

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0872 of 31 July 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system FMZ for concrete

Injection system for use in concrete

Market Tech (Beijing) Co., Ltd Room 121211, unit 2, building 3, No. 1 Futong East Street BEIJING, CHAOYANG DISTRICT VOLKSREPUBLIK CHINA

Manufacturing plant no. 1 Manufacturing plant no. 2

30 pages including 3 annexes which form an integral part of this assessment

330499-01-0601, Edition 04/2020

ETA-17/0872 issued on 8 December 2017

European Technical Assessment ETA-17/0872 English translation prepared by DIBt

Page 2 of 30 | 31 July 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z69954.23 8.06.01-116/23

European Technical Assessment ETA-17/0872

Page 3 of 30 | 31 July 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system FMZ for concrete" is a bonded anchor consisting of a cartridge with injection mortar FMZ or FMZ Polar and a steel element. The steel element consists of a threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm or an internal threaded anchor rod FMZ -IG-M6 to FMZ -IG-M20. The steel element is placed into a drilled hole filled with injection mortar and is anchored via the

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 3, C 4, C 7 and C 9
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 5, C 8, C 10
Displacements (static and quasi-static loading)	See Annex C 12 to C 14
Characteristic resistance for seismic performance categories C1	See Annex C 6 and C 11
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z69954.23 8.06.01-116/23

European Technical Assessment ETA-17/0872

Page 4 of 30 | 31 July 2023

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

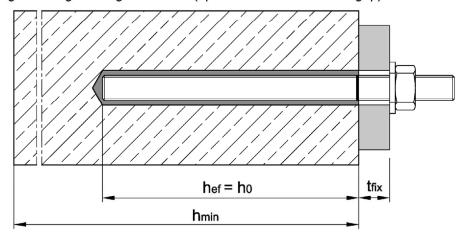
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

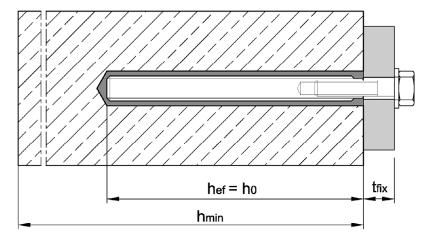
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

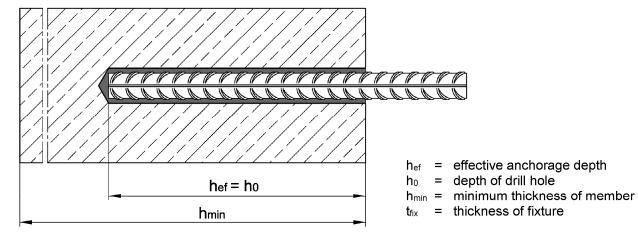
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 31 July 2023 by Deutsches Institut für Bautechnik

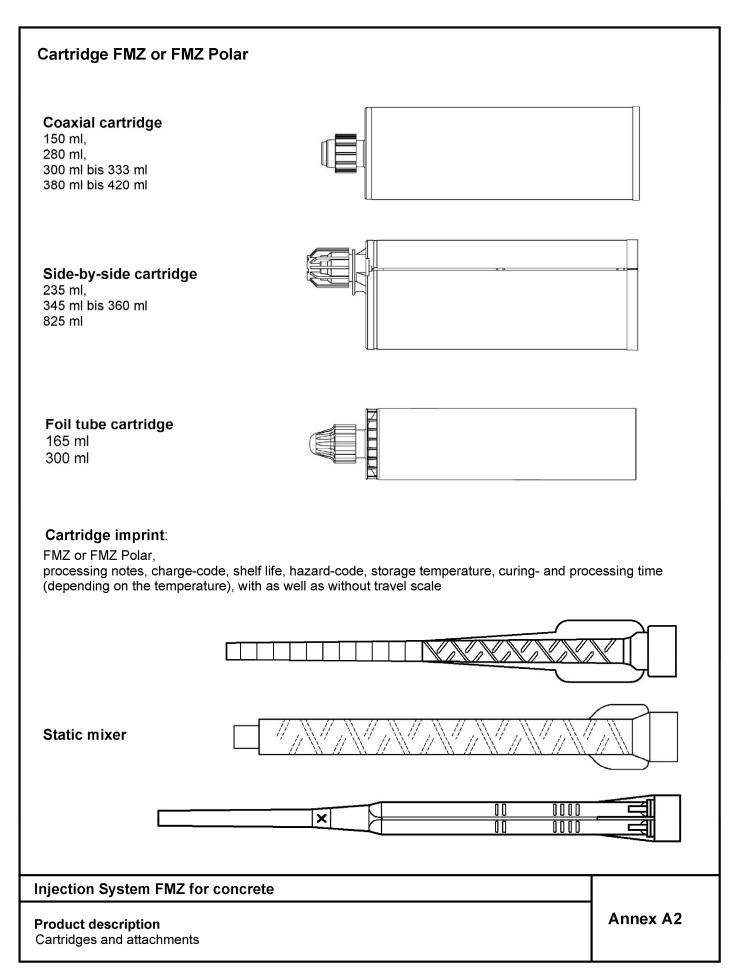

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z69954.23 8.06.01-116/23



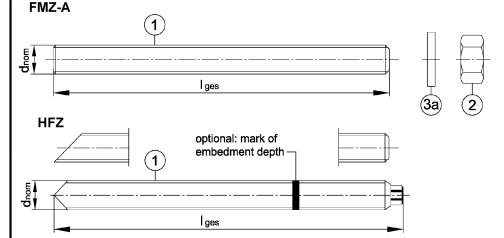

Pre-setting or through setting installation (optional with filled annular gap)

Installation internally threaded anchor rod FMZ-IG M6 to FMZ-IG M20


Installation reinforcing bar Ø8 to Ø32

Injection System FMZ for concrete

Product description Installation situation Annex A1



Threaded rod FMZ-A, HFZ with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)

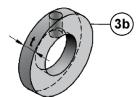
identifying mark of manufacturing plant

M10 size of thread

additional marking:

