

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0078 of 10 May 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti channel connector MQN-B

Products related to installation systems supporting technical equipment for building services such as pipes, conduits, ducts and cables

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

L 1000485

9 pages including 5 annexes which form an integral part of this assessment

EAD 280016-00-0602

ETA-18/0078 issued on 12 March 2018

European Technical Assessment ETA-18/0078

Page 2 of 9 | 10 May 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0078 English translation prepared by DIBt

Page 3 of 9 | 10 May 2023

Specific part

1 Technical description of the product

Object of this European Technical Assessment is the Hilti channel connector MQN-B. Hilti channel connector MQN-B consists of a nut, a screw, a clamping plate and a spring manufactured from steel. There is a centred round opening on both the clamping plate and the nut, which overlap each other axially with the screw passing through. The screw and nut are connected together and rotate together. Between the nut and the clamping plate is a pretensioned spring that lies perpendicular to the baseplate.

The Hilti channel connector MQN-B is used to fasten connectors manufactured from metal such as the Hilti angle connector and Hilti channel supports to Hilti installation channels of type MQ-41 and MQ-41/3 which have teeth on the inside of the lips. In doing so, the Hilti channel connector MQN-B is inserted through the installation opening of the connecting component into the slot of the channel and by pressing on the screw then turning it, with rotating 90° together with the screw. The nut then engages with the retaining projections on the installation channels. By applying force that counteracts the spring force on the screw, the Hilti channel connector MQN B can be adjusted longitudinally to the installation opening. To finally fasten to the installation channel, the nut is firmly clamped to the retaining projections on the installation channel by tightening the screw.

Annex A describes the dimensions and materials of the Hilti channel connector MQN-B. The requirements for performance assessment are given in Annex B.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performance given in Section 3 can only be assumed if the Hilti channel connector MQN-B is used in compliance with the specifications and under boundary conditions set out in Annexes A to C. The test and assessment methods on which this European Technical Assessment is based lead to an assumption of a working life of the Hilti channel connector MQN-B of at least 50 years in final use under ambient temperatures in indoor areas. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

In accordance with the European Assessment Document EAD 280016-00-0602, the product is intended to be used in

- a) installations for the support of sprinkler kits;
- b) installations for the support of other building service elements such as pipes, conduits, ducts and cables.

European Technical Assessment ETA-18/0078

Page 4 of 9 | 10 May 2023

English translation prepared by DIBt

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Reaction to fire	A1

3.2 Safety in case of fire (BWR 4)

Essential characteristic	Performance
Dimensions and materials of Hilti channel connector MQN-B	see Annex A
Resistance of Hilti channel connector MQN-B at ambient temperature	see Annex C

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 280016-00-0602, the following legal bases apply:

- In case of intended use a) specified in Section 2:
 - Decision of the commission N° 1996/577/EC:
 - System 1 applies for the assessment and verification of constancy of performance (AVCP).
- In case of intended use b) specified in Section 2:
 - Decision of the commission N° 1999/472/EC:
 - System 3 applies for the assessment and verification of constancy of performance (AVCP).

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

The technical details necessary for the implementation of the system for the assessment and verification of constancy of performance are laid down in the control plan (confidential part of this European Technical Assessment) deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 May 2023 by Deutsches Institut für Bautechnik

Dr.-Ing. Ronald Schwuchow beglaubigt:
Head of Section Ascher

Table A1: Materials of the components of the Hilti channel connector MQN-B

Plate: DD11 in accordance with EN 10111¹¹), zinc coated Nut: S355MC in accordance with EN 10149-2, zinc coated Spring Nut Spring Nut Plate: DD11 in accordance with EN 10111¹¹), zinc coated Nut: S355MC in accordance with EN 10149-2, zinc coated Screw: strength class 8.8 in accordance with EN ISO 898-1, zinc coated	Illustration	Item number	Designation	Material
(between plate and nut) Spring element: X10CrNi18-8 in accordance with EN 10270-3	Screw M10 Plate / WAF17 Spring Nut (between			Plate: DD11 in accordance with EN 1011111, zinc coated Nut: S355MC in accordance with EN 10149-2, zinc coated Screw: strength class 8.8 in accordance with EN ISO 898-1, zinc coated Spring element: X10CrNi18-8

 $^{^{1)}}$ with R_{eL} = 280 N/mm² and R_m = 350 N/mm², Method of deoxidation: fully killed Table A2: Dimensions²⁾ of the components of the Hilti channel connector MQN-B

