

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0107 of 9 February 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Klimas Wkret-met screw-in plug eco-drive

Plastic anchor for fixing of external thermal insulation composite systems with rendering

Klimas Sp. z o.o. Kuznica Kiedrzynska ul. Wincentego Witosa 135/137 42-233 MYKANÓW POLEN

Plant 1, Plant 2 Poland

14 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604 Edition 10/2017

ETA-13/0107 issued on 3 March 2015

European Technical Assessment ETA-13/0107

Page 2 of 14 | 9 February 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/0107

Page 3 of 14 | 9 February 2023

English translation prepared by DIBt

Specific part

1 Technical description of the product

The screwed-in anchor Klimas Wkret-met eco-drive consists of an anchor sleeve made of polyamide (virgin material) and an accompanying specific screw of steel with zinc coating.

The anchor type eco-drive S is additionally combined with an insulation cover.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic load bearing capacity	
- Characteristic resistance under tension load	See Annex C1
 Minimum edge distance and spacing 	See Annex B2
Displacements	See Annex C2
Plate stiffness	See Annex C2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C2

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

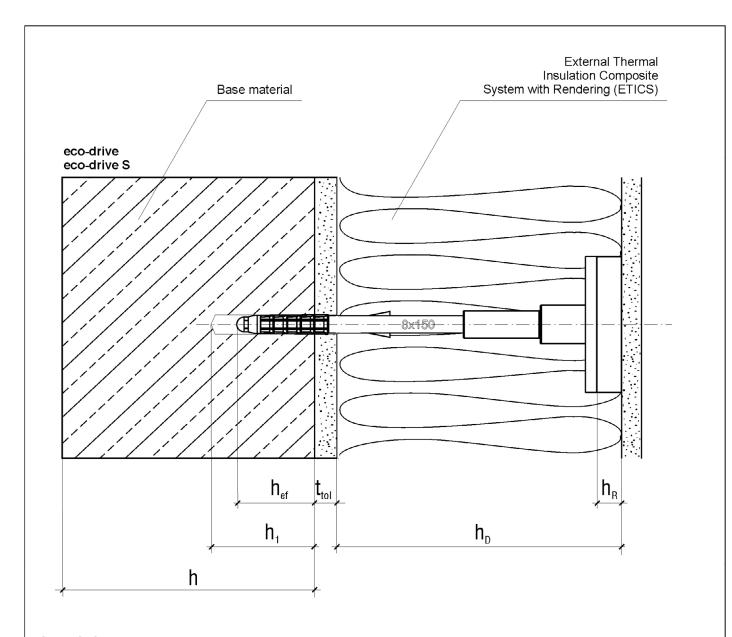
In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC].

The system to be applied is: 2+

European Technical Assessment ETA-13/0107

Page 4 of 14 | 9 February 2023

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 9 February 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Ziegler

