

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0882 of 6 September 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system Hilti HIT-RE 100

Bonded anchor for use in concrete

Hilti AG Feldkircherstraße 100 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

27 pages including 3 annexes which form an integral part of this assessment

330499-00-0601, Edition 04/2020

ETA-15/0882 issued on 30 August 2019

European Technical Assessment ETA-15/0882

Page 2 of 27 | 6 September 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0882

English translation prepared by DIBt

Page 3 of 27 | 6 September 2023

Specific Part

1 Technical description of the product

The Injection System Hilti HIT-RE 100 is a bonded anchor consisting of a foil pack with injection mortar Hilti HIT-RE 100 and a steel element according to Annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1, C2, C4, C5, C7, C8, B3, B4, B5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2, C5, C8
Displacements (static and quasi-static loading)	See Annex C3, C6, C9
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-15/0882

Page 4 of 27 | 6 September 2023

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

The following standards and documents are referred to in this European Technical Assessment:

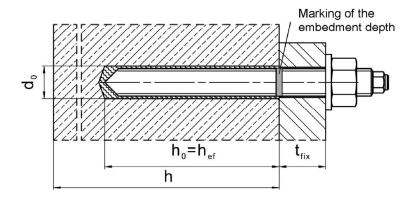
-	EN 1992-1-1:2004 + AC:2010	Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings
-	EN 1992-4:2018	Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete
-	EN 10088-1:2014	Stainless steels - Part 1: List of stainless steels
-	EN 206:2013 + A1:2016	Concrete - Specification, performance, production and conformity
-	EN 10204:2004	Metallic products – Types of inspection documents
-	DIN 488-1:2009-08	Reinforcing steels – Part 1: Grades, properties, marking
-	EOTA TR 055	Design of fastenings based on EAD 330232-00-0601, EAD 330499-00-0601 and EAD 330747-00-0601, February 2018

Issued in Berlin on 6 September 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:


Stiller

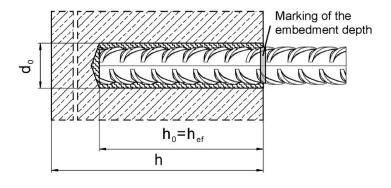

Installed condition

Figure A1:

Threaded rod, HAS..., HAS-U..., and HIT-V-...

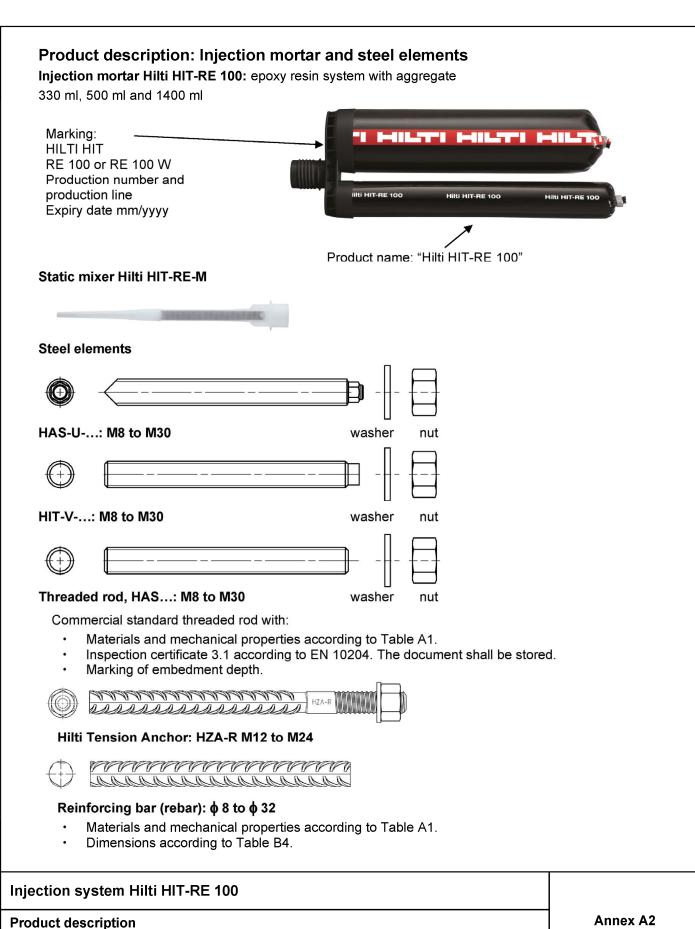


Figure A2: Reinforcing bar (rebar)

Injection system Hilti HIT-RE 100	
Product description Installed condition	Annex A1

