

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-18/0785 vom 19. Januar 2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

PFEIFER-Stützenfuß PCC

Stützenfuß

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Str. 66 87700 Memmingen DEUTSCHLAND

Herstellwerke A/B/C/D/C

13 Seiten, davon 3 Anhänge, der feste Bestandteil dieser Bewertung sind.

EAD 200102-00-0302, Edition: 09/2021

ETA-18/0785 vom 17. Juni 2020

Europäische Technische Bewertung ETA-18/0785

Seite 2 von 13 | 19. Januar 2023

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z73318.22 8.03.02-49/22

Europäische Technische Bewertung ETA-18/0785

Seite 3 von 13 | 19. Januar 2023

Besonderer Teil

1 Technische Beschreibung des Produkts

Der PFEIFER-Stützenfuß PCC besteht aus einer Grundplatte und einer Seitenplatte aus Stahl, die miteinander verschweißt sind. An der Seitenplatte sind Ankerstäbe aus Betonstahl angeschweißt.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Die Stützenfüße dienen als Verbindungselemente von z.B. zwischen einer Stahlbetonstütze und einem Fundament oder zwischen zwei Stahlbetonstützen oder zwischen zwei Stahlbetonträgern.

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Stützenfuß entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Stützenfuß von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Widerstand für Zug- und Querbeanspruchung	Siehe Anhang C1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand – Branddauertabelle der Stahltemperatur unter Feuer	Siehe Anhang C2

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 200102-00-0302 ist der anwendbare europäische Rechtsakt die Entscheidung der Kommission 2000/606/EC.

Folgendes System ist anzuwenden: 2+

Z73318.22 8.03.02-49/22

Europäische Technische Bewertung ETA-18/0785

Seite 4 von 13 | 19. Januar 2023

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 19. Januar 2023 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Schüler

Z73318.22 8.03.02-49/22

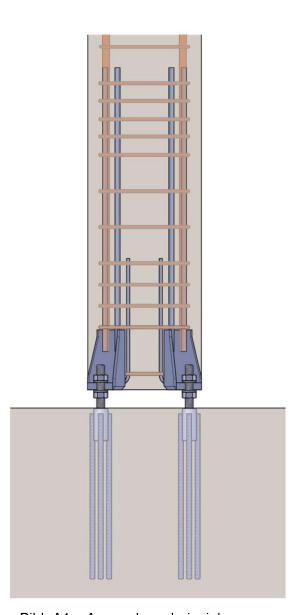


Bild. A2: Stützenfuß

PFEIFER-Stützenfuß PCC

Produktbeschreibung

Verwendungszweck, Einbauzustand

Anhang A1

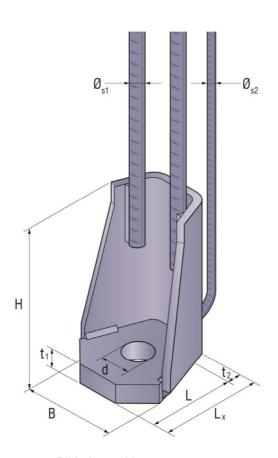


Bild. A3: Abmessungen

Tabelle A1: Abmessungen

Stützenfuß									
PCC	d	L _x	L	В	t ₁	t ₂	н	Ø _{s1}	Ø _{s2}
PCC	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
16	28	95	90	89	15	5	145	12	8
20	30	103	95	97	20	8	170	14	8
24	35	110	100	100	25	10	190	16	10
27	40	116	106	110	25	10	220	20	10
30-1	40	127	112	119	30	15	230	20	12
30-2	45	137	121	119	35	16	250	25	16
36	53	139	119	132	40	20	285	28	20
39-1	55	141	125	136	35	16	285	28	14

PFEIFER-Stützenfuß PCC	
Produktbeschreibung Abmessungen	Anhang A2

Tabelle A2: Bezeichnungen und Werkstoffe

Betonstabstahl	Betonstabstahl B500B / B500C (aus der Walzhitze wärmebehandelt) entsprechend EN 1992-1-1:2004 + AC:2010, Anhang C
Stahlteil	S355 und S460 gemäß EN 10025-2:2004, EN 10025-3:2004 und EN 10025-4:2005