A4 stainless steel

HC high corrosion resistant steel


Threaded rod HFT (material sold by the metre, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

Commercial standard threaded rod with:

M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

- Materials, dimensions and mechanical properties see Table A1
- Steel, zink plated, according to EN ISO 898-1:2013; EN ISO 898-2:2022
- Stainless steel or high corrosion resistant steel according to EN ISO 3506-1:2020 or EN ISO 3506-2:2020
- Inspection certificate 3.1 acc. to EN 10204:2004

Filling washer VS and reducing adapter for filling the gap between threaded rod and fixture



Thickness of filling washer for diameter < M24: t = 5 mm

≥ M24: t = 6 mm

Internally threaded anchor rod

FMZ-IG M6, FMZ-IG M8, FMZ-IG M10, FMZ-IG M12, FMZ-IG M16, FMZ-IG M20 (zinc plated, A4, HCR)

Marking e.g.: < ▶ M8

identifying mark of manufacturing plant

I internal thread

M8 size of internal thread

additional marking:

A4 stainless steel

HCR high corrosion resistant steel

Injection System FMZ for concrete

Product description

Threaded rods and internally threaded anchor rod

Annex A3

Z71968.23

Table A1: Materials - Threaded rod and internally threaded anchor
--

Part	Designation		Material					
	, zinc plated oplated ≥ 5 μm, hot-dip	galvanized ≥	40 μm (50	μm in avera	ge) or shera	ardized ≥ 45	μm	
		fracture elongation						
1		4.6		400		240	A ₅ > 8 %	
	Threaded rod	4.8	1	400		320	A ₅ > 8 %	
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	
		5.8	[[14/11111]	500	[[14/11111]	400	A ₅ > 8 %	
		8.8		800		640	A ₅ > 8 %	
		4	for class	4.6 or 4.8 roc	ls			
2	Hexagon nut	5	for class	4.6, 4.8, 5.6	or 5.8 rods			
		8	for class	4.6, 4.8, 5.6,	5.8 or 8.8 rd	ods		
3a	Washer		e.g.: EN I EN ISO 8		00, EN ISO	7093:2000,	EN ISO 7094:2000,	
3b	Filling washer VS		steel, zind	c plated				
			A ₅ > 8%					
	Internally threaded	5.8	-41 -1-	-4	- l	ı	$A_5 > 8\%$	
4	Internally threaded anchor rod	5.8 8.8	steel, ele	ctroplated or	sherardized	I	A ₅ > 8% A ₅ > 8%	
Stain Stain		8.8 CI CI	RC II (1.43 RC III (1.44	otroplated or 01 / 1.4307 / 101 / 1.4404 / 229 / 1.4565)	1.4311 / 1.4 / 1.4571 / 1.	4567 / 1.454	A ₅ > 8%	
Stain Stain	anchor rod less steel A2 1) less steel A4	8.8 CI CI	RC II (1.43 RC III (1.44 RC V (1.45 chara	01 / 1.4307 / 101 / 1.4404 /	1.4311 / 1.4 / 1.4571 / 1. characte	4567 / 1.454	A ₅ > 8%	
Stain Stain	anchor rod less steel A2 1) less steel A4	8.8 CF CF eel HCR CF property	RC II (1.43 RC III (1.44 RC V (1.45 chara ultimate	01 / 1.4307 / 101 / 1.4404 / 229 / 1.4565) acteristic	1.4311 / 1.4 / 1.4571 / 1. characte stre	4567 / 1.454 4578) ristic yield	A ₅ > 8%	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant ste	8.8 CF CF eel HCR CF property class	RC II (1.43 RC III (1.44 RC V (1.45 chara ultimate	01 / 1.4307 / 101 / 1.4404 / 229 / 1.4565) acteristic e strength	1.4311 / 1.4 / 1.4571 / 1. characte stre	4567 / 1.454 4578) ristic yield ength	A ₅ > 8% fracture elongation	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant ste	8.8 CF CF eel HCR CF property class 50	RC II (1.43 RC III (1.44 RC V (1.45 chara ultimate	01 / 1.4307 / 401 / 1.4404 / 229 / 1.4565) acteristic e strength	1.4311 / 1.4 / 1.4571 / 1. characte stre	4567 / 1.454 4578) ristic yield ength 210	$A_5 > 8\%$ fracture elongation $A_5 > 8\%$	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant ste	8.8 CF CF eel HCR CF property class 50 70 80	RC II (1.43 RC III (1.44 RC V (1.45 chara ultimate	01 / 1.4307 / 101 / 1.4404 / 129 / 1.4565) acteristic e strength 500 700 800	1.4311 / 1.4 / 1.4571 / 1. characte stre	4567 / 1.454 4578) ristic yield ength 210 450	$A_5 > 8\%$ In the second of	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant ste	8.8 CF CF Property class 50 70 80 50	RC II (1.43 RC III (1.44 RC V (1.45 chara ultimate fuk [N/mm²]	01 / 1.4307 / 101 / 1.4404 / 129 / 1.4565) acteristic e strength 500 700 800	1.4311 / 1.4 / 1.4571 / 1. character stre f _{yk} [N/mm²]	4567 / 1.454 4578) ristic yield ength 210 450	$A_5 > 8\%$ In the second of	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant steel Threaded rod2)	8.8 CF CF CF Property class 50 70 80 50 70	RC II (1.43 RC III (1.44 RC V (1.45 chara ultimate fuk [N/mm²] for class	01 / 1.4307 / 101 / 1.4404 / 129 / 1.4565) acteristic e strength 500 700 800 50 rods	1.4311 / 1.4 / 1.4571 / 1. characte stre f _{yk} [N/mm²]	4567 / 1.454 4578) ristic yield ength 210 450	$A_5 > 8\%$ In the second of	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant steel Threaded rod2)	8.8 CF CF CF Property class 50 70 80 50 70	C II (1.43 C III (1.45 Chara ultimate fuk [N/mm²] for class a	01 / 1.4307 / 401 / 1.4404 / 229 / 1.4565) acteristic e strength 500 700 800 50 rods 50 or 70 rods 50, 70 or 80 i	1.4311 / 1.4 / 1.4571 / 1.	4567 / 1.454 4578) ristic yield ength 210 450 600	$A_5 > 8\%$ In the second of	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant ste Threaded rod2) Hexagon nut2)	8.8 CF CF CF Property class 50 70 80 50 70	C II (1.43 C III (1.45 Chara ultimate fuk [N/mm²] for class a for	01 / 1.4307 / 401 / 1.4404 / 229 / 1.4565) acteristic e strength 500 700 800 50 rods 50 or 70 rods 50, 70 or 80 i	1.4311 / 1.4 / 1.4571 / 1. character stre f _{yk} [N/mm²]	4567 / 1.454 4578) ristic yield ength 210 450 600	A ₅ > 8% In the second of th	
Stain Stain High	anchor rod less steel A2 1) less steel A4 corrosion resistant ste Threaded rod2) Hexagon nut2) Washer	8.8 CF CF CF Property class 50 70 80 50 70	chara ultimate fuk [N/mm²] for class for class for class se.g.: EN I EN ISO 8 stainless	01 / 1.4307 / 101 / 1.4404 / 129 / 1.4565) acteristic e strength 500 700 800 50 rods 50 or 70 rods 50, 70 or 80 i SO 7089:200	1.4311 / 1.4 / 1.4571 / 1. character stre f _{yk} [N/mm²]	4567 / 1.454 4578) ristic yield ength 210 450 600	A ₅ > 8% In the second of th	