Z77283.23 8.06.01-137/23

Injection mortar / Static mixer / Steel elements

Table A1: Materials

Table AT. Waterials				
Designation	Material			
Reinforcing bars (reba	Reinforcing bars (rebars)			
Rebar: EN 1992-1-1 Annex C	Bars and de-coiled rods class B or C II with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA. $f_{uk} = f_{tk} = k \cdot f_{yk}$			
Metal parts made of zir	nc coated steel			
HAS 5.8 (HDG) HAS-U 5.8 (HDG), HIT-V-5.8 (F), Threaded rod 5.8	Strength class 5.8, f_{uk} = 500 N/mm², f_{yk} = 400 N/mm², Elongation at fracture (I_0 = 5d) > 8% ductile. Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 50 μ m.			
Threaded rod 6.8	Strength class 6.8, f_{uk} = 600 N/mm², f_{yk} = 480 N/mm², Elongation at fracture (I_0 = 5d) > 8% ductile. Electroplated zinc coated \geq 5 μ m, or hot dip galvanized \geq 50 μ m.			
HAS 8.8 (HDG) HAS-U-8.8 (HDG), HIT-V-8.8(F), Threaded rod 8.8	Strength class 8.8, f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Elongation at fracture (I_0 = 5d) > 12% ductile. Electroplated zinc coated \geq 5 μ m, (F) or (HDG) hot dip galvanized \geq 50 μ m.			
Washer	Electroplated zinc coated \geq 5 μ m, hot dip galvanized \geq 50 μ m.			
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated $\geq 5~\mu m$, hot dip galvanized $\geq 50~\mu m$.			

Injection system Hilti HIT-RE 100	
Product description Materials	Annex A3

Table A1: continued

Designation	Material
Metal parts made of s corrosion resistance	stainless steel classes II according EN 1993-1-4
Threaded rod	For \leq M24: strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm². For $>$ M24: strength class 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm². Elongation at fracture (I_0 = 5d) $>$ 12% ductile. Stainless steel 1.4301, 1.4307, 1.4311, 1.4541, 1.4306, 1.4567 EN 10088-1.
Washer	Stainless steel EN 10088-1.
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel EN 10088-1.
Metal parts made of scorrosion resistance	stainless steel classes III according EN 1993-1-4
HAS A4 HAS-U A4, HIT-V-R,	For \leq M24: strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm². For $>$ M24: strength class 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm². Elongation at fracture (I_0 = 5d) $>$ 12% ductile.
Threaded rod	For \leq M24: strength class 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm². For $>$ M24: strength class 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm². Elongation at fracture (I_0 = 5d) $>$ 12% ductile. Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1.
Hilti tension anchor HZA-R	Round steel with threaded part: Stainless steel A4 according to EN 10088-1. Rebar: Bars class B according to NDP or NCL of EN 1992-1-1/NA.
Washer	Stainless steel EN 10088-1.
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel EN 10088-1.
	high corrosion resistant steel classes V according EN 1993-1-4+A1
HAS-U HCR, HIT-V-HCR	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) $> 12\%$ ductile.
Threaded rod	For \leq M20: $f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, For $>$ M20: $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$. Elongation at fracture ($I_0 = 5d$) $> 12\%$ ductile. High corrosion resistant steel 1.4529, 1.4565 EN 10088-1.
Washer	High corrosion resistant steel EN10088-1.
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel EN 10088-1.

Injection system Hilti HIT-RE 100	
Product description Materials	Annex A4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loading.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206 + A1.
- Strength classes C20/25 to C50/60 according to EN 206 + A1.
- Cracked and uncracked concrete.

Temperature in the base material:

· at installation

+5 °C to +40 °C

· in-service

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +58 °C

(max. long term temperature +35 °C and max. short term temperature +58 °C)

Temperature range III: -40 °C to +70 °C

(max. long term temperature +43 °C and max. short term temperature +70 °C)

Table B1: Specifications of intended use

		HIT-RE 100 with		
Elements		Threaded rod (Annex A)	HZA-R	Rebar
Hammer drilling with hollow drill bit TE-CD or TE-YD		✓	✓	✓
Hammer drilling		✓	✓	✓
Use	Dry or wet concrete	✓	✓	✓
category	Flooded hole (no sea water)	✓	✓	✓
Static and quasi-static loading in uncracked concrete		M8 to M30	M12 to M24	φ 8 to φ 32
Static and quasi-static loading in cracked concrete		M10 to M30	M12 to M24	φ 10 to φ 32

Injection system Hilti HIT-RE 100	
Intended use Specifications	Annex B1

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- In compliance with the corrosion resistance classes according to EN 1993-1-4 Table A.3. (stainless steels)

Design:

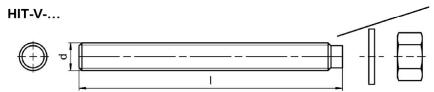
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The anchorages are designed in accordance with: EN 1992-4 and EOTA Technical Report TR 055