PFEIFER-Stützenfuß PCC

Produktbeschreibung
Werkstoffe

Anhang A3

Verwendungszweck

Beanspruchung

- Statische oder quasi-statische Einwirkungen
- Zuglasten, Drucklasten und Querlasten oder Kombination

Verankerungsgrund

- Bewehrter Normalbeton der Festigkeitsklasse C30/37 bis C70/85 gemäß EN 1992-1-1:2004 + AC:2010
- Gerissener oder ungerissener Beton

Anwendungsbedingungen (Umweltbedingungen)

- Ohne zusätzliche Maßnahmen sind bündig mit der Oberfläche angeordnete Stützenfüße aus blankem Stahl nur zur Verwendung in trockenen Innenräumen vorgesehen.
- Für Stützenfüße, die planmäßig mit einer Betonüberdeckung eingebaut werden, gilt EN 1992-1-1:2004 + AC:2010, Abschnitt 4.
- Umgebungstemperatur ≥ -20°C

Bemessung

- Die Bemessung der Stützenfüße erfolgt unter der Verantwortung eines auf dem Gebiet der Tragwerksplanung und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung erfolgt nach TR 068.
- Unter Berücksichtigung der zu übertragenden Einwirkungen werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.
- Auf den Konstruktionszeichnungen ist die Lage der Stützenfüße einschließlich der in dieser ETA spezifizierten Zusatzbewehrung angegeben.
- Die Stützenfußverbindungen werden verwendet um Zug-, Druck- und Querkräfte sowie Momente aus dem angeschlossenen Stahlbetonbauteil auf z.B. Fundament, Stützen, Deckenplatten oder Balken zu übertragen.
- Bewehrungsstöße mit den angeschweißten Betonstabstählen werden nach EN 1992-1-1:2004 + AC:2010 bemessen.
- Die Bemessung der verbundenen Betonbauteile erfolgt nach EN 1992-1-1:2004 + AC:2010.
- Der Nachweis der Tragfähigkeit der Stützenfußverbindungen unter Brandbeanspruchung erfolgt nach TR 068 unter Berücksichtigung der Abminderungen gemäß Anhang C2.

PFEIFER-Stützenfuß PCC	
Bestimmungsgemäße Verwendung Spezifikationen	Anhang B1

Einbau

- Einbau der Stützenfüße durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Verwendung der Stützenfüße wie vom Hersteller geliefert, ohne Veränderung oder Austausch einzelner Teile.
- Einbau der Stützenfüße entsprechend Herstellerangaben, siehe Anlage B3.
- Befestigung der Stützenfüße an der Schalung, so dass sie sich beim Verlegen der Bewehrung sowie beim Einbringen und Verdichten des Betons nicht verschieben oder bewegen.
- Einwandfreie Verdichtung des Betons im Bereich der Stützenfüße.
- Stützenfüße gegen Eindringen von Beton, Wasser und Öl schützen.
- Die Abstände der Stützenfüße müssen so gewählt werden, dass die Betonierbarkeit gegeben ist.
- Beispiele für die Abstände und die Anordnung sind in Tabelle B1 und Bild B1 gegeben.
- Die Stützenfüße dürfen in beliebigen Querschnitten, z.B. Quadrat, Rechteck, Kreis, L verwendet werden.

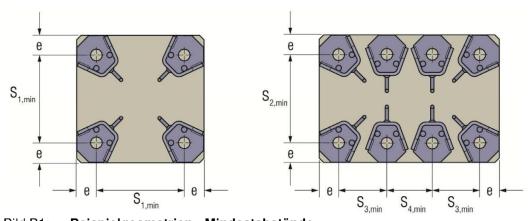
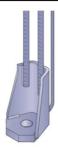


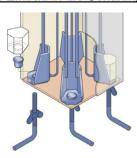
Bild B1: Beispielgeometrien - Mindestabstände