Plate	Nut	Screw	Spring element
C. MONIS &		A O O	
	34	21	
Ø 34			

²⁾ Dimensions in mm

Hilti channel connector MQN-B

Product description
Dimensions and materials

Annex A

English translation prepared by DIBt

- The Hilti channel connector MQN-B is used to transfer the loads of building services components such as ducts and equipment for sprinkler, water, heating, cooling, ventilation, electrical and other installations. The Hilti channel connector MQN-B is suitable for undertaking this load-bearing function under the conditions described in Section 2 of this European Technical Assessment.
- The Hilti channel connector MQN-B is used to fasten connectors manufactured from metal such as the Hilti angle connector and Hilti channel supports to Hilti installation channels. The nut and the plate on the channel connector are firmly force- and form-locked connected (because of toothing) to the installation channel and the attached component by tightening the screw.
- The performance of the Hilti channel connector MQN-B results in connection with Hilti installation channels as per Table B2. The channels are cut to length centrally between the longholes or the roundholes at the marking. The cut channel is within a range of 2 mm from both sides of the marking.
- The installation instructions according to Figure B1.1 are a prerequisite for the information on the
 performance assessment in Annex C. The tightening torque of 40Nm can be driven for example electrically,
 hydraulically, or be applied by hand.
- The longitudinal axes of the MQN-B nut and the channel are perpendicular to each other after assembly with centric position of the screw between the parallel flanges of the channel.
- Information on resistance at ambient temperature applies to static and centric actions.
- The centric distance of the MQN-B nut from the channel end is 29 mm to assess the pull-out resistance of the channel connector given by the geometry of the adapter for load introduction.
- The adjacent component to the channel to assess the shear resistance of the channel connector is made of the steel type S235JR in accordance with EN 10025 with 4 mm thickness and with the opening geometry to pass through the nut of the channel connector according to Figure B1.2.

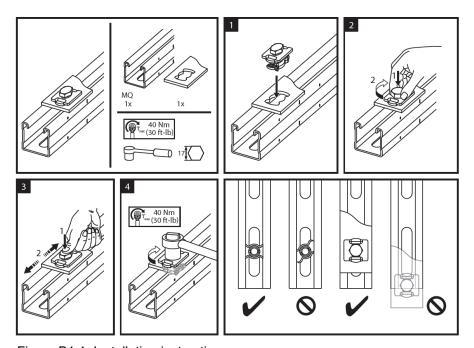


Figure B1.1: Installation instructions

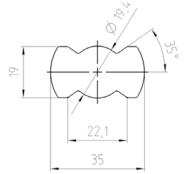


Figure B1.2:
Opening geometry to pass through the nut of the channel connector (dimensions in mm)

Hilti channel connector MQN-B

Requirements for performance assessment

Annex B1

Table B2: Dimensions and materials of installation channels for use with Hilti channel connector MQN-B

Illustration Dimensions in [mm]	Item number	Designation	Length [m]	Material	
100	369596	MQ-41/3 3M	3	S250GD+Z275-M-A-C in accordance with	
41.3 7.5 63x13.5	369597	MQ-41/3 6M	6	EN 10346	
50	2048102	MQ-41/3 3M LL	3	S250GD+Z275-M-A-C in accordance with	
41.3 7.5 41.3	2048103	MQ-41/3 6M LL	6	EN 10346	
82.6 2 40x13.5 40x13.5	369603	MQ-41 D 3m	3	S250GD+Z275-M-A-C in accordance with EN 10346	
	369604	MQ-41 D 6m	6		
18.5 18.5 18.5 63 63x13.5 911.5	369592	MQ-41 6m	6		
			3	S250GD+Z275-M-A-C in accordance with EN 10346	
	304559	MQ-41 2m	2		

Hilti channel connector MQN-B	
Requirements for performance assessment	Annex B2

English translation prepared by DIBt

Table B3: Cross-section properties of installation channels for use with Hilti channel connector MQN-B