Installation:

- Use category: dry or wet concrete or in flooded holes
- Drilling technique:
 - · Hammer drilling,
 - Hammer drilling with Hilti hollow drill bit TE-CD, TE-YD
- Installation direction D3: downward and horizontal and upward (e.g. overhead) installation admissible for all elements.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Hilti HIT-RE 100	
Intended use Specifications	Annex B2

Table B2: Installation parameters of threaded rod accordi	ng to <i>i</i>	Annex A
---	----------------	---------


Threaded rod according to Anne	х А		M8	M10	M12	M16	M20	M24	M27	M30
Diameter of element	d	[mm]	8	10	12	16	20	24	27	30
Nominal diameter of drill bit	d_0	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	60 to 160	60 to 200	70 to 240	80 to 320	90 to 400	96 to 480	108 to 540	120 to 600
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	30	33
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm h _{ef} + 2⋅d ₀				d 0			
Maximum torque moment	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Minimum spacing	Smin	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	45	45	50	55	60	75	80

HAS-U-...

Marking:

Steel grade number and length identification letter: e.g. 8L

Marking:

5.8 - I = HIT-V-5.8 M...x I 5.8F - I = HIT-V-5.8F M...x I 8.8 - I = HIT-V-8.8 M...x I 8.8F - I = HIT-V-8.8F M...x I R - I = HIT-V-R M...x I HCR - I = HIT-V-HCR M...x I

HAS..., Threaded rod

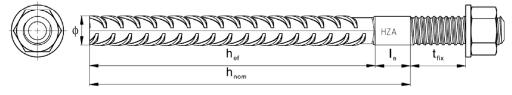
HAS Colour code marking:

5.8 = RAL 5010 (blue) 8.8 = RAL 1023 (yellow) A4 = RAL 3000 (red)

Intended use

Installation parameters of threaded rod, HAS..., HAS-U-... and HIT-V-...

Annex B3


Table B3: Installation parameters of Hilti tension anchor HZA-R

Hilti tension anchor HZA-R			M12	M16	M20	M24	
Rebar diameter	ф	[mm]	12 16 20 2				
Nominal embedment depth and drill hole depth	$h_{nom} = h_0$	[mm]	170 to 240	180 to 320	190 to 400	200 to 500	
Effective embedment depth (h _{ef} = h _{nom} - l _e)	h _{ef}	[mm]	h _{nom} – 100				
Length of smooth shaft	l _e	[mm]	100				
Nominal diameter of drill bit	d o	[mm]	16	20	24 ¹⁾ / 25	30 ¹⁾ / 32	
Maximum diameter of clearance hole in the fixture	df	[mm]	14	18	22	26	
Maximum torque moment	T _{max}	[Nm]	40	80	150	200	
Minimum thickness of concrete member	h _{min}	[mm]	h _{nom} + 2·d ₀				
Minimum spacing	Smin	[mm]	65	80	100	130	
Minimum edge distance	C _{min}	[mm]	45	50	55	60	

¹⁾ Each of the two given values can be used.

Marking:

embossing "HZA-R" M .. / tfix

Injection system Hilti HIT-RE 100	
Intended use Installation parameters of Hilti tension anchor HZA-R	Annex B4

Table B4: Installation parameters of reinforcing bar (rebar)

Reinforcing bar (rebar)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diameter	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Effective embedment depth and drill hole depth	h _{ef} = h ₀	[mm]	60 to 160	60 to 200	t	0 0 10	75 to 280	80 to 320	90 to 400	100 to 500	104 to 520	112 to 560	120 to 600	128 to 640
Nominal diameter of drill bit	d ₀	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25 / 24 ¹⁾	32 / 30 ¹⁾	32	35	37	40
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm										
Minimum spacing	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Minimum edge distance	C _{min}	[mm]	40	50	6	0	70	80	100	125	130	140	150	160

¹⁾ Each of the two given values can be used.

Reinforcing bar (rebar)

For Rebar bolt

- Minimum value of related rib area f_R according to EN 1992-1-1+AC.
- Rib height of the bar h_{rib} shall be in the range: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Injection system Hilti HIT-RE 100	
Intended use Installation parameters of reinforcing bar (rebar)	Annex B5

Table B5: Maximum working time and minimum curing time 1)

Temperature in the base material T	Maximum working time twork	Minimum curing time t _{cure}
5 °C to 9 °C	2 hours	72 hours
10 °C to 14 °C	1,5 hours	48 hours
15 °C to 19 °C	30 min	24 hours
20 °C to 29 °C	20 min	12 hours
30 °C to 39 °C	12 min	8 hours
40 °C	12 min	4 hours

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B6: Parameters of cleaning and setting tools