Intended use

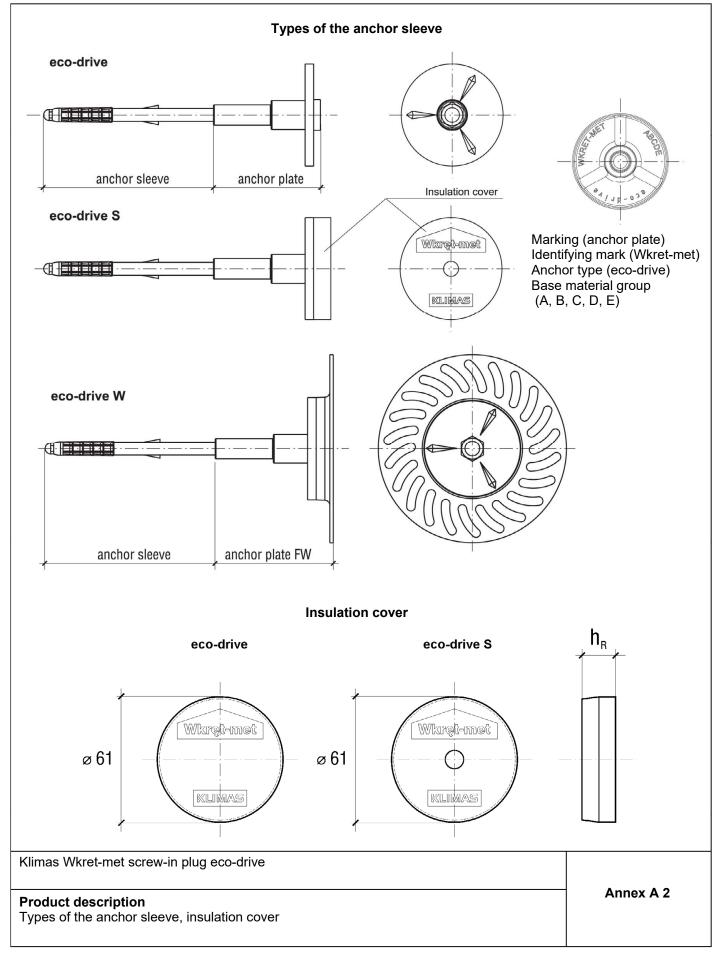
Anchorage of ETICS in concrete, masonry and in autoclaved aerated concrete

Legend:

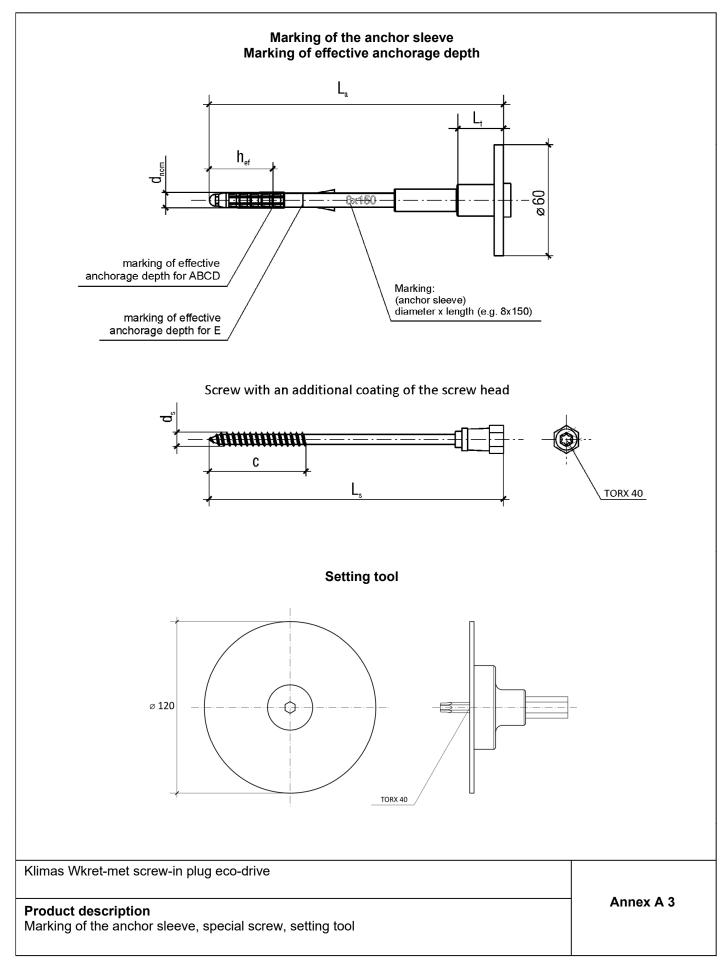
h_{ef} = effective anchorage depth

h₁ = depth of drilled hole to deepest point

h = thickness of member (wall)


h_D = thickness of insulation material

 t_{tol} = thickness of equalizing layer or non-load-bearing coating


n_R = thickness of insulation cover

Klimas Wkret-met screw-in plug eco-drive	
Product description Intended use	Annex A 1