Description	Symbol	MQ-41/3	MQ-41/3 LL	MQ-41	MQ-41 D	Unit
		Y 2 8/6€	Z 8.66	Z E 0.7	Z Z 20,65	
Classification cross section in accordance with EN 1993-1-1	-	3	3	3	3	-
Thickness of material	t	3,0	3,0	2,0	2,0	mm
Cross section areas	A	375.88	379.93	263.62	545.97	mm ²
	A _{tot}	375.88	379.93	263.62	545.97	mm ²
Shear areas	Ay	48.69	54.43	27.23	66.37	mm ²
	Az	195.47	194.59	131.51	197.58	mm ²
Centroid position	У _{С,0} Z _{С,0}	19.15 20.57	19.15 20.76	19.65 20.52	0.00	mm mm
	I _v	76963.50	78224.80	57501.00	323585.00	mm ⁴
Moments of inertia	I _z	107949.00	108011.00	76416.00	154070.00	mm ⁴
Inclination of principal axes	α	90.00	90.00	90.00	0.00	0
	I _p	184913.00	186236.00	133917.00	477656.00	mm ⁴
Polar moments of inertia	I _{p,M}	778900.00	780561.00	601859.00	477656.00	mm ⁴
Radii of avration	ί _γ	14.31	14.35	14.77	24.35	mm
Radii of gyration	i _z	16.95	16.86	17.03	16.80	mm
Polar radii of gyration	İp	22.18	22.14	22.54	29.58	mm
=-	i _{p,M}	45.52	45.33	47.78	29.58	mm
Warping radius of gyration	i _{ω,M}	7.02	7.02	7.19	17.32	mm
Torsional constant	J	848.88	856.29	269.75	575.03	mm ⁴
Secondary torsional constant	Js	105319.00	105394.00	74075.40	91246.30	mm ⁴
Location of the shear center	У м,0	19.15	19.15	19.65	0.00	mm
	Z _{M,0}	60.32	60.31	62.63	0.00	mm
ļ	Ум	0.00	0.00	0.00	0.00	mm
NA	Z _M	39.75	39.55	42.11	0.00	mm
Warping constants	l _{ω,C}	2.09277E+08	2.07678E+08	1.66135E+08	1.43225E+08	mm ⁶
	l _{ω,M}	38387600 0.00	38417600.00 0.00	31116700.00 0.00	1.43225E+08 0.00	mm ⁶
Section moduli	r _{ω,M}	4002.48	4108.45	2906.72	7834.29	mm ³
Section moduli	$S_{y,max}$ $S_{y,min}$	-3487.10	-3514.15	-2672.22	-7833.74	mm ³
ļ	$S_{z,max}$	5227.58	5230.56	3700.53	7460.71	mm ³
ļ	S _{z,min}	-5277.58	-5230.56	-3700.54	-7460.71	mm ³
Torsional section modulus	S _t	282.96	285.43	134.88		mm ³
	$M_{pl,y,k}$	NPA	NPA	NPA	NPA	kNm
Max. plastic bending moment	$M_{pl,z,k}$	NPA	NPA	NPA	NPA	kNm
Many minutes and the control of	Zy	NPA	NPA	NPA	NPA	mm ³
Max. plastic section moduli	Z _z	NPA	NPA	NPA	NPA	mm ³
Plastic shear areas	$A_{pl,y}$	NPA	NPA	NPA	NPA	mm ²
	$A_{pl,z}$	NPA	NPA	NPA	NPA	mm ²
Area bisecting axis position	f _{y,0}	NPA NPA	NPA NPA	NPA NPA	NPA NPA	mm
Plastic shear forces	f _{z,0}	NPA NPA	NPA NPA	NPA NPA	NPA NPA	mm kN
riasuc sileal luices	$V_{\text{pl,v,k}} \ V_{\text{pl,z,k}}$	NPA NPA	NPA NPA	NPA NPA	NPA NPA	kN
Plastic axial force	$N_{pl,k}$	NPA	NPA	NPA	NPA	kN
	BC _y	C	C	C	C	-
Buckling curves	BCz	C	C	C	C	-

NPA: no performance assessed

Hilti channel connector MQN-B	
Requirements for performance assessment	Annex B3

Table C1: Characteristic pull-out resistance

Channel	Installation	Characteristic pull-out resistance	
connector	channel	F _{Rk,y} [k N]	
	MQ-41/3	14.08	
MON B	MQ-41/3 LL		
MQN-B	MQ-41	12.46	
	MQ-41 D	12.40	

Table C2: Characteristic shear resistance

Channel	Installation	Characteristic shear resistance	
connector	channel	F _{Rk,x} [kN]	
	MQ-41/3	10.11	
MON B	MQ-41/3 LL		
MQN-B	MQ-41	10.12	
	MQ-41 D	10.12	

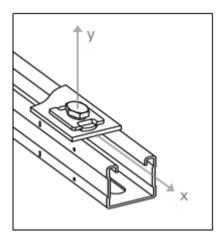


Figure C1: Coordinate system for the pull-out and shear resistance

Hilti channel connector MQN-B	
Resistance at ambient temperature	Annex C