Elements			D		Installation	
Threaded rod (Annex A)	HZA-R	Rebar	Hammer drilling	Hollow drill bit ²⁾	Brush	Piston plug
		44444444444444				
size	size	size	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	-	ф 8	10	-	10	-
M10	-	φ 8, φ 10	12	12	12	12
M12	-	φ 10, φ 12	14	14	14	14
-	M12	φ 12	16	16	16	16
M16	-	φ 14	18	18	18	18
-	M16	φ 16	20	20	20	20
M20	-	-	22	22	22	22
-	M20 ¹⁾	φ 20 ¹⁾	241)	24 ¹⁾	24	24
-	M20	φ 20	25	25	25	25
M24	-	-	28	28	28	28
M27	-	φ 25 ¹⁾	30 ¹⁾	-	30 ¹⁾	30 ¹⁾
-	M24	φ 25, φ 26	32	32	32	32
M30	-	φ 28	35	-	35	35
-	-	φ 30	37	-	37	37
-	-	ф 32	40	-	40	40

¹⁾ Each of the two given values can be used.

With vacuum cleaner Hilti VC 10/20/40 (automatic filter cleaning activated, eco mode off) or a vacuum cleaner providing equivalent cleaning performance in combination with the specified Hilti hollow drill bit TE-CD or TE-YD.

Injection system Hilti HIT-RE 100	
Intended use Maximum working time and minimum curing time. Parameters of cleaning and setting tools.	Annex B6

Cleaning alternatives

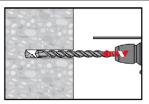
Manual Cleaning (MC):

Hilti hand pump for blowing out drill holes with diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$

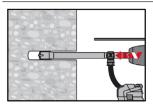
Compressed Air Cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter.

Automatic Cleaning (AC):


Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Installation instruction


Hole drilling

a) Hammer drilling

Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

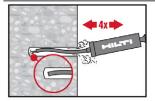
b) Hammer drilling with Hilti hollow drill bit: For dry and wet concrete only.

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with vacuum attachment following the requirements given in Table B6. This drilling system removes the dust and cleans the bore hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

Injection system Hilti HIT-RE 100

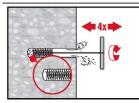
Intended use
Cleaning and setting tools
Installation instructions

Annex B7

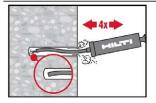

Drill hole cleaning

Just before setting an anchor, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

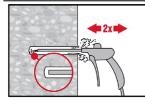
Manual Cleaning (MC)


uncracked concrete only

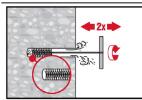
for drill hole diameters $d_0 \le 20$ mm and drill hole depths $h_0 \le 10 \cdot d$


The Hilti hand pump may be used for blowing out drill holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10 \cdot d$.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.


Brush 4 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.


Blow out again with the Hilti hand pump at least 4 times until return air stream is free of noticeable dust.

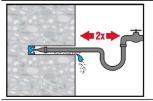
Compressed Air Cleaning (CAC) for all drill hole diameters do and all drill hole depths ho


Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

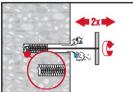
For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m³/h.

Brush 2 times with the specified brush (see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

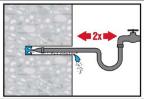

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

Injection system Hilti HIT-RE 100	
Intended use	Annex B8
Installation instructions	



Cleaning of waterfilled drill holes

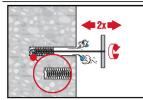
for all drill hole diameters do and all drill hole depths ho



Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it.

The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.



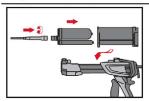
Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.

Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.

For drill hole diameters \geq 32 mm the compressor must supply a minimum air flow of 140 m³/h.

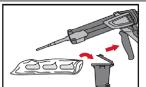
Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B6) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it

The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.



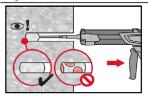
Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.

Injection system Hilti HIT-RE 100	
Intended use Installation instructions	Annex B9


Injection preparation

Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle.

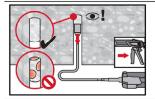
Observe the instruction for use of the dispenser.


Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.

Discard initial adhesive. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are

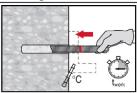
3 strokes for 330 ml foil pack, 4 strokes for 500 ml foil pack, 65 ml foil pack.

Inject adhesive from the back of the drill hole without forming air voids.

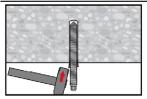


Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull.

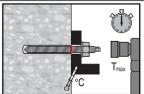
Fill approximately 2/3 of the drill hole to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.



After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.



Overhead installation and/or installation with embedment depth $h_{\rm ef}$ > 250mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug (see Table B6). Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the drill hole by the adhesive pressure.