¹⁾ For property classes 50 and 70 ²⁾ Property classes 70 and 80 up to M24


Injection System FMZ for concrete	
Product description Materials threaded rods and internally threaded anchor rod	Annex A4

Reinforcing bar

 \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material rebar

Part	Designation	Material
Reba	r	
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI acc. EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System FMZ for concrete	
Product description Product description and materials reinforcing bar	Annex A5

Specification of intended use

Injection System FMZ	Threaded rod	Internally threaded anchor rod	Rebar				
Static and quasi-static action	M8 - M30	FMZ-IG M6 - FMZ-IG M20 (zinc plated, A4, HCR)	Ø8 - Ø32				
Seismic action, performance category C1	M8 - M30	_1)	Ø8 - Ø32				
Base materials	compacted, reinforced or unreinforced normal weight concrete (without fibers), acc. to EN 206:2013 + A1:2016 strength classes C20/25 to C50/60 acc. to EN 206-1:2013+A1:201 cracked and uncracked concrete						
Temperature Range I -40°C to +40°C	max long term temperature +24 °C and max short term temperature +40°C						
Temperature Range II -40°C to +80°C	max long term temperature +50 °C and max short term temperature +80°C						
Temperature Range III -40°C to 120°C	max long term tempera	ature +72 °C and max short term	max long term temperature +72 °C and max short term temperature +120°C				

¹⁾ No performance assessed

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- · For all other conditions:

Intended use of Material according to Annx A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, FMZ-IG M6 to FMZ-IG M20, Rebar Ø8 to Ø32
- · Waterfilled holes (not sea water): M8 to M16, FMZ-IG M6 to FMZ-IG M10, Rebar Ø8 to Ø16
- · Hole drilling by hammer or compressed air drill mode or vacuum drill mode
- Installation direction D3: downwards, horizontally and upwards (overhead) installation
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System FMZ for concrete	
Intended Use Specifications	Annex B1

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter threaded	rod d:	=d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole d	iameter	d_0	[mm]	10	12	14	18	24	28	32	35
Effective encharage	donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective anchorage		1 ef,max	[mm]	160	200	240	320	400	480	540	600
Diameter of	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Through setting installation	d _f ≤	[mm]	12	14	16	20	26	30	33	40
Installation torque	max	T _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	80	120	160	180	200
Minimum thickness of member hmin [mm]			[mm]	h _{ef} + 3	0mm ≥ 1	00mm	0mm h _{ef} + 2d ₀				
Minimum spacing		Smin	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ance	Cmin	[mm]	40	50	60	80	100	120	135	150

¹⁾ Max. installation torque for property class 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod1)	d=d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d 0	[mm]	12	14	18	24	28	35
Effective anaborage depth	$h_{\text{ef,min}}$	[mm]	60	70	80	90	96	120
Effective anchorage depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	nax T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀					
Minimum spacing	Smin	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150

¹⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø	8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter rebar	$d=d_{nom}$	[mm]	8		10	12	14	16	20	25	28	32
Nominal drill hole diameter 1)	d_0	[mm]	10	12	12 14	14 16	18	20	25	32	35	40
Effective encharage doubth	$h_{\text{ef},\text{min}}$	[mm]	60)	60	70	75	80	90	100	112	128
Effective anchorage depth —	$h_{\text{ef},\text{max}}$	[mm]	16	0	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d	0			
Minimum spacing	Smin	[mm]	40)	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40)	50	60	70	80	100	125	140	160

¹⁾ For Ø8, Ø10 and Ø12 both nominal drill hole diameter can be used

Injection System FMZ for concrete

Intended Use

Installation parameters

Annex B2

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit	Brush Ø	min. Brush Ø		Retaining washer				
		441441444		d _b =			Installation direction and use of retaining washer				
[-]	[-]	Ø [mm]	d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	1	→	1		
M8		8	10	12	10,5						
M10	FMZ-IG M 6	8 / 10	12	14	12,5	No retaining washer required					
M12	FMZ-IG M 8	10 / 12	14	16	14,5						
		12	16	18	16,5						
M16	FMZ-IG M10	14	18	20	18,5	VM-IA 18					
		16	20	22	20,5	VM-IA 20					
M20	FMZ-IG M12		24	26	24,5	VM-IA 24					
		20	25	27	25,5	VM-IA 25	h _{ef} >	h _{ef} >	all		
M24	FMZ-IG M16		28	30	28,5	VM-IA 28	250mm	250mm	all		
M27		25	32	34	32,5	VM-IA 32					
M30	FMZ-IG M20	28	35	37	35,5	VM-IA 35					
		32	40	41,5	40,5	VM-IA 40					