Tabelle B1: Mindestabstände

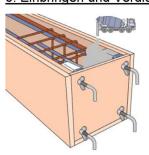

Stützenfuß					
PCC	е	S _{1,min}	S _{2,min}	S _{3,min}	S _{4,min}
PCC	[mm]	[mm]	[mm]	[mm]	[mm]
16	50	145	175	85	100
20	50	155	190	105	115
24	50	180	225	110	120
27	50	205	255	125	130
30-1	50	220	280	150	145
30-2	50	265	340	155	145
36	60	275	355	165	165
39-1	60	255	325	165	165

PFEIFER-Stützenfuß PCC	
Bestimmungsgemäße Verwendung Spezifikationen, Einbaukennwerte	Anhang B2

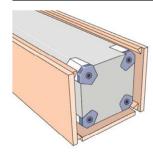
Montageanleitung Stützenfuß


1. Lieferumfang

Stützenfuß PCC, bestehend aus:


- 1. Grundplatte mit angeschweißtem Seitenblech
- 2. Angeschweißter Betonstabstahl

2. Einbau in die Schalung


- 1. Stützenfüße lagesicher an Schalung befestigen
- 2. Bewehrung der Stützenfüße an bauseits vorhandener Bewehrung fixieren
- 3. Aussparungskörper einbauen

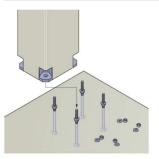
3. Einbringen und Verdichten des Betons

- 1. Beton sorgsam einbringen, auf Einbauteile achten
- Beton sorgsam verdichten, direkten Kontakt zwischen Rüttelflasche und Stützenfuß vermeiden
 - → Stützenfüße nicht gewaltsam verschieben oder beschädigen

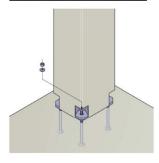
4. Entschalen des Bauteils

- 1. Schrauben der Stützenfüße lösen
- 2. Bauteil ausschalen
- 3. Kontrolle des angrenzenden Betons wegen Kiesnester etc.
- Betonschlempe auf Stützenfüßen entfernen Stahlteile müssen metallisch blank sein

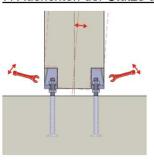
PFEIFER-Stützenfuß PCC An


Bestimmungsgemäße Verwendung Montageanleitung

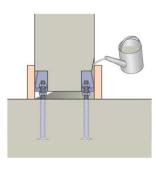
Anhang B3


Montageanleitung Fertigteil (inkl. Stützenfuß)

5. Stütze auf vorbereitete Bolzen montieren


- 1. Bolzen mit dafür vorgesehenen Muttern und Unterlegscheiben versehen
- 2. Alle Muttern auf gleiche Höhe einstellen
- 3. Stütze auf die Bolzen heben

6. Stütze verschrauben


- Vorgesehenen Muttern und Unterlegscheiben in der Montageaussparung des Stützenfuß auf die Bolzen schrauben
- 2. Muttern Handfest anziehen

7. Ausrichten der Stütze und Verspannen der Muttern

- 1. Stütze in vorgesehen Lage bringen
- 2. Muttern mit Schlagschlüsse anziehen (10 Schläge, Hammergewicht 2 Kg)
- 3. Erst jetzt darf das Bauteil von der Hebeeinrichtung getrennt werden

8. Vergießen der Verbindung

- 1. Stütze im Vergussbereich abschalen
- 2. Mit Vergussmaterial nach Herstellerangabe verfüllen Vergussmaterial muss folgende Eigenschaften aufweisen:
 - Größtkorn 5 mm
 - Nicht brennbar A1
 - Quellend
 - Mindestfestigkeit ≥ Festigkeitsklasse der Stütze

PFEIFER-Stützenfuß PCC Bestimmungsgemäße Verwendung Montageanleitung Anhang B4

Tabelle C1: Bemessungswiderstände unter Zug-, Druck- und Querlast unter statischer und quasistatischer Einwirkung

Stützenfuß PCC				20	24	27	30-1	30-2	36	39-1
Stahlversagen										
Bemessungswiderstände	$N_{\text{Rd,s}}$	[kN]	68	97	139	180	220	299	436	384
Beiwert Biegewiderstand	ηd	[-]								
Beiwert Biegesteifigkeit	k∟	[-]				1	,0			
Beiwert Querkraftwiderstand	ks	[-]								

Hinweis:

Die Übergreifungslängen der angeschweißten Betonstabstähle S1 (Anlage A2) ist nach EN 1992-1-11:2004 + AC 2010 nachzuweisen.