Setting the element

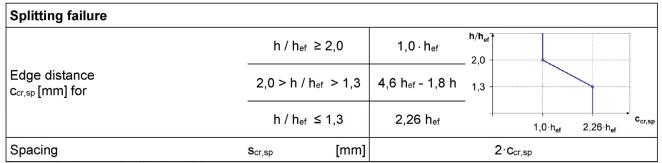
Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth before working time t_{work} has elapsed. The working time t_{work} is given in Table B5.

For overhead installation use piston plugs and fix embedded parts with e.g. wedges (Hilti HIT-OHW).

Loading the anchor: After required curing time t_{cure} (see Table B5) the anchor can be loaded

The applied installation torque shall not exceed the values T_{max} given in Table B2 to Table B3.

Injection system Hilti HIT-RE 100	
Intended use	Annex B10
Installation instructions	


Table C1: Essential characteristics for threaded rod according to Annex A under tension load in concrete

Threaded rod according to Annex A			М8	M10	M12	M16	M20	M24	M27	M30
Installation factor	γinst	[-]	1,4							
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]				As	· f _{uk}			
Partial factor grade 5.8, 6.8 and 8.8	γ _{Ms,N} 1)	[-]				1	,5			
Partial factor HAS A4, HAS-U A4, HIT-V-R, Threaded rod: CRC II and III (Table A1)	γMs,N ¹⁾	[-]			1,8	37			2,8	36
Partial factor HAS-U HCR, HIT-V-HCR, Threaded rod: CRC V (Table A1)	$\gamma_{Ms,N}^{1)}$	[-]			1,5				2,1	
Combined pullout and concrete cone fai	lure									
Characteristic bond resistance in uncracked	d concre	ete C20/25								
Temperature range I: 24 °C / 40 °C	$ au_{Rk,ucr}$	[N/mm ²]		15		1	4		12	
Temperature range II: 35 °C / 58 °C	$ au_{Rk,ucr}$	[N/mm ²]	10 9			9 8,5		8,5		
Temperature range III: 43 °C / 70 °C	τ _{Rk,ucr}	[N/mm ²]	6 5,		,5	5				
Characteristic bond resistance in cracked c	oncrete	C20/25								
Temperature range I: 24 °C / 40 °C	$\tau_{Rk,cr}$	[N/mm ²]	2)	7	7	6,5	6	6	5	,5
Temperature range II: 35 °C / 58 °C	τ _{Rk,cr}	[N/mm ²]	2)		4,5		4	4 3,5		,5
Temperature range III: 43 °C / 70 °C	τ _{Rk,cr}	[N/mm ²]	2)		2,5			2		
Influence factor ψ_c on bond resistance $ au$	_{Rk} in cra	cked and	uncra	acked (concr	ete				
		C30/37				1,	00			
Influence of concrete strength class:	ψο	C40/50				1,	00			
$\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$		C50/60	1,00							
Concrete cone failure				_			_		_	
Factor for uncracked concrete	k ucr,N	[-]	11,0							
Factor for cracked concrete	k cr,N	[-]								
Edge distance	Ccr,N	[mm]				1,5	\cdoth_{ef}			
Spacing	S _{cr,N}	[mm]				3,0	\cdot $h_{ ext{ef}}$			

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension load in concrete	Annex C1

Table C1: continued

¹⁾ In absence of national regulations.

Table C2: Essential characteristics for threaded rod according to Annex A under shear load in concrete

Threaded rod according to Annex A				M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm				•	•	•			•	•
Characteristic resistance	V _{Rk,s}	[kN]				0,5 · /	۹s · fuk			
Partial factor grade 5.8, 6.8 and 8.8	γMs,V ¹⁾	[-]				1,	25			
Partial factor HAS A4, HAS-U A4, HIT-V-R, Threaded rod: CRC II and III (Table A1)	γMs,V ¹⁾	[-]			1,	,56			2,	38
Partial factor HAS-U HCR, HIT-V-HCR, Threaded rod: CRC V (Table A1)	$\gamma_{\text{Ms,V}}^{1)}$	[-]	1,25			1,75				
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Bending moment	M^0 Rk,s	[Nm]				1,2 · V	V _{el} · f _{uk}			
Ductility factor	k 7	[-]				1	,0			
Concrete pry-out failure										
Pry-out factor	k 8	[-]				2	,0			
Concrete edge failure										
Effective length of fastener	lf	[mm]	min (h _{ef} ; 12·d _{nom}) mi (h _{ef} ; 3			nin (300)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30

¹⁾ In absence of national regulations.