Blow-out pump (volume 750ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Anchorage depth (h_{ef}): \leq 10 d_{nom}

for uncracked concrete

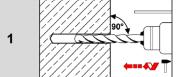
Retaining washer for overhead or horizontal installation
Drill bit diameter (d₀):
18 mm to 40 mm

Recommended compressed air tool (min 6 bar) All applications

Steel brush
Drill bit diameter (d₀): all diameters

Injection System FMZ for concrete

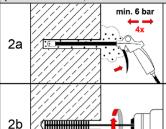
Intended Use


Cleaning and setting tools

Annex B3

Installation instructions

Drilling of the hole

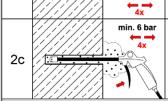

Drill the hole by applying the drilling method acc. to Annex B1, the drill bit diameter (Table B4) and the selected drill hole depth. In case of aborted hole, the drill hole shall be filled with mortar

Cleaning, all drilling methods

Attention! Standing water in the drill hole must be removed before cleaning!

Cleaning with compressed air

(all diameters, cracked and uncracked concrete)

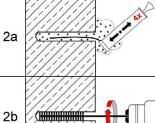


Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) **four** times, until return air stream is free of noticeable dust.

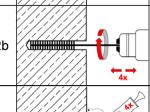
If the drill hole ground is not reached, an extension must be used.

Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) **four** times.

If the drill hole ground is not reached, a brush extension shall be used.



Finally blow the hole clean again with compressed air (min. 6 bar) **four** times, until the outgoing airstream is free of dust. If the drill hole ground is not reached an extension shall be used.


Manual cleaning

2

<u>uncracked concrete:</u> Drill hole diameter $d_0 \le 20$ mm and effective anchorage depth $h_{ef} \le 10$ d_{nom} <u>cracked concrete:</u> Drill hole diameter: 14mm ≤ $d_0 \le 20$ mm and effective anchorage depth $h_{ef} \le 10$ d_{nom}

Starting from the bottom or back of the drill hole, blow the hole clean with the blow-out pump **four** times until retur air stream is free of noticeable dust.

Brush the hole **four** times with an appropriate sized wire brush $> d_{b,min}$ (Table B4).

If the drill hole ground is not reached, a brush extension shall be used.

Finally blow the hole clean again with the blow-out pump **four** times until retur air stream is free of noticeable dust.

After cleaning, the drill hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drill hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drill hole again.

Injection System FMZ for concrete

Intended Use

2c

Installation instructions

Annex B4

771968 23 8 06 01-116/23

Installation instructions (continuation)

Injection Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended 3 working time (Table B5 or Table B6) as well as for new cartridges, a new static-mixer shall be used. Before injecting the mortar, mark the required anchorage depth on the fastening 4 element. Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar min.3x 5 shows a consistent grey colour. For tubular film cartridges dismiss a minimum of six full strokes. Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190mm an extension 6a nozzle shall be used. Observe the gel-/ working times given in Table B5 or Table B6. Retaining washer and mixer nozzle extensions shall be used according to Annex B3 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical 6b downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System FMZ for concrete

Intended Use

Installation instructions (continuation)

Annex B5

Installation instructions (continuation)

Setting the fastening element Push fastening element into the hole while turning slightly to ensure proper 7 distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. Make sure that the fastening element is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not 8 maintained, the application has to be renewed before the end of the working time. For overhead installation, the anchor should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. 9 Do not move or load the anchor until it is fully cured (Table B5 or Table B6). 10 Remove excess mortar. T_{inst} The fixture can be mounted after curing time. Apply installation torque ≤ T_{inst} 11 E N according to Table B1or B2. Optionally, for pre-setting installation, the annular gap between anchor rod and attachment can be filled with mortar. Therefor replace the regular washer by filling 12 washer VS with drill and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Injection System FMZ for concrete	
Intended Use Installation instructions (continuation)	Annex B6

Table B5: Maximum processing time and minimum curing time, FMZ

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾			
- 10°C to - 6°C	90 min ²⁾	24 h ²⁾			
- 5°C to - 1°C	90 min	14 h			
0°C to +4°C	45 min	7 h			
+ 5°C to + 9°C	25 min	2 h			
+ 10°C to + 19°C	15 min	80 min			
+ 20°C to + 29°C	6 min	45 min			
+ 30°C to + 34°C	4 min	25 min			
+ 35°C to + 39°C	2 min	20 min			
+ 40°C	1,5 min	15 min			
Cartridge temperature	+ 5°C to + 40°C				

¹⁾ In wet concrete the curing time must be doubled

Table B6: Maximum processing time and minimum curing time, FMZ Polar

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾		
- 20°C to - 16°C	75 min	24 h		
- 15°C to - 11°C	55 min	16 h		
- 10°C to - 6°C	35 min	10 h		
- 5°C to - 1°C	20 min	5 h		
0°C to +4°C	10 min	2,5 h		
+ 5°C to + 9°C	6 min	80 min		
+10°C	6 min	60 min		
Cartridge temperature	- 20°C to + 10°C			

¹⁾ In wet concrete the curing time must be doubled

Injection System FMZ for concrete	
Intended Use Processing time and curing time	Annex B7

²⁾ Cartridge temperature must be at min. +15°C

T 11 A 4	<u> </u>			
1 2 h 6 (°1 ·	· (`haractaristic staal	racictaneae tor t	threaded rade	under tension loads
I able CI.	. Unaraciensuc sieer	Tesisianices IVI I	illi caucu Tuus	ulluci telision loads