Deutsches
Institut
für
Bautechnik

Table A1: Dimensions

	Anchor sleeve				Specific scre	W	
Anchor type	d _{nom}	min La	max La	h _{ef} ABCD / E	ds	min L _s	max L _s
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
eco-drive	8	130	490	35 / 55	5,7	90	450

 $L_t = 25 \text{ mm}$ (see figure on Annex A 3)

Determination of maximum thickness of insulation h_D:

$$h_D = L_a - t_{tol} - h_{ef} - L_t$$
 (e.g. $L_a = 150$ mm, $t_{tol} = 10$ mm)
e.g. $h_D = 150 - 10 - 35 - 25$
 $h_{Dmax} = 80$ mm

Base material group ABCD: $h_D = L_a - 70 \text{ mm}$ Base material group E: $h_D = L_a - 90 \text{ mm}$

Table A2: Materials

Element	Material
Anchor plate	Polyamide PA6 – GF (virgin material), colour nature or grey
Anchor sleeve	Polyamide PA6 (virgin material), colour nature or grey
Insulation cover	EPS (expanded polystyrene); mineral wool
Screw	Steel galvanized zinc plated ≥ 5 µm according to EN ISO 4042:2018, screw head coated with Polyamide PA6-GF, colour nature or red

Klimas Wkret-met screw-in plug eco-drive

Product description
Dimensions of the anchor sleeve, special screw materials

Annex A 4

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Compacted normal weight concrete without fibres (base material group A) according to Annex C 1
- Solid masonry (base material group B), according to Annex C 1
- · Hollow or perforated masonry (base material group C), according to Annex C 1
- Lightweight aggregate concrete (base material group D), according to Annex C 1
- autoclaved aerated concrete (base material group E), according to Annex C 1
- For other base materials of the base material groups A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051 Edition April 2018.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

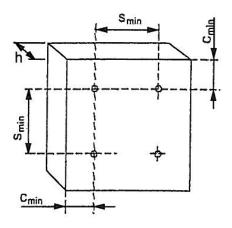
Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$ in absence of other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchors is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of ETICS.

Installation:

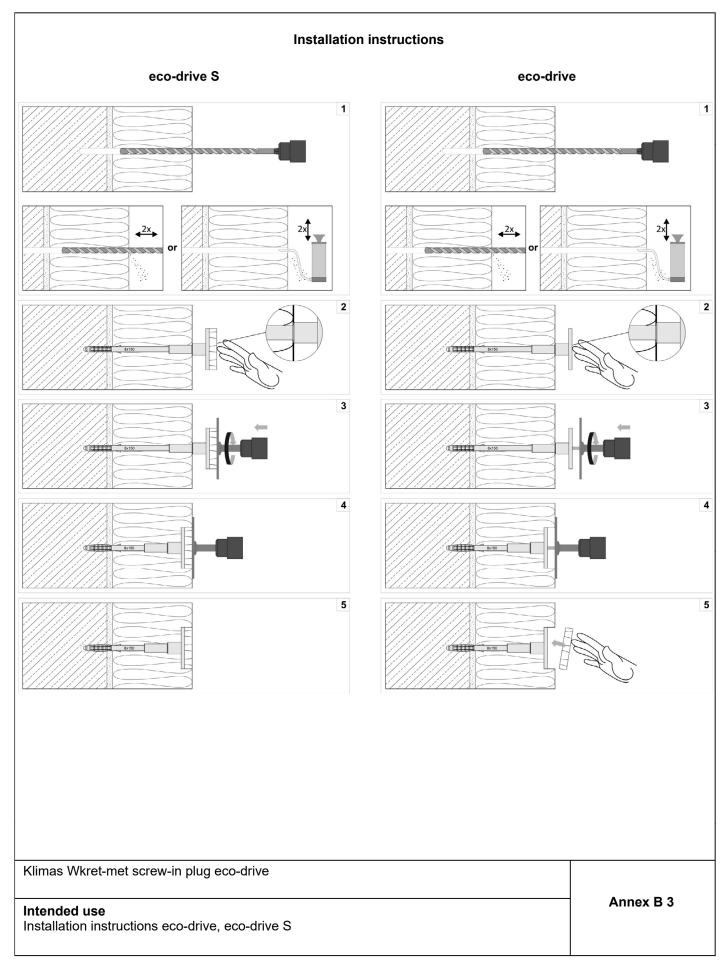
- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