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension and shear load in concrete	Annex C2
Essential characteristics under tension and shear load in concrete	

²⁾ No performance assessed

Table C3: Displacements under tension load

Threaded rod according to Annex A		M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete temperature range I : 24 °C / 40 °C			•	•		•	•	•		
Diantagement	δηο	[mm/(N/mm²)]	0,	02	0,03	0,04	0,05	0,06		0,07
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,11	0,13	0,15	0,17
Uncracked concre	ete temperature r	ange II : 35 °C / 58 °C		•						
Dianlacement	δηο	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,09	0,11	0,13	0,14
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,07	0,09	0,10	0,14	0,18	0,22	0,25	0,28
Uncracked concre	Uncracked concrete temperature range III : 43 °C / 70 °C									
Dianlacement	δηο	[mm/(N/mm²)]	0,07	0,09	0,10	0,14	0,18	0,22	0,25	0,28
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,09	0,12	0,15	0,20	0,26	0,31	0,35	0,40
Cracked concrete	temperature ran	ge I : 24 °C / 40 °C		•						
Disabsassas	δηο	[mm/(N/mm²)]	1)	0,04	0,	05	0,06	0,07	0,	08
Displacement	δ _{N∞}	[mm/(N/mm²)]	1)				0,23			
Cracked concrete	temperature ran	ge II : 35 °C / 58 °C								
Disalesement	δηο	[mm/(N/mm²)]	1)	0,08	0,09	0,11	0,13	0,14	0,15	0,17
Displacement	δ _{N∞}	[mm/(N/mm²)]	1)				0,38			
Cracked concrete	temperature ran	ge III : 43 °C / 70 °C								
Displacement	δηο	[mm/(N/mm²)]	1)	0,16	0,18	0,22	0,25	0,28	0,31	0,33
Displacement	δ _{N∞}	[mm/(N/mm²)]								

No performance assessed

Table C4: Displacements under shear load

Threaded rod according to Annex A		M8	M10	M12	M16	M20	M24	M27	M30	
Diaplacement	δηο	[mm/(kN)]	0,06		0,05	0,	04		0,03	
Displacement	$\delta_{N\infty}$	[mm/(kN)]	0,09	0,	80	0,	06		0,05	

Injection system Hilti HIT-RE 100	
Performances Displacements with threaded rod, HAS, HAS-U and HIT-V	Annex C3

Table C5: Essential characteristics for Hilti tension anchor HZA-R under tension load in concrete

Hilti tension anchor HZA-R			M12	M16	M20	M24	
Installation factor	γinst	[-]	1,4				
Steel failure		,					
Characteristic resistance HZA-R	N _{Rk,s}	[kN]	62	111	173	248	
Partial safety factor	γ _{Ms} 1)	[-]			1,4		
Combined pull-out and concrete cone	failure	,					
Diameter of rebar	d	[mm]	12	16	20	25	
Characteristic bond resistance in uncra	cked con	crete C20/25		'	1		
Temperature range I: 24 °C / 40 °C	τ _{Rk,ucr}	[N/mm²]	14	,	12	11	
Temperature range II: 35 °C / 58 °C	τ _{Rk,ucr}	[N/mm²]	9		8	7	
Temperature range III: 43 °C / 70 °C	τ _{Rk,ucr}	[N/mm ²]	5	5,5		5	
Characteristic bond resistance in crack	ed concre	ete C20/25					
Temperature range I: 24 °C/ 40 °C	τ _{Rk,cr}	[N/mm²]	7	6,5		3	
Temperature range II: 35 °C / 58 °C	τ _{Rk,cr}	[N/mm²]	4,5		4		
Temperature range III: 43 °C / 70 °C	τ _{Rk,cr}	[N/mm ²]	2	,5		2	
Influence factor ψ_c on bond resistan	ce τ _{Rk} in	cracked and u	ncracked	concrete			
		C30/37		1	,00		
Influence of concrete strength class: $\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_c$	ψο	C40/50		1	,00		
		C50/60	1,00				
Concrete cone failure							
Effective embedment depth	\mathbf{h}_{ef}	[mm]	h _{nom}				
Factor for uncracked concrete	k ucr	[-]	11,0				
Factor for cracked concrete	k _{cr}	[-]	7,7				
Edge distance	C _{cr,N}	[mm]		1,5	5 · h _{ef}		
Spacing	S _{cr,N}	[mm]		3,0	O · h _{ef}		

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension loads in concrete	Annex C4

Table C5: continued

Splitting failure relevant for	r Uncracked concrete					
	h / h _{ef} ≥ 2,0	1,0⋅h _{ef}	h/h _{ef}			
Edge distance	2,0 > h / h _{ef} > 1,3	4,6·h _{ef} - 1,8·h	- 1			
C _{cr,sp} [mm] for	h / h _{ef} ≤ 1,3	2,26·h _{ef}	1,3			
		_,		1,0 h _{ef}	2,26 h _{ef}	C _{cr,s}
Spacing	s _{cr,sp} [m	n]	2·c _{cr,sp}	р		

¹⁾ In absence of national regulations.

