			21,7			48,6			91,7			216			3)		
HSA-R2, HSA-I	₹																			
Characteristic resistance	M ⁰ Rk,s	[Nm]	9,9		21,0			48,6		76,0		200			406					
Concrete pry-c	ut failu	re																		
Installation safety factor	γinst	[-]	1,0																	
Pry-out factor	k ₈	[-]	1 2 1				1,5	2	2,4		2		2,9		2	3	,5			
Concrete edge	failure																			
Installation safety factor	γinst	[-]	[-]																	
Effective length of anchor	lf	[mm]	30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Effective outside diameter of anchor	e d _{nom}	[mm]] 6			8			10			.12		16			20			

¹⁾ Use is restricted to anchoring of statically indeterminate structural components and dry internal conditions.

Hilti metal expansion anchor HSA	
Performance Characteristic resistance under shear load in uncracked concrete	Annex C2

²⁾ In absence of other national regulations.

³⁾ No performance assessed.

Table C3: Displacements under tension and shear loads in uncracked concrete

Size			М6			М8			M10			M12			M16			M20	
Setting position		1	2	3	1	2	3	\odot	2	3	\odot	2	3	1	2	3	1	2	3
Effective anchorage depth	h _{ef} [m	m] 30	40	60	30	40	70	40	50	80	50	65	100	65	80	120	75	100	115
Displacements under tension loads																			
Tension force	N [k	N] 2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9	8,5	12,6	16,7	12,6	17,2	23,8	16,6	25,1	30,8
Corresponding	δ_{N0} [m	m] 0,2	0,6	1,0	0,2	1,2	1,8	0,4	1,1	2,0	0,3	1,4	2,3	0,4	1,3	2,1	0,1	0,8	1,9
displacement	δ _{N∞} [m	m] 0,6	1,0	1,4	0,6	1,6	2,2	0,8	1,5	2,4	0,7	1,8	2,7	0,8	1,7	2,5	0,5	1,2	2,3
Displacements	Displacements under shear loads																		
Shear force	۷ [۱	N]	3,7		6,1		10,8		16,7		29,1		49,0						
Corresponding	δ_{V0} [m	m]	1,6		1,9		2,0		2,1		2,2		2,3						
displacement	δ _{V∞} [m	m]	2,4	2,4		2,9		3,0		3,2			3,3			3,5			

Hilti metal expansion anchor HSA	
Performance Displacement under tension and shear loads in uncracked concrete	Annex C3