PFEIFER-Stützenfuß PCC	
Leistung	Anhang C1
Bemessungswiderstände unter Zug-, Druck- und Querlast unter statischer und quasi- statischer Einwirkung	

Tabelle C2: Stahltemperatur-Zeit-Tabelle unter Brandbeanspruchung – T_{cr}(ti) [°C]

			Bolze	entemperatu	ır bzw. _{Hfi} 1) ((ETK)	
Тур		30 min	60 min	90 min	120 min	180 min	240 min
PCC 16 (Stütze min. Abmessung: 24	15 mm	× 245 mm)				
		190°C	400°C	550°C	690°C	910°C	1070°C
μfi,Betonstahlanker ²⁾	[-]	1,00	1,00	0,62	0,25	0,06	0,03
μfi,Schraube ³⁾	[-]	0,94	0,78	0,35	0,11	0,03	0,00
PCC 16, PCC 20 (Stütze min. Abme	essung	g: 255 mm >	255 mm)				
		190°C	400°C	550°C	690°C	900°C	1070°C
μ fi,Betonstahlanker $^{2)}$	[-]	1,00	1,00	0,62	0,25	0,06	0,03
μfi,Schraube ³⁾	[-]	0,94	0,78	0,35	0,11	0,03	0,00
PCC 16 bis PCC 24 (Stütze min. Al	omess	ung: 280 m	m × 280 mr	m)			
		190°C	400°C	550°C	680°C	880°C	1040°C
μ fi,Betonstahlanker $^{2)}$	[-]	1,00	1,00	0,62	0,27	0,07	0,04
μfi,Schraube ³⁾	[-]	0,94	0,78	0,35	0,12	0,04	0,00
PCC 16 bis PCC 30-1 (Stütze min.	Abme	ssung: 320	mm × 320 r	nm)	-	-	-
		180°C	350°C	490°C	600°C	760°C	900°C
μ fi, $ ext{Betonstahlanker}^{2)}$	[-]	1,00	1,00	0,81	0,47	0,15	0,06
μfi,Schraube ³⁾	[-]	0,94	0,85	0,57	0,22	0,08	0,03
PCC 16 bis PCC 30-2 (Stütze min.	Abme	ssung: 365	mm × 365 r	nm)			
		180°C	340°C	480°C	560°C	710°C	840°C
μ fi, $ ext{Betonstahlanker}^{2)}$	[-]	1,00	1,00	0,84	0,59	0,22	0,08
μfi,Schraube ³⁾	[-]	0,94	0,87	0,60	0,32	0,10	0,05
PCC 16 bis PCC 36 (Stütze min. At	omess	ung: 395 m	m × 395 mr	n)			
		140°C	290°C	430°C	520°C	690°C	820°C
μ fi,Betonstahlanker $^{2)}$	[-]	1,00	1,00	0,96	0,72	0,25	0,09
Дfi,Schraube ³⁾	[-]	0,95	0,91	0,71	0,46	0,11	0,06
PCC 16 bis PCC 39-1 (Stütze min.	Abme	ssung: 395	mm × 395 r	mm)			
		140°C	290°C	430°C	520°C	690°C	820°C
μ fi,Betonstahlanker $^{2)}$	[-]	1,00	1,00	0,96	0,72	0,25	0,09
μfi,Schraube ³⁾	[-]	0,95	0,91	0,71	0,46	0,11	0,06

 $[\]mu_{fi} = Abminderungsfaktor \, (Heißtragfähikgeit \, / \, Kalttragfähigkeit)$

PFEIFER-Stützenfuß PCC	
Leistung Feuerwiderstand – Temperaturverhalten der Stützenfüße	Anhang C2

²⁾ μfi,Betonstahlanker nach 1992-1-2

³⁾ μ_{fi,Schraube} nach 1993-1-2