Klimas Wkret-met screw-in plug eco-drive	
Intended use Specifications	Annex B 1

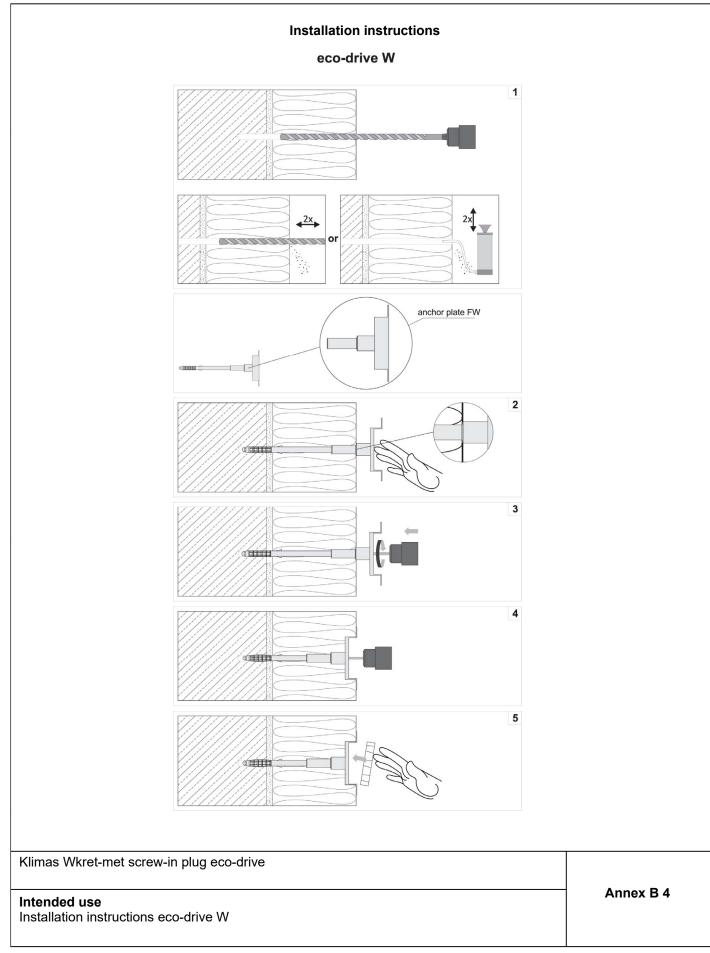

Table B1: Installation parameters

Anchor type		eco-drive	eco-drive
Use category		ABCD	E
Drill hole diameter	d ₀ [mm]	8	8
Cutting diameter of drill bit	d _{cut} [mm]	≤ 8,45	≤ 8,45
Depth of drill hole to deepest point	h₁ [mm]	≥ 45	≥ 65
Overall embedment depth in the base material	h _{ef} [mm]	≥ 35	≥ 55

Table B2: Minimum thickness of member, spacing and edge distance


Anchor type		eco-drive
minimum thickness of member	h _{min} = [mm]	100
minimum spacing	s _{min} = [mm]	100
minimal edge distance	c _{min} = [mm]	100

Scheme of spacing and edge distances



Klimas Wkret-met screw-in plug eco-drive	
Intended use Installation parameters, minimum thickness of member, spacings and edge distances	Annex B 2

Electronic copy of the ETA by DIBt: ETA-13/0107

English translation prepared by DIBt

Table C1: Characteristic resistance N_{Rk} for use in concrete and masonry each anchor