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel f	Steel failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charac	cteristic resistance under tens	sion load	1)								
pe	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zir	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
၂	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	_3)	_3)
Ó	A4 and HCR Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	_3)	_3)
Partial	factors 2)										
	Property class 4.6	γMs,N	[-]				2	,0			
ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
zinc	Property class 5.8	γΜε,Ν	[-]				1	,5			
	Property class 8.8	γMs,N	[-]	1,5							
ss	A2, A4 and HCR Property class 50	γмѕ,Ν	[-]	2,86							
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]	-] 1,87 - ³⁾				_3)			
Ś	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: FMZ-A, HFZ, HFT. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Electronic copy of the ETA by DIBt: ETA-17/0872

Injection System FMZ for concrete

Performance
Characteristic steel resistances for threaded rods under tension loads

Annex C1

²⁾ In absence of national regulation

³⁾ Anchor type not part of the ETA

Table C2: Characteristic steel resistances	for threaded rods under shear loads
--	-------------------------------------

Table C2: Characteristic steel resistances for threaded rods under shear loads											
Threa	ded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Characteristic resistance under shear load ¹⁾											
Steel	failure <u>without</u> lever arm										
ted	Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	V^0 Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zir	Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	V^0 Rk,s	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
S	A4 and HCR, property class 80	V^0 Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
Steel 1	failure <u>with</u> lever arm										
pə	Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zin	Property class 8.8	M^0 Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
SS	A2, A4 and HCR, property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
S	A4 and HCR, property class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Partia	l factor ²⁾										
_	Property class 4.6	γMs,V	[-]	1,67							
eel, plated	Property class 4.8	γMs,V	[-]				1,2				
Steel Ic pla	Property class 5.6	γMs,V	[-]				1,6				
St	Property class 5.8	γMs,V	[-]				1,2	25			
	Property class 8.8	γMs,V	[-]				1,2	25			
ssa_	A2, A4 and HCR, property class 50	γ̃Ms,V	[-]				2,3	38		T	ı
Stainless steel	A2, A4 and HCR, property class 70	γ̃Ms,∨	[-]			1,5	6			_3)	_3)
S	A4 and HCR, property class 80	γMs,V	[-]			1,3	3			_3)	_3)

¹⁾ The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: FMZ-A, HFZ, HFT. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

³⁾ Anchor type not part of the ETA

Injection System FMZ for concrete	
Performance Characteristic steel resistances for threaded rods under tension loads	Annex C2

²⁾ In absence of national regulation

Table C3: Characteristic values for concrete cone and splitting failure

Threaded rods / Inte	rnally threaded anchor	all sizes		
Concrete cone failur	е			
Factor k ₁	uncracked concrete	k ucr,N	[-]	11,0
Factor k ₁	cracked concrete	k _{cr,N}	[-]	7,7
Edge distance		C _{cr,N}	[mm]	1,5 ∙ h _{ef}
Spacing		S cr,N	[mm]	2 • c _{cr,N}
Splitting failure				
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C cr,sp	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}
Spacing		S cr,sp	[mm]	2 • c _{cr,sp}

Injection System FMZ for concrete

Performance

Characteristic values for concrete cone and splitting failure

Annex C3

English translation prepared by DIBt

Thre	aded rod				M8	M10	M12	M16	M20	M24	M27	М3
Stee	l failure											
Char	acteristic resistance		N _{Rk,s}	[kN]			As • fuk	(or se	e Tab	le C1)		
Partia	al factor		γMs,N	[-]			s	ee Ta	ble C1	1		
Com	bined pull-out and	concrete failure										
Char	racteristic bond res	sistance in <u>uncracl</u>	ked concr	ete C20/25								
	I: 40°C/24°C	<u> </u>			10	12	12	12	12	11	10	9
<u>e</u>	II: 80°C/50°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,
nperatu range	III: 120°C/72°C	Concrete			5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,
Temperature range	I: 40°C/24°C				7,5	8,5	8,5	8,5				
<u>je</u>	II: 80°C/50°C	waterfilled drill hole	τRk,ucr	[N/mm²]	5,5	6,5	6,5	6,5	no	ce		
	III: 120°C/72°C				4,0	5,0	5,0	5,0		asse	33Cu	
Char	racteristic bond res	sistance in <u>crackec</u>	<u>d</u> concrete	C20/25								
	I: 40°C/24°C	-1			4,0	5,0	5,5	5,5	5,5	5,5	6,5	6
aLe	II: 80°C/50°C	dry or wet concrete	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4
nperat range	III: 120°C/72°C	Contracto			2,0	2,5	3,0	3,0	3,0	3,0	3,5	3
Temperature range	I: 40°C/24°C	التعام الماسية			4,0	4,0	5,5	5,5				
<u>a</u>	II: 80°C/50°C	waterfilled drill hole	τRk,cr	[N/mm²]	2,5	3,0	4,0	4,0	l no	o perfo asse		Э
	III: 120°C/72°C				2,0	2,5	3,0	3,0				
	uctionfactor ψ ⁰ sus in	concrete C20/25			r							
ature	I: 40°C/24°C	dry or wet			0,73							
Temperature range	II: 80°C/50°C	concrete; waterfilled drill	ψ^0 sus	[-]			0,65					
Ten	III: 120°C/72°C	hole			0,57							
				C25/30	1,02							
				C30/37				1,0	04			
Incre	easing factors for τ_{Rk}		216	C35/45				1,0	07			
τrk=	ψc. τ _{Rk} (C20/25)		Ψ¢	C40/50				1,0	08			
				C45/55				1,0	09			
				C50/60				1,1	10			
Cond	crete cone failure											
Relev	vant parameter						s	ee Ta	ble C3	3		
Split	ting failure											
Relev	vant parameter						s	ee Ta	ble C3	3		
Insta	Illation factor											
dry o	r wet concrete		γinst	[-]	1,0				1,2			
wate	rfilled drill hole		γinst	[-]	1,4				no performance assessed			

Injection System FMZ for concrete

Performance

Characteristic values for threaded rods under tension loads

Annex C4

English translation prepared by DIBt

l Talala <i>CE.</i> Classostasiatia valvaa tastilasaadad sada vada vadas alaaass	
Table C5: Characteristic values for threaded rods under shear	nade .