Table C6: Essential characteristics for Hilti tension anchor HZA-R under shear load in concrete

Hilti tension anchor HZA-R			M12	M16	M20	M24
Steel failure without lever arm		•				•
Characteristic resistance HZA-R	$V_{Rk,s}$	[kN]	31	55	86	124
Partial factor	γ _{Ms} 1)	[-]		1	,5	
Ductility factor	k ₇	[-]		1	,0	
Steel failure with lever arm						
Characteristic resistance HZA-R	M^0 Rk,s	[Nm]	97	234	457	790
Ductility factor	k ₇	[-]		1	,0	
Concrete pry-out failure		·				
Pry-out factor	k 8	[-]	2,0			
Concrete edge failure						
Effective length of fastener	lf	[mm]		min (h _{nom} ;	; 12 · d _{nom})	
Outside diameter of fastener	d _{nom}	[mm]	12	16	20	24

¹⁾ In absence of national regulations.

Injection system Hilti HIT-RE 100	
Performances	Annex C5
Essential characteristics under tension and shear load in concrete	

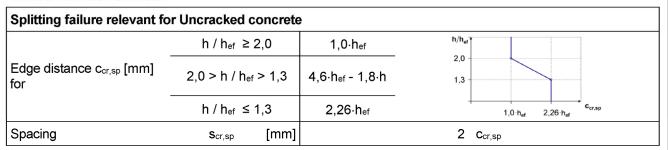
Table C7: Displacements under tension load

Hilti tension ancho	r HZA-R		M12	M16	M20	M24
Uncracked concrete t	emperature rar	nge I : 24 °C / 40°C		,		•
δνο		[mm/(N/mm²)]	0,03	0,04	0,05	0,06
Displacement —	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,08	0,11	0,14
Uncracked concrete t	emperature rar	nge II : 35 °C / 58 °C				
Diantagement	δνο	[mm/(N/mm²)]	0,05	0,07	0,09	0,12
Displacement –	$\delta_{N\infty}$	[mm/(N/mm²)]	0,10	0,14	0,18	0,23
Uncracked concrete t	emperature rar	nge III : 43 °C / 70 °C				
Displacement —	δνο		0,10	0,14	0,18	0,23
Displacement —	δ _{N∞}	[mm/(N/mm²)]	0,15	0,20	0,26	0,33
Cracked concrete ten	nperature range	e I : 24 °C / 40 °C				
Dianlacement	δνο	[mm/(N/mm²)]	0,	05	0,06	0,07
Displacement —	$\delta_{N\infty}$	[mm/(N/mm²)]		0,2	23	
Cracked concrete ten	nperature range	e II : 35 °C / 58 °C				
Displacement	δηο	[mm/(N/mm²)]	0,09	0,11	0,13	0,15
Displacement —	$\delta_{N\infty}$	[mm/(N/mm²)]		0,:	38	
Cracked concrete ten	nperature range	e III : 43 °C / 70 °C				
Displacement	δνο	[mm/(N/mm²)]	0,18	0,22	0,25	0,29
Displacement —	δ _{N∞}	[mm/(N/mm²)]		0,	54	

Table C8: Displacements under shear load

Hilti tension and	hor HZA-R	M12	M16	M20	M24	
Dioplesement	δνο	[mm/kN]	0,05	0,0	04	0,03
Displacement	δν∞	[mm/kN]	0,08	0,0	06	0,05

Injection system Hilti HIT-RE 100	
Performances Displacements with Hilti tension anchor HZA-R	Annex C6


Table C9: Essential characteristics for reinforcing bars (rebars) under tension load in concrete