Base material	Bulk density [kg/dm³]	Minimum compressive strength [N/mm²]	General remarks	Drill method	N _{Rk} [kN]
Concrete C12/15 as per EN 206:2013+A1:2016	1	-	Concrete without fibres	hammer	1.2
Concrete C16/20 - C50/60 as per EN 206:2013+A1:2016	-	-	Concrete without fibres	hammer	1.5
Solid clay brick Mz as per EN 771-1:2011+A1:2015	≥ 2.0	≥ 20.0	Vertically perforation¹) ≤ 15%	hammer	1.5
Sand-lime solid bricks KS (e.g. KS NF 20-2.0) as per EN 771-2:2011+A1:2015	≥ 2.0	≥ 20.0	Vertically perforation ¹⁾ ≤ 15%	hammer	1.5
Vertically perforated sand-lime bricks KSL (e.g. KSL-R(P) 8DF) as per EN 771-2:2011+A1:2015	≥ 1.6	≥ 12.0	Vertically perforation ¹⁾ > 15 % and ≤ 50 % Exterior web thickness ≥ 30 mm	hammer	1.5
Vertically perforated clay bricks HLz (e.g. Hlz B – 1.0 NF 12-1) as per EN 771-1:2011+A1:2015	≥ 1.2	≥ 12.0	Vertically perforation ¹⁾ > 15 % and ≤ 50 % Exterior web thickness ≥ 13 mm	rotary	1.5
Lightweight concrete hollow blocks Hbl as per EN 771-3:2011+A1:2015	≥ 0.8	≥ 2.0	Vertically perforation ¹⁾ > 15 % and ≤ 50 % Exterior web thickness ≥ 30 mm	rotary	1.5
Lightweight aggregate concrete LAC as per EN 1520:2011 / EN 771-3:2011+A1:2015	≥ 1.05	≥ 5.0		rotary	0.9
Autoclaved aerated concrete AAC 2 as per EN 771-4:2011+A1:2015	≥ 0.35	≥ 2.0		rotary	0.6
Autoclaved aerated concrete AAC 7 as per EN 771-4:2011+A1:2015	≥ 0.65	≥ 3.5		rotary	1.2

¹⁾ Cross section reduced by perforation vertically to the resting area

Klimas Wkret-met screw-in plug eco-drive	
Performances Characteristic resistance	Annex C 1

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2016-05

Anchor type	Insulation thickness	point thermal transmittance
	h _D [mm]	χ [W/K]
eco-drive	80	0.0017
eco-drive	150	0.002
eco-drive	420	0.0016

Table C3: Plate stiffness according EOTA Technical Report TR 026:2016-05

Anchor type	Diameter of the anchor plate [mm]	Load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]
eco-drive	60	2,8	0,6

Table C4: Displacements

Base material	Bulk density ρ [kg/dm³]	Minimum compressive strength f₀ [N/mm²]	Tension load N [kN]	Displacements Δδ _N [mm]
Concrete C12/15 EN 206:2013+A1:2016	-	-	0,4	2,9
Concrete C16/20 - C50/60 EN 206:2013+A1:2016	-	-	0,5	3,2
Solid clay brick, Mz EN 771-1:2011+A1:2015	≥ 2,0	20	0,5	3,6
Sand-lime solid bricks, KS EN 771-2:2011+A1:2015	≥ 2,0	20	0,5	3,2
Kalksandlochstein, KSL EN 771-2:2011+A1:2015	≥ 1,6	12	0,5	4,2
Vertically perforated sand-lime bricks HLz EN 771-1:2011+A1:2015	≥ 1,2	12	0,5	5,4
Lightweight concrete hollow blocks Hbl EN 771-3:2011+A1:2015	≥ 0,8	2	0,5	4,6
Lightweight aggregate concrete LAC EN 1520:2011 / EN 771-3:2011+A1:2015	≥ 1,05	5	0,3	3,6
Autoclaved aerated concrete AAC 2 EN 771-4:2011+A1:2015	≥ 0,35	2	0,2	2,8
Autoclaved aerated concrete AAC 7 EN 771-4:2011+A1:2015	≥ 0,65	3,5	0,4	4,2

Klimas Wkret-met screw-in plug eco-drive	
Performances Point thermal transmittance, plate stiffness, displacements	Annex C 2