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30				
Steel failure without lever arm														
Characteristic resistance, steel zinc plated, property class 4.6, 4.8, 5.6, 5.8	$V^0_{Rk,s}$	[kN]			0,6 • A	s•fuk (o	r see ta	ible C2))					
Characteristic resistance, steel zinc plated, property class 8.8, stainless steel A2 / A4 / HCR, all property classes	$V^0_{Rk,s}$	[kN]			0,5 • A	s•f _{uk} (o	r see ta	ible C2))					
Ductility factor	k 7	[-]				1	,0							
Partial factor	γMs,V	[-]				see Ta	able C2							
Steel failure with lever arm														
Characteristic bending moment	M^0 Rk,s	[Nm]	1,2 • W _{el} • f _{uk} (or see table C2)											
Elastic section modulus	Wel	[mm³]	31	62	109	277	541	935	1387	1874				
Partial factor	γMs,V	[-]				see ta	ble C2							
Concrete pry-out failure														
Pry-out Factor	k ₈	[-]				2	,0							
Concrete edge failure														
Effective length of anchor	l _f	[mm]		r	min(h _{ef} ;	12 d _{nom}	1)			nin 00mm)				
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16	20	24	27	30				
Installation factor	γinst	[-]				1	,0		γ _{inst} [-] 1,0					

Injection System FMZ for concrete	
Performance Characteristic value for threaded rods under shear loads	Annex C5

Table C6: Characteristic values for threaded rods under tension load, seismic action, performance category C1

Thre	aded	l rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel	fail	ıre											
Char	acter	istic resistance		$N_{\text{Rk,s,C1}}$	[kN]	1,0 • N _{Rk,s}							
Partia	al fac	tor		γMs,V	[-]	see Table C1							
Com	bine	d pull-out and	concrete failure										
Char	acte	ristic bond resi	istance in concrete	C20/25 t	to C50/60								
e g	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
range	II:	80°C/50°C	dry or wet concrete	TRk,C1	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
Temperature	l:	40°C/24°C				2,5	2,5	3,7	3,7				
dwe	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,C1}	[N/mm²]	1,6	1,9	2,7	2,7	no performano assessed			æ
ľ	III:	120°C/72°C			1,3	1,6	2,0	2,0		4,000			
Insta	llatio	on factor											
Dry o	Ory or wet concrete γ_{inst} [-]					1,0	1,2						
Wate	Vaterfilled drill hole γ _{inst}				[-]	1,4 no performan					e		

Table C7: Characteristic values for threaded rods under shear load, seismic action, performance category C1

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure														
Characteristic re	Characteristic resistance V _{Rk,s,C1} [kN]						0,7 • V ⁰ _{Rk,s}							
Partial factor		γMs,V	[-]	See Table C2										
Factor for annu	ılar gap													
	without hole clearance	$\alpha_{\sf gap}$	[-]	1,0										
Factor for anchorages	with hole clearance between fastener and fixture	α _{gap}	[-]	0,5										

Injection System FMZ for concrete	
Performance Characteristic values for threaded rods under seismic action, category C1	Annex C6

Inter	nally threaded	ancho	or rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel	failure 1)										
Chara	acteristic resista	nce,	5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
steel	zinc plated, stre	ngth c	slass 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partia	al factor			γMs,N	[-]			1	,5		
	acteristic resista ess steel A4 / H		rength class 70	N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
Partia	al factor			γ̃Ms,N	[-]			1,87			2,86
Coml	bined pull-out a	and co	oncrete cone failu	ıre							
Char	acteristic bond	resis	tance in <u>uncrack</u>	<u>ed</u> cond	rete C20/	25					
	I: 40°C/2	24°C	dar and wat		[N/mm²]	12	12	12	12	11	9,0
ure	II: 80°C/	50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9,0	9,0	9,0	9,0	8,5	6,5
nperati range	III: 120°C/	72°C			[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0
Temperature range	I: 40°C/2	24°C			[N/mm²]	8,5	8,5	8,5			
<u>e</u>	II: 80°C/	50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	no perf	ormance a	assesse
	III: 120°C/	72°C			[N/mm²]	5,0	5,0	5,0			
Char	acteristic bond	resis	tance in <u>cracked</u>	concre	te C20/25				_		
	I: 40°C/2		d		[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5
eratu nge	II: 80°C/	50°C	dry and wet concrete	τRk,cr	[N/mm²]	3,5	4,0	4,0	4,0	4,0	4,5
	III: 120°C/	72°C			[N/mm²]	2,5	3,0	3,0	3,0	3,0	3,5
mp	I: 40°C/2		waterfilled drill		[N/mm²]	4,0	5,5	5,5		· · · · · · · · · · · · · · · · · · ·	
Τe	II: 80°C/	50°C	waterfilled drill hole	τ _{Rk,cr}	[N/mm²]	3,0	4,0	4,0	no perf	ormance a	assesse
	III: 120°C/				[N/mm²]	2,5	3,0	3,0			
	ctionfactor ψ ⁰ s	_{us} in c	oncrete C20/25								
ture	I: 40°C/2		dry and wet					0	,73		
Temperature range	II: 80°C/	50°C	concrete waterfilled drill	ψ^0 sus	[-]			0	,65		
Ten	III: 120°C/	72°C	hole					0	,57		
		•			C25/30			1,	,02		
l	:				C30/37				,04		
	asing factors for ψc . τ _{Rk} (C20/25			Ψο	C35/45 C40/50				,07 ,08		
UNK -	φε. τκκ (020/20	,			C45/55				,09		
					C50/60			1	,10		
Conc	rete cone failu	re and	splitting failure								
	ant parameter							see Ta	able C3		
Insta	llation factor										
dry a	nd wet concrete			γinst	[-]			1	,2		
water	filled drill hole			γinst	[-]		1,4		no perf	ormance a	ssessed

⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System FMZ for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads

Annex C7

²⁾ For FMZ-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C9: Characteristic values for internally threaded anchor rods under shear loads