Reinforcing bar (rebar)			ф8	ф 10	ტ 12	d 14	ტ 16	ტ 20	ტ 25	d 26	ტ 28	ф 30	ტ 32	
Installation factor	γinst	[-]	ΨΟ	Ψισ	Ψ	Ψ	Ψ.σ	Ψ - -0	Ψ = 0	Ψ = 0	Ψ =0	Ψοσ	Ψ 02	
Steel failure	/ IIISt							•,•						
Characteristic resistance Rebar B500B acc. to DIN 488	N _{Rk,s}	[kN]	28	43	62	85	111	173	270	292	339	388	442	
Partial factor	γ _{Ms,N} 1) [-]					<u> </u>	1,4						
Combined pull-out and Concr	ete con	e failure												
Diameter of rebar	d	[mm]	8	10	12	14	16	20	25	26	28	30	32	
Characteristic bond resistance	in uncra	cked cond	rete (20/25	5									
Temperature range I: 24 °C / 40C	τRk,ucr	[N/mm²]		14			12				11			
Temperature range II: 35 °C / 58 °C	τ _{Rk,ucr}	[N/mm²]		9			8				7			
Temperature range III: 43 °C / 70 °C	τRk,ucr	[N/mm²]			5,5				5		4,5			
Characteristic bond resistance	in crack	ed concre	te C2	0/25										
Temperature range I: 24 °C / 40 °C	τ _{Rk,cr}	[N/mm²]	2)	-	7	6	,5	6	3		5,	,5	5	
Temperature range II: 35 °C / 58 °C	₹Rk,cr	[N/mm²]	2)		4,5			4			3,	,5		
Temperature range III: 43 °C / 70 °C	τ _{Rk,cr}	[N/mm²]	2)		2	,5	•			2	,0			
Influence factor ψc on bond ι	resistan	ce τ _{Rk} in (crack	ed an	d unc	racke	d con	crete						
Influence of concrete strength		C30/37						1,00						
class:	Ψc	C40/45	1,00											
$\tau_{Rk} = \tau_{Rk,(C20/25)} \cdot \psi_{c}$		C50/60	1,00											
Concrete cone failure														
Factor for uncracked concrete	k ucr,N	[-]	11,0											
Factor for cracked concrete	k _{cr,N}	[-]	7,7											
Edge distance	C cr,N	[mm]	1,5 · hef											
Spacing	S cr,N	[mm]	3,0 ⋅ h _{ef}											

Injection system Hilti HIT-RE 100	
Performances Essential characteristics under tension load in concrete	Annex C7

Table C9: continued

¹⁾ In absence of national regulations.

Table C10: Essential characteristics for reinforcing bars (rebars) under shear load in concrete

Reinforcing bar (rebar)			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Steel failure without lever arm				•		'							
Characteristic resistance Rebar B500B acc. to DIN 488	V _{Rk,s}	[kN]	14	22	31	42	55	86	135	146	169	194	221
Partial factor	γ Ms,V $^{1)}$	[-]						1,5					
Ductility factor	k 7	[-]						1,0					
Steel failure with lever arm													
Rebar B500B acc. to DIN 488	Mº _{Rk,s}	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Ductility factor	k ₇	[-]						1,0					
Concrete pry-out failure													
Pry-out factor	k 8	[-]	2,0										
Concrete edge failure													
Effective length of fastener	lf	[mm]	min (h _{ef} ; 12 · d _{nom}) min (h _{nom} ; 300)										
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32

¹⁾ In absence of national regulations.

Annex C8

²⁾ No performance assessed

Table C11: Displacements under tension load

Reinforcing bar (reb	ar)		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Uncracked concrete temperature range I : 24 °C / 40 °C													
Dienlagement	δνο	[mm/(N/mm²)]	0,	0,02		0,03		0,05	0,06	0,	0,0		80
Displacement -	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,11	0,	14	0,15	0,17	0,18
Uncracked concrete te	mpera	ature range II : 3	5 °C / :	58 °C									
Displacement -	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	0,07	0,09	0,	12	0,13	0,14	0,15
Displacement -	$\delta_{\text{N}\infty}$	[mm/(N/mm²)]	0,07	0,09	0,10	0,12	0,14	0,18	0,23	0,24	0,26	0,28	0,30
Uncracked concrete te	Uncracked concrete temperature range III : 43 °C / 70 °C												
Displacement –	δ_{N0}	[mm/(N/mm²)]	0,07	0,09	0,10	0,12	0,14	0,18	0,23	0,24	0,26	0,28	0,30
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,09	0,12	0,15	0,17	0,20	0,26	0,33	0,34	0,37	0,40	0,43
Cracked concrete tem	peratu	re range I : 24 °(C / 40	°C									
Displacement –	δηο	$[mm/(N/mm^2)]$	1)	0,04		0,05		0,06	0,0	07	0,08	0,	09
Displacement	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	1)					0,	23				
Cracked concrete tem	peratu	ıre range II : 35 °	C / 58	°C									
Displacement -	δηο	[mm/(N/mm²)]	1)	0,08	0,09	0,10	0,11	0,13	0,	15	0,16	0,	17
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	1)	0,38									
Cracked concrete tem	peratu	ire range III : 43	°C / 70	o °C									
Displacement -	δηο	[mm/(N/mm²)]	1)	0,16	0,18	0,20	0,22	0,25	0,29	0,30	0,32	0,34	0,35
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	1)					0,	54				

No performance assessed

Table C12: Displacements under shear load

Reinforcing bar (rebar)		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32	
Displacement -	δ_{V0} [mm/kN]		0,06	0,0	05		0,04				0,03		
Displacement	δ_{V^∞}	√∞ [mm/kN] 0,09 0,08 0,07 0,06			0,05 0,04		0,04						

Injection system Hilti HIT-RE 100	
Performances	Annex C9
Displacements with reinforcing bar (rebar)	