Internally threaded anchor	rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever a	arm ¹⁾								
Characteristic resistance,	5.8	V^0 Rk,s	[kN]	6	10	17	25	45	74
steel zinc plated, strength class	8.8	V^0 Rk,s	[kN]	8	14	23	34	60	98
Partial factor		γMs,V	[-]			1,	25		
Characteristic resistance, stainless steel A4 / HCR, strength class	70	V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾
Partial factor		γMs,V	[-]			1,56			2,38
Ductility factor		k ₇	[-]			1	,0		
Steel failure <u>with</u> lever arm	1)								
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
steel zinc plated, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor		γMs,∨	[-]			1,	25		
Characteristic bending resistance, stainless steel A4 / HCR, strength class	70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
Partial factor		γMs,V	[-]			1,56			2,38
Concrete pry-out failure									
Pry-out factor		k 8	[-]			2	,0		
Concrete edge failure									
Effective length of anchor		l _f	[mm]		mi	n(h _{ef} ; 12 d _r	nom)		min (h _{ef} ; 300mm)
Outside diameter of anchor		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γinst	[-]			1	,0	_	

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System FMZ for concrete	
Performance Characteristic values for internally threaded anchor rods under shear loads	Annex C8

²⁾ For FMZ-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Performance

Characteristic values for rebar under tension loads

Reba	r					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø3		
Steel	failu	re														
Chara	acteri	stic resistance	e	N _{Rk,s}	[kN]					A _s ∙ f _{uk} ¹)					
Cross	s sect	ional area		As	[mm²]	50	79	113	154	201	314	491	616	80		
Partia	al fact	or		γMs,N	[-]			<u> </u>		1,4 ²⁾						
Com	binec	l pull-out and	d concrete cone	failure												
			sistance in uncr		oncrete C	20/25										
	1:	40°C/24°C				10	12	12	12	12	12	11	10	8,		
ē	II:	80°C/50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,		
Temperature range	III:	120°C/72°C	Concrete			5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,		
nperatı range	I:	40°C/24°C				7,5	8,5	8,5	8,5	8,5	no performance assessed					
ē	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5						
	III:	120°C/72°C	11010			4,0	5,0	5,0	5,0	5,0						
Char	acter	istic bond re	sistance in crac	ked con	crete C20	/25										
	l:	40°C/24°C	da d t			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,		
are	II:	80°C/50°C	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,		
emperature range	III:	120°C/72°C				2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,		
in p	l:	40°C/24°C	waterfilled drill			4,0	4,0	5,5	5,5	5,5	n	o porfe	rmanc	^		
Reduc	II:	80°C/50°C	hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	4,0	''	asse		E		
	III:	120°C/72°C				2,0	2,5	3,0	3,0	3,0						
			n concrete C20/	25	1	2.70										
ature e	l:	40°C/24°C	dry and wet			0,73										
Temperature range	II:	80°C/50°C	concrete waterfilled drill	ψ^0 sus	[-]					0,65						
Ter	III:	120°C/72°C	hole			0,57										
	1		•		C25/30					1,02						
					C30/37					1,04						
	_	factors for τ _{RI}	k	Ψс	C35/45					1,07						
Rk=	ψc. τ	Rk (C20/25)		·	C40/50 C45/55					1,08						
					C50/60					1,10						
Conc	rete	cone failure	and splitting fail	ure						.,						
		arameter							see	Table	C3					
	·	n factor														
		et concrete		γinst	[-]	1,0				1.	,2					
		drill hole		γinst	[-]	,		1,4				ormano	e asse	sse		
		taken from the of national re	e specifications of					•			•					

Z71968.23 8.06.01-116/23

Annex C9

1,0

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic resistance	$V^0_{Rk,s}$	[kN]	$0.50 \cdot A_s \cdot f_{uk}^{1)}$									
Cross sectional area	As	[mm ²]	50	79	113	154	201	314	491	616	804	
Partial factor	γMs,V	[-]	1,5 ²⁾									
Ductility factor	k ₇	[-]					1,0					
Steel failure with lever arm												
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]				1,2	• Wel •	fuk ¹⁾				
Elastic section modulus	Wel	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial factor	γMs,V	[-]	1,5 ²⁾									
Concrete pry-out failure												
Factor	k 8	[-]					2,0					
Concrete edge failure				_	_	_	_	_	_			
Effective length of anchor	lf	[mm]	min(h _{ef} ; 12 d _{nom}) min(h _{ef} ; 300n						mm)			
Outside diameter of anchor d _{nom}		[mm]	8	10	12	14	16	20	25	28	32	

[-]

Installation factor

Injection System FMZ for concrete	
Performance Characteristic values for rebar under shear load	Annex C10

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulation

English translation prepared by DIBt

Table C12: Characteristic values for rebar under seismic action, tension load performance category C1

Rebar						Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel	failu	ıre												
Chara	acteri	istic resistance	Э	[kN]	A _s • f _{uk} ¹⁾									
Cross sectional area A _s					[mm²]	50 79 113 154 201 314 491 616						616	804	
Partial factor γ _{Ms,N}					[-]	1,42)								
Com	ombined pull-out and concrete cone failure													
Characteristic bond resistance in concrete C20/25 to C50/60														
<u>ŏ</u>	l:	40°C/24°C	dry and wet concrete	TRk,C1		2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
	II:	80°C/50°C			[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
	III:	120°C/72°C	001101010			1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
erat	I:	40°C/24°C				2,5	2,5	3,7	3,7	3,7				
III: 120°C/72°C					[N/mm²]	1,6	1,9	2,7	2,7	2,7	no performance assesse			
<u>u</u>	III:	120°C/72°C	dilli ilolo			1,3	1,6	2,0	2,0	2,0				
Installation factor														
dry a	nd we	et concrete		[-]	1,0 1,2									
water	filled	drill hole	[-]	1,4 no performance					ce asse	essed				

 $^{^{1)}\,}f_{uk}\,shall$ be taken from the specifications of reinforcing bars

Table C13: Characteristic values for rebar under seismic action, shear load, performance category C1

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic resistance	$V_{Rk,s,C1}$	[kN]				0,35	· As ·	f _{uk} 1)			
Cross sectional area	As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]					1,52)	•			
Ductility factor	k ₇	[-]	·				1,0				

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Injection System FMZ for concrete	
Performance Characteristic values for rebar under seismic action , category C1	Annex C11

²⁾ In absence of national regulation

²⁾ In absence of national regulation

Table C14: Displacement factor under tension loads ¹⁾ (threaded rod)

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30			
Uncracked concrete C	20/25, static	c and quasi-sta	atic actio	on									
Temperature range I:	δ _{N0} -factor		0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049			
40°C/24°C	δ _{N∞} -factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm^2}}\right]$	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071			
Temperature range II:	δ _{N0} -factor		0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119			
80°C/50°C	δ _{N∞} -factor		0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172			
Temperature range III:	δ _{N0} -factor		0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119			
120°C/72°C	δ _{N∞} -factor		0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172			
Cracked concrete C20	/25, static a	nd quasi-statio	c action										
Temperature range I:	δ _{N0} -factor		0,090 0,070										
40°C/24°C	δ _{N∞} -factor		0,105		0,105								
Temperature range II:	δ _{N0} -factor		0,2	219	0,170								
80°C/50°C	δ _{N∞} -factor	$\left[\frac{N/mm^2}{N}\right]$	0,2	255	0,245								
Temperature range III:	δ _{N0} -factor		0,2	219	0,170								
120°C/72°C	δ _{N∞} -factor		0,2	0,255		0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0-}} \text{ factor } \cdot \tau; \hspace{1cm} \tau\text{: acting bond stress for tension load}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C15: Displacement factor under shear load¹⁾ (threaded rod)

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete C20/25, static and quasi-static action											
All temperature	δ _{vo} -factor	mm 1	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
ranges	δ _{V∞} -factor	^l N/mm ²	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete C20/25, static and quasi-static action											
All temperature	δ _{V0} -factor	mm 1	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
ranges	δ _{V∞} -factor	$^{l}N/mm^{2}$	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · **V**;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection System FMZ for concrete

Performance

Displacements (threaded rod)

Annex C12

Table C16: Displacement factor under tension load¹⁾ (internally threaded anchor rod)

Internally threaded ancl	IG-M6	IG-M8	IG- M10	IG-M12	IG-M16	IG-M20						
Uncracked concrete C20	Jncracked concrete C20/25, static and quasi-static action											
Temperature range I:	δ _{N0} -factor		0,023	0,026	0,031	0,036	0,041	0,049				
40°C/24°C	δ _{N∞} -factor		0,033	0,037	0,045	0,052	0,060	0,071				
Temperature range II:	δ _{N0} -factor		0,056	0,063	0,075	0,088	0,100	0,119				
80°C/50°C	δ _{N∞} -factor	$\left[\frac{N/mm^2}{N}\right]$	0,081	0,090	0,108	0,127	0,145	0,172				
Temperature range III:	δ _{N0} -factor		0,056	0,063	0,075	0,088	0,100	0,119				
120°C/72°C	δ _{N∞} -factor		0,081	0,090	0,108	0,127	0,145	0,172				
Cracked concrete C20/25	, static and q	uasi-static action										
Temperature range I:	δ _{N0} -factor		0,090	0,070								
40°C/24°C	δ _{N∞} -factor		0,105	0,105								
Temperature range II:	δ _{No} -factor	mm1	0,219			0,170						
80°C/50°C	δ _{N∞} -factor	$\left[\frac{N}{mm^2}\right]$	0,255	0,245								
Temperature range III:	δ _{N0} -factor		0,219	0,170								
120°C/72°C	δ _{N∞} -factor		0,255	0,245								

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: acting bond stress for tension load

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C17: Displacement factor under shear load¹⁾ (internally threaded anchor rod)

Internally threaded and	IG-M6	IG-M8	IG- M10	IG-M12	IG-M16	IG-M20		
Uncracked and cracked	i-static a	ction						
All temperature ranges	δ _{vo} -factor	[mm]	0,07	0,06	0,06	0,05	0,04	0,04
All temperature ranges	δν∞-factor	^l N/mm ²	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Injection System FMZ for concrete	
Performance Displacements (internally threaded anchor rod)	Annex C13

Table C18: Displacement factor under tension load¹⁾ (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete Ca	20/25, static a	and quasi-st	atic act	ion								
Temperature range I:	δ _{N0} -factor		0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
40°C/24°C	$\delta_{\text{N}\infty}\text{-}\text{factor}$		0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II:	δ _{N0} -factor	$[rac{mm}{N/mm^2}]$	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
80°C/50°C	$\delta_{\text{N}\infty}\text{-}\text{factor}$		0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III:	δ_{N0} -factor		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
120°C/72°C	δ _{N∞} -factor		0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20/	25, static and	d quasi-stati	ic action	1								
Temperature range I:	δ _{N0} -factor		0,0	0,090					0,070			
40°C/24°C	δ _{N∞} -factor		0,105					0,105				
Temperature range II:	δ _{N0} -factor		0,2	219	0,170							
80°C/50°C	$\delta_{\text{N}\infty}\text{-}\text{factor}$	N/mm ²	0,2	255	0,245							
Temperature range III:	δ_{N0} -factor		0,2	219			·	0,170		·		
120°C/72°C	δ _{N∞} -factor		0,2	0,255				0,245				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : acting bond stress for tension load

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C19: Displacement factor under shear load¹⁾ (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete C20/25, static and quasi-static action												
All temperature ranges	δ _{vo} -factor	rmm_1	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	
All temperature ranges	δ _{V∞} -factor	^l N/mm ²	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04	
Cracked concrete C20/25, static and quasi-static action												
All temperature renges	δ _{vo} -factor	rmm1	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06	
All temperature ranges	δ _{V∞} -factor	$[N/mm^2]$	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor V; V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Performance

Displacements (rebar)

Annex C14